1

3
0

文字

分享

1
3
0

從圓周率與無理數,談數學也有其無法理解、不精確、和不確定性

賴昭正_96
・2019/06/03 ・3516字 ・閱讀時間約 7 分鐘 ・SR值 530 ・七年級

美妙地證明 π 是超越(自然)數有什麼好處:無理數根本不存在,為什麼要研究這這一類的問題呢?

——Leopold Kronecke 德國數學家(1823-1891)

有些派比其他的更難以下理解。圖/pixabay

自 1988 年以後,每年 3 月 14 號那天,全世界就有許多數學家以各種方式慶祝數學常數圓周率 π(希臘字母,音「派」,其值為 3.1415⋅⋅⋅⋅⋅)。10 歲的外孫女陳佳璐似乎也受到波及,但她只知道「今天是派日」,卻不知道什麼是「派」。筆者自告奮勇地想幫她開通,謂「那不是可以吃的餡餅(西式餡餅 pie,音派),而是圓周與直徑的比例;4、5千年以前人類就已經發現圓周是直徑的3.1415⋅⋅⋅⋅⋅倍,….」。

既然不能吃,陳小姐是一點興趣都沒有,可是筆者卻突然想得:如果是倍數,怎麼小數點後的位數永不停止或重複呢?

圓周率怎麼就「無理」了?

如果我們將直徑定為一公尺,並內分成 10 小格(即每小格為一公寸),則切斷之圓周的一端將落在第 3 公尺後之第 2 個小格內(在 3.1 公尺到 3.2 公尺之間);如果我們將 3.1 公尺– 3.2 公尺之空間放大,並內分成 10 小格(即每小格為一公分),則圓周的一端將落在 3.1 公尺後第 5 個小格內(在3.14公尺–3.15公尺之間);如果我們再將 3.14 公尺– 3.15 公尺之空間放大,並內分成 10 小格,則圓周的一端將落在 3.14 公尺後第 2 個小格內(在 3.141 公尺–3.142 公尺之間);……;如此繼續下去永遠沒有終止!圓周不是有固定的長度嗎?筆者很難想像這怎麼可能!

圓周與直徑都具固定的長度,當我們將直徑定為 1 單位時,圓周的長度將是 3.14⋅⋅⋅⋅⋅個單位;當我們將直徑定為 2 單位時,圓周的長度將是 6.28……個單位;……;理論上我們不是一定可以將直徑分成更小的 n 個單位、使得圓周的長度是整數 m 個單位嗎?

-----廣告,請繼續往下閱讀-----

公元 1761 年,瑞士科學家兼哲學家 Johann Heinrich Lambert 證明了其答案為「不可能」:圓周與直徑無法找到一個公約單位[具「不可通約性」(incommensurability)]。

因為不可能「理解」,我們現在稱這種無法以兩個整數 m/n 來表達的「數」為「無理數」(irrational number)。

不能「理解」的無理數

事實上古希臘哲學家早就知道這種「無理數」的存在!

發現畢氏定理的畢達哥拉斯(Pythagoras,公元前 570年 – 495 年)是希臘哲學家,創建了一個後來被稱為畢達哥拉斯兄弟會(Brotherhood of Pythagoreans)的團體,致力於數學研究。他的政治和宗教教義在地方上眾所周知,深深地影響了柏拉圖、亞里士多德的哲學、以及他們以後的的西方哲學。

根據亞里士多德的說法,畢達哥拉斯人是為了神秘、而不是實際應用的原因而使用數學;他們相信世界上所有事情都是由整數組成的。因此當其哲學家西柏索士(Hippasus)透過畢氏定理發現兩邊由一個單位長度組成的正三角形,其斜邊 √2 為一無法以兩個整數 m/n 來表達時,他們認為西柏索士將此一神聖的上天秘密洩露給外人,因而將他拋棄到海上淹死懲罰。

-----廣告,請繼續往下閱讀-----

同場加映:證明 √2 是無理數

令 √2 =m/n ==> mn 必定有一個是奇數(否則可以用 2 約分)
兩邊平方  2=m2/n2
2n2 = m==> m, m必須是偶數

m =2x
2n2=4x2
n2=2x2 ==>n, n2必須是偶數

所以 nm 均必須是偶數,違反了當初的假設;所以當初的假設一定是錯了,所以√2 不能以 m/n 表示,√2 為一無理數。


純邏輯推理推導出的矛盾

筆者在「數理化科學裡有天才嗎?」一直強調數學是一個純邏輯的科學,因此可能有年輕的天才;可是純邏輯推理怎麼會導出一個這些讓人無法理解的數字呢?讓我們在這裡再看一個例子。{3,8,6} 在數學上稱為有三個成員的「集合」(set),在這集合裡我們可以找出八個子集(sub-set):{}、{3}、{8}、{6}、{3,8}、{3,6}、{8,6}、{3,8,6}。

-----廣告,請繼續往下閱讀-----

透過邏輯推斷,我們將可以得到結論謂:一個集合的子集數(8)將永遠大於其成員數(3)。

但如果我們將這一結論衍伸用到 {所有的集合},則其子集數將大於所有的集合數!可是「所有」的集合已經包含了「所有的集合」,怎麼還有比它更大的子集(集合)?

「不完備性定理」的提出,邏輯矛盾的不可避免

類似的觀念問題——「無限小」(infinitesimal)——也在微積分裡發生了,因此讓數學家感到頭大!1920 年,當時最偉大的數學家希爾伯特(David Hilbert1)終於忍受不了,提出「希爾伯特計劃」(Hilbert program),希望將數學建立在一個堅實而完整的邏輯基礎上。他要一勞永逸地從數學世界中消除這些問題,宣稱:

我們都相信每個數學問題都可以解決。畢竟,當我們將自己獻身於數學問題時,吸引我們最大的原因之一正是在我們的內心深處,我們總能聽到這樣的呼喚:這就是問題所在,你可以通過純粹的思考去尋求解決的方案⎯⎯因為在數學中沒有無知的東西。

1930 年,24 歲的年輕無名小子、維也納大學的博士生哥德爾(Kurt Gödel)在一國際會議上卻發表了一篇被認為是「現代邏輯中獨特和巨大的一座里程碑」。在「不完備性定理」(incompleteness theorem)裡,哥德爾證明了:在至少包括算術在內的任何非矛盾(consistency)之形式系統 (formal system) 裡,都不能通過自己的公理證明其完整性(completeness)。他說:

-----廣告,請繼續往下閱讀-----

「人們可能會推測,這些公理和推理規則足以決定:可以在這些系統中正式表達的任何命題(待證之問題)。(我)將會證明……事實並非如此。」

哥德爾之「不完備性定理」粉碎了希爾伯特的宏偉計劃!

24歲的哥德爾用「不完備性定理」粉碎了希爾伯特意圖將數學建立在完整邏輯的「希爾伯特計劃」!圖/pixabay

「我在說謊」這句話在文法上是完全正確的,其語意也非常清楚。但是我們卻沒辦法證明它(句子本身)是否正確:如果我是在說謊(假設),那這句話便是正確的,表示我不在說謊(結論),「結論」違反了「假設」,在邏輯上我們說「假設」一定是錯了(這正是我們證明√2是無理數的方法);好吧,那我們就改一改「假設」謂我不在說謊,那上句話便是不正確的,所以我是在說謊(結論),「結論」又違反了「假設」!

對於敬畏數學的人而言,數學是確定性的範式,是完美和絕對真理的典範;因此像「我在說謊」這種不符合邏輯的「命題」,在數學上是不應該、也不會發生的!沒想到哥德爾竟然證明了「事實並非如此」!原來數學也有其無法理解、不精確、和不確定性——對數學感到恐懼的學生,現在總算有理由了(不用謝謝筆者)!

結論:現實與抽象,那些難以解決的命題

圖/pixabay

在「經驗的困境2」二文裡,筆者提到我們如果「盲目」地將日常生活中的經驗擴展到物理學上,將碰到許多難以「理解」的困境:例如光既是「波動」又是「粒子」⎯⎯兩個水火不相容的觀念!

-----廣告,請繼續往下閱讀-----

物理是實驗的科學,它的目的就是要解釋我們經驗到的現象;經驗強迫我們接受一些「不合理」的解釋3。數學沒有這一個要求,它可以通過純粹的思考去尋求解決的方案;可是從上面的分析看來,數學似乎也好不到哪裡:也有解決不了的命題?!這類發現顯然證明了「在現實之外,還存在有無法用物理驗證之更深層真理的知識」。

或許正如畢達哥拉斯兄弟會所相信的:人類之外還有一個神聖的上天!愛因斯坦有一句名言是:「我想知道上帝如何創造這世界。」只是,正如人工智慧的機器能有創造它們之人類的想像力嗎?我們如果是上帝創造的,我們能有上帝的想像力嗎?我們能跳出上帝的手掌嗎?

註解

  1. 某些科學家認為希爾伯特比愛因斯坦更早提出廣義相對論之場方程式!事實上兩人曾經為這一爭論搞得很不愉快。最後愛因斯坦寫信給希爾伯特尋求和解:「在我們之間(明顯地)有一種不愉快的情緒,但我不想分析其原因。我曾經抵抗它所導致的苦澀,並已取得了相當圓滿成功。我現在再次以無瑕的友誼想到你,也求你對我這樣做。 客觀地說,如果兩個在這個破舊世界中取得了重要成就的好夥伴,但卻彼此不能從中間獲得快樂,那將是很遺憾。」希爾伯特顯然接受了和解。對數學能力極強的希爾伯特來說,找到重力場方程事實上是一件小事,因此他不認為這是一個大成就;但愛因斯坦是奮鬥了 10 年才見到曙光。做為一個數學家,希爾伯特對場方程式的物理意義的了解,當然遠遠不及愛因斯坦;所以大部分的物理學家均認為愛因斯坦是第一位提出廣義相對論之場方程式的物理學家。
  2. 我愛科學」,台北市華騰文化有限公司出版(2017年12月)。本書收集了筆者自 1970 年元月到2017年八月間在科學月刊及其他雜誌發表過的文章。
  3. 愛因斯坦不肯接受現在廣為物理學家所接受的量子力學物理觀(見註二之「愛因斯坦的最後一搏—EPR悖論」);例如他對光的看法是:「這將近五十年來對「光量子到底是什麼」的深思,並沒有使我更接近答案。現在每一個人,像張三、李四、王五等,都以為他們了解,可是他們錯了!」
-----廣告,請繼續往下閱讀-----
文章難易度
賴昭正_96
44 篇文章 ・ 58 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
【科學說文解字】才不是白色情人節!是 π DAY!公式裡常見的符號到底該怎麼寫、怎麼唸?
PanSci_96
・2024/03/14 ・779字 ・閱讀時間約 1 分鐘

各位觀眾~今天是什麼節日呢?

什麼?情人節?

嘖嘖嘖,只知道這個的話就膚淺了。

今天可是圓周率日、愛因斯坦的生日、霍金的忌日……是巧合嗎?我可不這麼認為!總之,對於科學界來說,3 月 14 日不僅僅是白色情人節,而是一個意義非凡的日子!

-----廣告,請繼續往下閱讀-----

那圓周率又有什麼酷酷的地方讓科學家如此著迷,甚至有一個專門的節日呢?快點進影片,一探究竟吧!

除了 π(pi)之外,你還認得哪些希臘字母呢?從國中就認識的朋友——代表波長的 λ(lambda):

還是代表頻率,長得很像 v,常常害小編認錯的 ν(nu)?

在高中認識的 μ(mu),除了用於微米、代表摩擦係數,它還有什麼意思呢?

-----廣告,請繼續往下閱讀-----

快動動你的指頭搜尋一下吧!

最後這個像蛇的符號是什麼啊?長得有點像 Z 的書寫體?

沒錯!拉丁字母的 Z 就是從 ζ(zeta)來的。

而數學上有許多 ζ 函數,其中,最為知名的便是發現質數規律的黎曼 ζ 函數。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

6

12
2

文字

分享

6
12
2
今晚,我想來點……圓周率的派(π)!
Yi-Hsuan Lee_96
・2021/03/14 ・2391字 ・閱讀時間約 4 分鐘 ・SR值 529 ・七年級

  • 作者/李奕萱

3 月 14 日是什麼節呢?白色情……呸呸呸!身為科學愛好者今天過的是 π day 啦!

π day 訂在 3 月 14 日,並通常在下午 1 時 59 分慶祝,是取自圓周率(π)的近似值 3.14159 而來。圖/pixabay

2009 年,美國眾議院正式通過麻省理工提出將 3 月 14 日定為國家圓周率日的申請,將 3 月 14 日正式定為圓周率日(pi day)。世界各地的科學家會吃圓周率(派,pie)、喝圓周率(雞尾酒,piña colada)、玩圓周率(皮納塔,piñata)……來紀念這個科學界的重要常數── π。這些人有多喜歡 π 呢?他們甚至發明了 π 語言!

早在 1988 年物理學家 Larry Shaw 就在舊京山的科學探索館舉辦了第一次的「π」對,人們吃派和討論關於π的事物。圖/Wikipedia

什麼是π語言呢?

π語言(Pilish),是一種特殊的書寫格式,每個單詞中的字母數與π的對應數字匹配。第一個單詞包含三個字母,第二個單詞包含一個字母,第三個單詞包含四個字母,依此類推。舉例來說:How I need a drink, alcoholic in nature, after the heavy lectures involving quantum mechanics! 就是典型的π語言,How 由三個字母組成,I 由一個字母組成,並接續下去。人們利用這個格式創作 π 文章或是 π 詩,其中最有名的是邁克爾·基思(Michael Keith)發表的一首以 π 為主題的詩《piku》:

It’s a moon,

A wheel revolving on golden earth, and lotus blossoms.

Mountains embrace windmills, and it all reflects this number, pi.

這首詩不僅符合每個字母數的規定,甚至每句的音節數也符合規定:第一句 3 個音節,第二句 14 個音節,第三句 15 個音節。π 語言除了是一種創作形式,也衍伸出一種記憶技巧──圓周率文字學(Piphilology),先記憶 π 語言撰寫的故事再回復成數字的形式來背誦 π。你想不想也試著寫看看 π 詩呢?

-----廣告,請繼續往下閱讀-----
邁克爾甚至用這種語言寫了一本一萬字的書,叫做《不醒》(原文書名 Not A Wake: A Dream Embodying π’s Digits Fully For 10000 Decimals,也符合 π 語言的格式喔!)。圖/amazon

所以 π 是怎麼來的呢?π 又代表什麼呢?


π 源自於希臘語的 περίμετρος,有「周長」的意思,為一個圓的周長和其直徑的比值,看似很簡單的定義卻讓人類研究了數千年還是對她著迷不已。π 是無理數,用小數來表示的話就會形成一個無限的不循環小數,也就是你無法找出這些數字的規律,現代有超級電腦可以幫忙計算,那麼在沒有電腦甚至沒有計算機的的古代呢?

π 的計算最早要回溯到古埃及時期,以畫圓面積的方式計算出 π =3.16,雖然離更正確的 3.14159… 有一段差距,但當時可是公元前 1850 年的石器時代呢!後來曹魏時期的數學家劉徽和希臘化時期的阿基米德相繼提出了以相似多邊形逼近的來估算圓形周長的方式,而這些新方法也讓我們更加接近 π。

π 又有人稱作阿基米德常數,阿基米德晚年致力於幾何研究,相傳在羅馬戰士攻進城裡時阿基米德還在研究 π 的計算。圖/wikipedia

那麼 π 這個神秘的常數,在各個學界有什麼不一樣的地位呢?對於一般人來說,課本告訴我們計算π的時候要代近似值 3.14;對於軟體工程師來說,只要輸入指令就能直接從後台計算π;對數學家來說,近似值根本是邪教!!π 就是圓周跟直徑的比值,就是無法被窮盡的無理數。而這時工程師說話了:「那就當作 3 吧!」數學家頓時氣死在路邊……

工程師把數學裡兩大無理數:圓周率(π)代入 3、數學常數(e)代入 2,時常被做成迷因調侃。

海浪居然也跟 π 有關?


你知道嗎?海浪、聲音、電、路燈光線強度……這些看似跟圓形沒什麼關聯的事物其實都跟 π 有關係喔!還記得高中物理學過的海浪的簡諧運動嗎?當你把一塊會漂浮的木頭丟到海裡,木頭隨著海浪做上下規律的簡諧運動,當你把那塊浮木的運動軌跡記錄下來你就能得到一福完美的波浪圖,而圓型的秘密其實就藏在這幅圖裡!

-----廣告,請繼續往下閱讀-----
除了波浪有做簡諧運動,水分子本身也在做簡諧運動。圖/Daniel A. Russell from Longitudinal and Transverse Wave Motion

想像有一個圓形操場,你沿著跑道等速繞圈圈,並且有一道平行光從北邊打過來,這時你就會發現自己印在南邊牆上的影子軌跡也形成一幅一模一樣的波浪圖。也就是說海浪的起伏可以看作是等速度圓周運動的投影,這就說明了簡諧運動中的週期公式 \( T=2π\sqrt{\frac{m}{k_m}} \)為什麼有π在裡面了!

π 還有一些有意思的故事!

世界上有一群熱愛 π 的人,那就有另一群討厭π的人,他們認為我們在計算圓的時候應該使用的常數是 τ(念 Tau,τ=2π),也就是圓周和半徑的比值,τ 的擁護者則會在 6/28 慶祝 τ day。除了科學界慶祝圓周率,影劇界也會開π的玩笑,星際爭霸戰影集在某年 3 月 14 日的劇集中將π的最後一位數當作電腦破譯密碼,但我們知道π是一個無理數,所以我們大概也就永遠無法破解那部電腦了。π 就是這麼神秘且令人著迷,甚至法國奢侈品牌紀梵希就曾經推出一款命名為π的男性香水,是專為聰明、有遠見的男人設計的木質調香。

史巴克:「我們應該都知道 π 是一個無法被解決的超越數吧!」圖/IMDb

3 月 14 日不僅是 π day 同時是愛因斯坦的生日、史蒂芬霍金的忌日,是不是也為這天蒙上更神秘的色彩呢,那麼何不一起吃個派慶祝 π day 吧!

參考資料:

  1. Pi – Wikipedia
  2. Larry Shaw (Pi) – Wikipedia
  3. Exploratorium – Wikipedia
  4. 阿基米德 – 維基百科,自由的百科全書
  5. Daniel A. Russell(2016). Longitudinal and Transverse Wave Motion.
  6. Longitudinal and Transverse Wave Motion
-----廣告,請繼續往下閱讀-----
所有討論 6
Yi-Hsuan Lee_96
3 篇文章 ・ 1 位粉絲
Science Communicator | 數學系畢業,跑到心理系當了一年間諜,現在是應用科學研究生。喜歡文學、古典戲劇和薏仁。立志在台灣創造一個老人小孩都能樂在其中的科普空間。