1

3
0

文字

分享

1
3
0

從圓周率與無理數,談數學也有其無法理解、不精確、和不確定性

賴昭正_96
・2019/06/03 ・3516字 ・閱讀時間約 7 分鐘 ・SR值 530 ・七年級

美妙地證明 π 是超越(自然)數有什麼好處:無理數根本不存在,為什麼要研究這這一類的問題呢?

——Leopold Kronecke 德國數學家(1823-1891)

有些派比其他的更難以下理解。圖/pixabay

自 1988 年以後,每年 3 月 14 號那天,全世界就有許多數學家以各種方式慶祝數學常數圓周率 π(希臘字母,音「派」,其值為 3.1415⋅⋅⋅⋅⋅)。10 歲的外孫女陳佳璐似乎也受到波及,但她只知道「今天是派日」,卻不知道什麼是「派」。筆者自告奮勇地想幫她開通,謂「那不是可以吃的餡餅(西式餡餅 pie,音派),而是圓周與直徑的比例;4、5千年以前人類就已經發現圓周是直徑的3.1415⋅⋅⋅⋅⋅倍,….」。

既然不能吃,陳小姐是一點興趣都沒有,可是筆者卻突然想得:如果是倍數,怎麼小數點後的位數永不停止或重複呢?

圓周率怎麼就「無理」了?

如果我們將直徑定為一公尺,並內分成 10 小格(即每小格為一公寸),則切斷之圓周的一端將落在第 3 公尺後之第 2 個小格內(在 3.1 公尺到 3.2 公尺之間);如果我們將 3.1 公尺– 3.2 公尺之空間放大,並內分成 10 小格(即每小格為一公分),則圓周的一端將落在 3.1 公尺後第 5 個小格內(在3.14公尺–3.15公尺之間);如果我們再將 3.14 公尺– 3.15 公尺之空間放大,並內分成 10 小格,則圓周的一端將落在 3.14 公尺後第 2 個小格內(在 3.141 公尺–3.142 公尺之間);……;如此繼續下去永遠沒有終止!圓周不是有固定的長度嗎?筆者很難想像這怎麼可能!

圓周與直徑都具固定的長度,當我們將直徑定為 1 單位時,圓周的長度將是 3.14⋅⋅⋅⋅⋅個單位;當我們將直徑定為 2 單位時,圓周的長度將是 6.28……個單位;……;理論上我們不是一定可以將直徑分成更小的 n 個單位、使得圓周的長度是整數 m 個單位嗎?

-----廣告,請繼續往下閱讀-----

公元 1761 年,瑞士科學家兼哲學家 Johann Heinrich Lambert 證明了其答案為「不可能」:圓周與直徑無法找到一個公約單位[具「不可通約性」(incommensurability)]。

因為不可能「理解」,我們現在稱這種無法以兩個整數 m/n 來表達的「數」為「無理數」(irrational number)。

不能「理解」的無理數

事實上古希臘哲學家早就知道這種「無理數」的存在!

發現畢氏定理的畢達哥拉斯(Pythagoras,公元前 570年 – 495 年)是希臘哲學家,創建了一個後來被稱為畢達哥拉斯兄弟會(Brotherhood of Pythagoreans)的團體,致力於數學研究。他的政治和宗教教義在地方上眾所周知,深深地影響了柏拉圖、亞里士多德的哲學、以及他們以後的的西方哲學。

根據亞里士多德的說法,畢達哥拉斯人是為了神秘、而不是實際應用的原因而使用數學;他們相信世界上所有事情都是由整數組成的。因此當其哲學家西柏索士(Hippasus)透過畢氏定理發現兩邊由一個單位長度組成的正三角形,其斜邊 √2 為一無法以兩個整數 m/n 來表達時,他們認為西柏索士將此一神聖的上天秘密洩露給外人,因而將他拋棄到海上淹死懲罰。

-----廣告,請繼續往下閱讀-----

同場加映:證明 √2 是無理數

令 √2 =m/n ==> mn 必定有一個是奇數(否則可以用 2 約分)
兩邊平方  2=m2/n2
2n2 = m==> m, m必須是偶數

m =2x
2n2=4x2
n2=2x2 ==>n, n2必須是偶數

所以 nm 均必須是偶數,違反了當初的假設;所以當初的假設一定是錯了,所以√2 不能以 m/n 表示,√2 為一無理數。


純邏輯推理推導出的矛盾

筆者在「數理化科學裡有天才嗎?」一直強調數學是一個純邏輯的科學,因此可能有年輕的天才;可是純邏輯推理怎麼會導出一個這些讓人無法理解的數字呢?讓我們在這裡再看一個例子。{3,8,6} 在數學上稱為有三個成員的「集合」(set),在這集合裡我們可以找出八個子集(sub-set):{}、{3}、{8}、{6}、{3,8}、{3,6}、{8,6}、{3,8,6}。

-----廣告,請繼續往下閱讀-----

透過邏輯推斷,我們將可以得到結論謂:一個集合的子集數(8)將永遠大於其成員數(3)。

但如果我們將這一結論衍伸用到 {所有的集合},則其子集數將大於所有的集合數!可是「所有」的集合已經包含了「所有的集合」,怎麼還有比它更大的子集(集合)?

「不完備性定理」的提出,邏輯矛盾的不可避免

類似的觀念問題——「無限小」(infinitesimal)——也在微積分裡發生了,因此讓數學家感到頭大!1920 年,當時最偉大的數學家希爾伯特(David Hilbert1)終於忍受不了,提出「希爾伯特計劃」(Hilbert program),希望將數學建立在一個堅實而完整的邏輯基礎上。他要一勞永逸地從數學世界中消除這些問題,宣稱:

我們都相信每個數學問題都可以解決。畢竟,當我們將自己獻身於數學問題時,吸引我們最大的原因之一正是在我們的內心深處,我們總能聽到這樣的呼喚:這就是問題所在,你可以通過純粹的思考去尋求解決的方案⎯⎯因為在數學中沒有無知的東西。

1930 年,24 歲的年輕無名小子、維也納大學的博士生哥德爾(Kurt Gödel)在一國際會議上卻發表了一篇被認為是「現代邏輯中獨特和巨大的一座里程碑」。在「不完備性定理」(incompleteness theorem)裡,哥德爾證明了:在至少包括算術在內的任何非矛盾(consistency)之形式系統 (formal system) 裡,都不能通過自己的公理證明其完整性(completeness)。他說:

-----廣告,請繼續往下閱讀-----

「人們可能會推測,這些公理和推理規則足以決定:可以在這些系統中正式表達的任何命題(待證之問題)。(我)將會證明……事實並非如此。」

哥德爾之「不完備性定理」粉碎了希爾伯特的宏偉計劃!

24歲的哥德爾用「不完備性定理」粉碎了希爾伯特意圖將數學建立在完整邏輯的「希爾伯特計劃」!圖/pixabay

「我在說謊」這句話在文法上是完全正確的,其語意也非常清楚。但是我們卻沒辦法證明它(句子本身)是否正確:如果我是在說謊(假設),那這句話便是正確的,表示我不在說謊(結論),「結論」違反了「假設」,在邏輯上我們說「假設」一定是錯了(這正是我們證明√2是無理數的方法);好吧,那我們就改一改「假設」謂我不在說謊,那上句話便是不正確的,所以我是在說謊(結論),「結論」又違反了「假設」!

對於敬畏數學的人而言,數學是確定性的範式,是完美和絕對真理的典範;因此像「我在說謊」這種不符合邏輯的「命題」,在數學上是不應該、也不會發生的!沒想到哥德爾竟然證明了「事實並非如此」!原來數學也有其無法理解、不精確、和不確定性——對數學感到恐懼的學生,現在總算有理由了(不用謝謝筆者)!

結論:現實與抽象,那些難以解決的命題

圖/pixabay

在「經驗的困境2」二文裡,筆者提到我們如果「盲目」地將日常生活中的經驗擴展到物理學上,將碰到許多難以「理解」的困境:例如光既是「波動」又是「粒子」⎯⎯兩個水火不相容的觀念!

-----廣告,請繼續往下閱讀-----

物理是實驗的科學,它的目的就是要解釋我們經驗到的現象;經驗強迫我們接受一些「不合理」的解釋3。數學沒有這一個要求,它可以通過純粹的思考去尋求解決的方案;可是從上面的分析看來,數學似乎也好不到哪裡:也有解決不了的命題?!這類發現顯然證明了「在現實之外,還存在有無法用物理驗證之更深層真理的知識」。

或許正如畢達哥拉斯兄弟會所相信的:人類之外還有一個神聖的上天!愛因斯坦有一句名言是:「我想知道上帝如何創造這世界。」只是,正如人工智慧的機器能有創造它們之人類的想像力嗎?我們如果是上帝創造的,我們能有上帝的想像力嗎?我們能跳出上帝的手掌嗎?

註解

  1. 某些科學家認為希爾伯特比愛因斯坦更早提出廣義相對論之場方程式!事實上兩人曾經為這一爭論搞得很不愉快。最後愛因斯坦寫信給希爾伯特尋求和解:「在我們之間(明顯地)有一種不愉快的情緒,但我不想分析其原因。我曾經抵抗它所導致的苦澀,並已取得了相當圓滿成功。我現在再次以無瑕的友誼想到你,也求你對我這樣做。 客觀地說,如果兩個在這個破舊世界中取得了重要成就的好夥伴,但卻彼此不能從中間獲得快樂,那將是很遺憾。」希爾伯特顯然接受了和解。對數學能力極強的希爾伯特來說,找到重力場方程事實上是一件小事,因此他不認為這是一個大成就;但愛因斯坦是奮鬥了 10 年才見到曙光。做為一個數學家,希爾伯特對場方程式的物理意義的了解,當然遠遠不及愛因斯坦;所以大部分的物理學家均認為愛因斯坦是第一位提出廣義相對論之場方程式的物理學家。
  2. 我愛科學」,台北市華騰文化有限公司出版(2017年12月)。本書收集了筆者自 1970 年元月到2017年八月間在科學月刊及其他雜誌發表過的文章。
  3. 愛因斯坦不肯接受現在廣為物理學家所接受的量子力學物理觀(見註二之「愛因斯坦的最後一搏—EPR悖論」);例如他對光的看法是:「這將近五十年來對「光量子到底是什麼」的深思,並沒有使我更接近答案。現在每一個人,像張三、李四、王五等,都以為他們了解,可是他們錯了!」
-----廣告,請繼續往下閱讀-----
文章難易度
賴昭正_96
44 篇文章 ・ 58 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
【科學說文解字】才不是白色情人節!是 π DAY!公式裡常見的符號到底該怎麼寫、怎麼唸?
PanSci_96
・2024/03/14 ・779字 ・閱讀時間約 1 分鐘

各位觀眾~今天是什麼節日呢?

什麼?情人節?

嘖嘖嘖,只知道這個的話就膚淺了。

今天可是圓周率日、愛因斯坦的生日、霍金的忌日……是巧合嗎?我可不這麼認為!總之,對於科學界來說,3 月 14 日不僅僅是白色情人節,而是一個意義非凡的日子!

-----廣告,請繼續往下閱讀-----

那圓周率又有什麼酷酷的地方讓科學家如此著迷,甚至有一個專門的節日呢?快點進影片,一探究竟吧!

除了 π(pi)之外,你還認得哪些希臘字母呢?從國中就認識的朋友——代表波長的 λ(lambda):

還是代表頻率,長得很像 v,常常害小編認錯的 ν(nu)?

在高中認識的 μ(mu),除了用於微米、代表摩擦係數,它還有什麼意思呢?

-----廣告,請繼續往下閱讀-----

快動動你的指頭搜尋一下吧!

最後這個像蛇的符號是什麼啊?長得有點像 Z 的書寫體?

沒錯!拉丁字母的 Z 就是從 ζ(zeta)來的。

而數學上有許多 ζ 函數,其中,最為知名的便是發現質數規律的黎曼 ζ 函數。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

6

12
2

文字

分享

6
12
2
今晚,我想來點……圓周率的派(π)!
Yi-Hsuan Lee_96
・2021/03/14 ・2391字 ・閱讀時間約 4 分鐘 ・SR值 529 ・七年級

  • 作者/李奕萱

3 月 14 日是什麼節呢?白色情……呸呸呸!身為科學愛好者今天過的是 π day 啦!

π day 訂在 3 月 14 日,並通常在下午 1 時 59 分慶祝,是取自圓周率(π)的近似值 3.14159 而來。圖/pixabay

2009 年,美國眾議院正式通過麻省理工提出將 3 月 14 日定為國家圓周率日的申請,將 3 月 14 日正式定為圓周率日(pi day)。世界各地的科學家會吃圓周率(派,pie)、喝圓周率(雞尾酒,piña colada)、玩圓周率(皮納塔,piñata)……來紀念這個科學界的重要常數── π。這些人有多喜歡 π 呢?他們甚至發明了 π 語言!

早在 1988 年物理學家 Larry Shaw 就在舊京山的科學探索館舉辦了第一次的「π」對,人們吃派和討論關於π的事物。圖/Wikipedia

什麼是π語言呢?

π語言(Pilish),是一種特殊的書寫格式,每個單詞中的字母數與π的對應數字匹配。第一個單詞包含三個字母,第二個單詞包含一個字母,第三個單詞包含四個字母,依此類推。舉例來說:How I need a drink, alcoholic in nature, after the heavy lectures involving quantum mechanics! 就是典型的π語言,How 由三個字母組成,I 由一個字母組成,並接續下去。人們利用這個格式創作 π 文章或是 π 詩,其中最有名的是邁克爾·基思(Michael Keith)發表的一首以 π 為主題的詩《piku》:

It’s a moon,

A wheel revolving on golden earth, and lotus blossoms.

Mountains embrace windmills, and it all reflects this number, pi.

這首詩不僅符合每個字母數的規定,甚至每句的音節數也符合規定:第一句 3 個音節,第二句 14 個音節,第三句 15 個音節。π 語言除了是一種創作形式,也衍伸出一種記憶技巧──圓周率文字學(Piphilology),先記憶 π 語言撰寫的故事再回復成數字的形式來背誦 π。你想不想也試著寫看看 π 詩呢?

-----廣告,請繼續往下閱讀-----
邁克爾甚至用這種語言寫了一本一萬字的書,叫做《不醒》(原文書名 Not A Wake: A Dream Embodying π’s Digits Fully For 10000 Decimals,也符合 π 語言的格式喔!)。圖/amazon

所以 π 是怎麼來的呢?π 又代表什麼呢?


π 源自於希臘語的 περίμετρος,有「周長」的意思,為一個圓的周長和其直徑的比值,看似很簡單的定義卻讓人類研究了數千年還是對她著迷不已。π 是無理數,用小數來表示的話就會形成一個無限的不循環小數,也就是你無法找出這些數字的規律,現代有超級電腦可以幫忙計算,那麼在沒有電腦甚至沒有計算機的的古代呢?

π 的計算最早要回溯到古埃及時期,以畫圓面積的方式計算出 π =3.16,雖然離更正確的 3.14159… 有一段差距,但當時可是公元前 1850 年的石器時代呢!後來曹魏時期的數學家劉徽和希臘化時期的阿基米德相繼提出了以相似多邊形逼近的來估算圓形周長的方式,而這些新方法也讓我們更加接近 π。

π 又有人稱作阿基米德常數,阿基米德晚年致力於幾何研究,相傳在羅馬戰士攻進城裡時阿基米德還在研究 π 的計算。圖/wikipedia

那麼 π 這個神秘的常數,在各個學界有什麼不一樣的地位呢?對於一般人來說,課本告訴我們計算π的時候要代近似值 3.14;對於軟體工程師來說,只要輸入指令就能直接從後台計算π;對數學家來說,近似值根本是邪教!!π 就是圓周跟直徑的比值,就是無法被窮盡的無理數。而這時工程師說話了:「那就當作 3 吧!」數學家頓時氣死在路邊……

工程師把數學裡兩大無理數:圓周率(π)代入 3、數學常數(e)代入 2,時常被做成迷因調侃。

海浪居然也跟 π 有關?


你知道嗎?海浪、聲音、電、路燈光線強度……這些看似跟圓形沒什麼關聯的事物其實都跟 π 有關係喔!還記得高中物理學過的海浪的簡諧運動嗎?當你把一塊會漂浮的木頭丟到海裡,木頭隨著海浪做上下規律的簡諧運動,當你把那塊浮木的運動軌跡記錄下來你就能得到一福完美的波浪圖,而圓型的秘密其實就藏在這幅圖裡!

-----廣告,請繼續往下閱讀-----
除了波浪有做簡諧運動,水分子本身也在做簡諧運動。圖/Daniel A. Russell from Longitudinal and Transverse Wave Motion

想像有一個圓形操場,你沿著跑道等速繞圈圈,並且有一道平行光從北邊打過來,這時你就會發現自己印在南邊牆上的影子軌跡也形成一幅一模一樣的波浪圖。也就是說海浪的起伏可以看作是等速度圓周運動的投影,這就說明了簡諧運動中的週期公式 \( T=2π\sqrt{\frac{m}{k_m}} \)為什麼有π在裡面了!

π 還有一些有意思的故事!

世界上有一群熱愛 π 的人,那就有另一群討厭π的人,他們認為我們在計算圓的時候應該使用的常數是 τ(念 Tau,τ=2π),也就是圓周和半徑的比值,τ 的擁護者則會在 6/28 慶祝 τ day。除了科學界慶祝圓周率,影劇界也會開π的玩笑,星際爭霸戰影集在某年 3 月 14 日的劇集中將π的最後一位數當作電腦破譯密碼,但我們知道π是一個無理數,所以我們大概也就永遠無法破解那部電腦了。π 就是這麼神秘且令人著迷,甚至法國奢侈品牌紀梵希就曾經推出一款命名為π的男性香水,是專為聰明、有遠見的男人設計的木質調香。

史巴克:「我們應該都知道 π 是一個無法被解決的超越數吧!」圖/IMDb

3 月 14 日不僅是 π day 同時是愛因斯坦的生日、史蒂芬霍金的忌日,是不是也為這天蒙上更神秘的色彩呢,那麼何不一起吃個派慶祝 π day 吧!

參考資料:

  1. Pi – Wikipedia
  2. Larry Shaw (Pi) – Wikipedia
  3. Exploratorium – Wikipedia
  4. 阿基米德 – 維基百科,自由的百科全書
  5. Daniel A. Russell(2016). Longitudinal and Transverse Wave Motion.
  6. Longitudinal and Transverse Wave Motion
-----廣告,請繼續往下閱讀-----
所有討論 6
Yi-Hsuan Lee_96
3 篇文章 ・ 1 位粉絲
Science Communicator | 數學系畢業,跑到心理系當了一年間諜,現在是應用科學研究生。喜歡文學、古典戲劇和薏仁。立志在台灣創造一個老人小孩都能樂在其中的科普空間。