5

11
1

文字

分享

5
11
1

愛因斯坦的最大錯誤?—— 宇宙論常數

科學月刊_96
・2011/12/11 ・6654字 ・閱讀時間約 13 分鐘 ・SR值 555 ・八年級

-----廣告,請繼續往下閱讀-----

如果你相信今年 3 位諾貝爾物理獎得主所觀測到的結論,那愛因斯坦自認為的最大錯誤,可能又將成為他在理論物理上的另一巨大貢獻!

  • 文/賴昭正   美國芝加哥大學化學博士

你知道愛因斯坦一生中所犯的最大錯誤是什麼嗎?湊答案!在完成創世巨著《廣義相對論》(General Theory of Relativity)後不久,他發現由該理論所導出的宇宙觀竟然與當時物理學家(包括他自己)所接受的不同;於是愛因斯坦人為地在他的方程式裡加了一項常數,使其結果能符合當時之宇宙觀!沒想到 12 年後,天文學家發現當時的宇宙觀根本就是錯的!愛因斯坦非常後悔地悄悄將那常數從其筆記本上擦去,謂這是他一生中所犯的最大錯誤!可是該常數卻陰魂不散,在愛因斯坦去世後四分之一世紀,又重新登上舞台,成了今日探討宇宙歷史的主要工具。

20 世紀前的宇宙觀

宇宙的起源、歷史與結構,在 16 世紀以前,一直被認為是屬於宗教與哲學的範圍;因此哥白尼(N . Copernicus, 1473~1543)只敢在去世前夕才出版地球繞日的理論書,粉碎了以地球為宇宙中心的幻想,開創了近代天文的研究。約百年後,伽利略(G. Galilei, 1564~1642)改進了望遠鏡,並將其鏡頭轉向天空, 開啟了觀測天文(observational astronomy)之門,並大力支持哥白尼之地球繞日的理論(晚年被羅馬天主教強迫收回,並被軟禁在家)。為了紀念伽利略首次使用望遠鏡進行天文觀測 400 週年,國際天文學聯合會及聯合國教科文組織,共同訂西元 2009 年為「全球天文年」;科月也在元月號專輯中共襄盛舉〔註一〕。

四百多年來──尤其是 20 世紀後,科學家在了解宇宙的性質與演化上已有非常快速的進展!有關創世紀或盤古開天闢地到底是什麼時候發生、或如何發生的問題,科學家已不再須要依靠信仰來解決,已可以用科學儀器去「看」宇宙像什麼樣子及如何演化。像這類大哲學的問題已不再是信仰的爭論,而是證據與理論的問題──正如其他科學訓練一樣。

-----廣告,請繼續往下閱讀-----

哥白尼粉碎了地球為宇宙中心的幻想後,慢慢地,天文學家也了解到太陽也不可能是宇宙的中心。以人為主的宇宙觀一旦破滅,科學家再沒有任何理由認為我們所身處的地方在宇宙中佔了一個很獨特的地位;同樣地,我們所身處的時刻也沒理由是個很特殊的時刻。顯然地,宇宙永遠就是那樣地存在,它沒有開始,也不會有終結──因為如果有開始,那顯然就應有創造者,這不是太宗教了嗎?

廣義相對論

愛因斯坦在 1905 年所發表的狹義相對論(Special Theory of Relativity),雖然震撼物理界,完全改變了物理學家對時間及空間的觀念;但很遺憾地不能用於牛頓的萬有引力(重力)。經過 10 年的苦思與奮鬥,他終於在 1915 年完成了他的廣義相對論,彌補了此一缺失。愛因斯坦完成此一理論後,立即用它來計算水星繞日的軌跡,解決了牛頓重力理論無法解釋的「為何水星繞日軌跡慢慢變化」的困惑。他更用其廣義相對論,預測了光線在經過太陽附近時,會因該處時空變形(因太陽重力的關係)而彎曲。在 1919 年的日蝕裡,英國天文學家愛丁頓爵士(Sir A. Eddington)測得了星光經太陽附近後的彎曲,發現其值與愛因斯坦理論所計算出來的完全符合〔註二〕!瞬間,全世界報紙競登此一理論,愛因斯坦一夜之間成了全世界家喻戶曉之名字!

圖一:1919 年愛丁頓到西非觀測日全食並拍攝此照 片,觀測結果證實愛因斯坦廣義相對論。太陽正後 方的星光行經太陽,受到太陽四周時空的影響,產 生偏折現象。

讓我們還是將時間倒回到 1915 年吧。愛因斯坦的廣義相對論闡釋了物體如何改變其周遭的時空幾何(geometry of spacetime)、及後者又如何反過來決定物體該如何運動。因宇宙充滿了物體,因此廣義相對論立即成為探討宇宙的工具。1916 年年初(廣義相對論的最後形式是愛因斯坦於 1915 年 11 月 25 日演講時提出的),史瓦斯德(K. Schwarzschild)不但更嚴格的用此理論證明了水星軌跡的位移,並預測了「黑洞」(black hole)的存在(愛因斯坦一直不相信黑洞可能真的存在)。

愛因斯坦當然也在思考著宇宙的問題。一個充滿著星球的無限宇宙在邏輯上是有問題的:任何一點均應感受到無限大的重力、及天空不應是黑暗的〔註三〕。可是一個懸掛在「空間」的有限宇宙也是有問題的:宇宙外的「空間」又是什麼呢?左思右想,愛因斯坦於 1917 年 2 月提出了一個連他自己都認為可能被關到「瘋人院」的第三個宇宙結構:沒有邊界的有限宇宙。這確實是一個非常奇怪的想法:有限的空間怎麼會沒有邊界呢?愛因斯坦舉的例子就是生活在二度球面上的怪人:他們生活的球面是有限的,但卻沒有邊界(上下對他們來說是沒有意義的)。這種宇宙觀雖然奇怪,但是符合邏輯,在數學上也是完全可能的!但他的方程式卻說這樣的宇宙只能膨脹或收縮,這與當時大部分科學家所認為的靜態宇宙觀相衝突!沒想到推翻了深植物理學家心中達兩百多年之久的牛頓時空觀念的革命壯士,竟然在這裡屈服了:為了符合當時的想法,他在其宇宙論裡做了「少許修改」──加入了一個具有排斥力的「宇宙論常數」(cosmological constant)──來平衡萬有引力,使他的宇宙能保持靜態!

-----廣告,請繼續往下閱讀-----

膨脹中的宇宙

1929 年,美國天文學家哈柏(E. Hubble)發表了一些有關從遙遠星群傳來之光譜的測量結果,分析其頻率顯示其光譜線很有系統地向紅色方向位移。哈柏發現此一所謂的紅色位移(red shift),其值隨星球距離之增加而加大。顯然地,遙遠星群是依一定的規則在遠離我們:距離我們越遠,後退速率越快。

這無可避免的結論是:宇宙正處於一種正在膨脹中的狀態!此一完全出乎意外的發現,改變了宇宙論這一研究的整個面貌!如果愛因斯坦在 1917 年時不追隨風尚,硬是相信其相對論的結果,再次大膽地做宇宙膨脹(或縮收)的預測,其大名相信將又再次在全世界各大報章雜誌出現!可惜啊!怪不得他自嘆謂那是他一生中所犯的最大錯誤(biggest blunder)!

一個膨脹的宇宙是一個在改變的宇宙,因此應該具有生命的歷史──甚至可能有出生與死亡。事實上早在1922 年,俄國數學家佛里曼( A . Friedman)就已用廣義相對論去建造膨脹宇宙之各種數學模型:他當年靜靜地發表了他的研究結果,這些模型到現在還是一直被用來做為討論宇宙論的基本理論架構。這些模型的兩個重要特徵是一、膨脹率隨時間縮小;二、雖然現在我們所觀察到的星群均相互越離越遠,但它們過去一定曾經非常接近過。依現在廣為大部分科學家所接受的「標準大霹靂宇宙論」(standard cosmological Big Bang model),現在的宇宙年齡大約是 140 億年。

我們雖然對 140 億年前的宇宙結構細節非常不清楚,但大部分的科學家均認為宇宙是由「一個時空特異點」突然大爆炸而出現的──雖然物理學家尚不知道可用於該特異點的理論。爆炸前的宇宙是處於一個高度均勻、非常高溫、及高輻射能密度的狀態;它爆炸後快速地膨脹而冷卻,於是基本粒子、氫、氦、離子電漿、冷氣體、星群、恆星、太陽及地球相繼出現,形成我們今日所看到的宇宙。大約在大爆炸後 38 萬年時,輻射能的能量因宇宙膨脹而降低到不再足以使氫原子離子化,因此成了孤魂野鬼遊蕩在太空中。此一所謂的「微波輻射背景」(microwave background radiation)果然在 1964 年被發現,成為支持宇宙大霹靂論的最有力實驗證據!

-----廣告,請繼續往下閱讀-----
圖二:如果宇宙的生命只有140 億年,而其直徑卻至少在9300 億光年以上,那相距在140億光年以上的兩個不同區域,如何能 互通信息與能量而達到平衡(均勻)狀態呢?

標準大霹靂的幾個謎題

我們在前面曾提到大霹靂前的宇宙是均勻的;事實上,微波背景的數據顯示,現今的宇宙不但也是均勻,其均勻度更高達萬分之一。這均勻性當然是從大尺度來看的──正如桌面在顯微鏡下雖然凹凸不平,但在肉眼下卻是平滑一樣。可是為什麼這麼均勻呢?最簡單與合理的解釋當然是大霹靂後的瞬間即是如此。可是問題出來了:如果宇宙的生命只有 140 億年,而其直徑卻至少在 9300 億光年以上,那相距在 140億光年以上的兩個不同區域,如何能互通信息與能量而達到平衡(均勻)狀態呢?當然,宇宙在大霹靂之初並沒有這麼大;可是前面提過,佛里曼之宇宙模型的一個特色是膨脹速率越來越慢,因此如果現在不可能互通信息,那以前(大霹靂後不久之時)更不可能了〔註四〕!

第二個問題是為什麼我們的宇宙,其空間幾何(geometry)是這麼的「平」(flat)〔註五〕呢?依廣義相對論,空間幾何的曲度(curvature)是取決於質量密度(單位體積內的質量和能量總和);因此如果大霹靂前的質量密度正好就是造成曲度為零之空間所需之值,那大霹靂後其曲度還是會保持在零值的。問題是:如果霹靂後的質量密度為臨界值的 99.99%(誤差千分之一),則依大霹靂理論推算,現在的宇宙質量密度應只有臨界值的千億分之一!測量宇宙之質量密度當然不是一件簡單的工作,但所有的數據均顯示現在宇宙的質量密度誤差絕對沒有那麼大的!這意謂著大霹靂前的質量密度非常非常準確地正是造成「平」空間所須之臨界值──但怎麼那樣巧呢?

還有,到底是什麼促成了大霹靂呢?

宇宙論常數

1979 年十二月,美國基本粒子研究者古士(A. Guth)突然心血來潮,懷疑他的研究──超冷(supercooled)〔註六〕的希格斯場(Higgs field)──或許也適用於宇宙論。進一步探討的結果,他發現其超冷希格斯場所具有的能量及負壓(negative pressure)比,正與愛因斯坦強行加入其宇宙論的宇宙論常數一樣!我們前面提過此常數是愛因斯坦用來平衡重力相吸的人為常數,本來應該沒有什麼物理意義的!但從其在數學式子中所佔的位置,拉麥崔(G. Lemaitre,比利時牧師及天文學家,大霹靂論的創始者)看到了其所代表的物理意義:均勻地分布於空間的一種奇怪能量。愛因斯坦並未提出此一能量的可能來源,但分析顯示它絕不是我們所熟悉之電子、質子或輻射能等。

-----廣告,請繼續往下閱讀-----

在牛頓力學裡,重力的來源只是質量;愛因斯坦的狹義相對論告訴我們,能量也是一種質量,因此在廣義相對論裡,能量也會產生物質相吸的重力效應。事實上不只如此,廣義相對論裡還有第三種重力來源:壓力!更奇怪的是,如果壓力為正(類似容器內之氣體壓力),則可造成相吸的重力效應;如果為負,則可造成相斥的重力效應。後者的負內壓,正是愛因斯坦用來平衡相吸之重力,而達到靜態宇宙觀的方法!

膨脹宇宙論

古士的研究顯示,如果當初宇宙充滿了稱為膨脹子(inflation)的希格斯場〔註七〕,則在慢慢膨脹而冷卻下來時,這膨脹子可能被困在一能量不為零的非常不穩定之超冷狀態。此狀態的膨脹子因具負內壓,可以提供非常強大的排斥力〔註八〕,促成瞬間非常巨大的膨脹(「大霹靂」的原因),但因此一狀態非常不穩定,膨脹只維持了大約 10^- 35 秒之久,而在這期間,宇宙膨脹率隨著時間而急速加快!此一巨大、迅速加速的膨脹不但能解釋為何現今的宇宙是如此的均勻;它甚至還告訴了我們現今所觀測到的宇宙,事實上只是整個宇宙中非常小的一部份!這又說明了為什麼現今觀測到的宇宙是平的──正如大球表面上的一個小面積看起來是平的一樣。哇!此一偶然發現一下子解決了宇宙大霹靂論的三大謎題!

在宇宙大霹靂理論裡,因為只有重力相吸的關係,認為除了大霹靂那瞬間外,宇宙的膨脹率一直都是隨時間而減緩的。古士的研究則認為大霹靂不是瞬間的,而是持續了大約 10^-35 秒;不僅如此,他也認為在大霹靂的過程中,膨脹率是隨時間而急速越來越大的(圖三a),因此宇宙變得非常、非常的巨大!在大約 10^-35 秒後,此一大霹靂才停止,膨脹子才放出其多餘的超冷能量,產生我們現今所看到的一般物質與能量。在此之後,宇宙的膨脹率才因重力的關係又恢復到其越來越小的正常狀態(圖三 b)!天文學家稱此一改良的「標準大霹靂宇宙論」為「膨脹宇宙論」(inflationary cosmology),為現今絕大部分的科學家所接受的宇宙論。

圖三:宇宙的主要演進。(a)10-35 秒之「大霹靂」(膨脹率越來越大);(b)「標準大霹靂」理 論之大霹靂後的演進(膨脹率越來越小);(c)加速膨脹期(大霹靂後約 70 億年開始)。

不止如此,膨脹宇宙論還解決了標準大霹靂宇宙論裡的一個頭痛大問題,即前面提過之霹靂前的質量密度必須非常準確地接近一臨界值,否則今日可觀測到的宇宙之曲度便不可能為零。膨脹宇宙論不但沒有這個要求,事實上它還預測了今日的宇宙質量(包括能量在內)密度應該非常接近此一臨界值!可是各種數據顯示我們今日所觀測到的宇宙,其質量密度大概只有膨脹宇宙論所預測之值的 5% 而已!

-----廣告,請繼續往下閱讀-----

早在 30 年代,就有美國加州理工學院科學家朱偉基(F. Zwicky)從星群的運動中,懷疑到宇宙中尚存有其他看不到的「暗物體」(dark matter)!科學家也像世人一樣喜歡追風隨俗,一旦有人提出「暗物體」,其存在的證據便開始排山倒海的出現,只是到現在還沒有人知道它到底是什麼「東西」!據估計,這些看不見的暗物體大約可以提供臨界質量密度的25%;加上可看到5%的已知物體,顯然我們還差 70%,才可解釋為何我們的宇宙空間幾何是平的問題!

宇宙中的暗物體與暗能量

1998 年美國加州大學柏克萊分校(Berkeley)的波麥特(S. Perlmutter)團隊,澳洲國家大學(Australia National University)的施密特(B.P. Schmidt)與美國約翰霍普金斯大學(Johns Hopkins University)的李斯(A. G. Riess)團隊,相繼宣佈超級新星 la 型的數據顯示,在大霹靂後的 70 億年,宇宙的膨脹率又再次加速了(圖三 c)!此一發現再次重寫了人類對宇宙演化的看法,因此諾貝爾獎委員會決定將 2011 年的物理獎頒給這 3 位「大膽」的科學家。但牛頓重力只有相吸的作用,因此要解釋此一加速膨脹,看來又得求助於愛因斯坦的宇宙論常數了〔註九〕!

不錯,波麥特及施密特思考著:在大霹靂後,宇宙靠大霹靂時的衝力(物理學上稱為慣性)而繼續膨脹,但因萬有引力的關係,膨脹速率將越來越慢;可是如果真有「愛因斯坦的宇宙論常數」,則因其排斥強度不會隨宇宙膨脹而降低(萬有引力則會因宇宙膨脹而降低),它總有一天會強過萬有引力,使宇宙的膨脹率由減速再次變成加速!這一天顯然就發生在他們所發現之大霹靂後約 70 億年時!詳細分析加速資料顯示,他們所需之宇宙論常數之值所代表的質量密度正好是──信不信由你──膨脹宇宙論所在尋找的那 70%!看來愛因斯坦的「宇宙論常數」是真的存在、而不是愛因斯坦所犯之最大錯誤了?!

可是如果真的存在,這現今被稱為「暗能量」(dark energy)的「愛因斯坦宇宙論常數」到底是啥「東西」呢?拭目以待吧,物理學家及天文學家正在努力地尋找此一充滿宇宙及必須具有負內壓的怪物呢:美國能源部、美國國家太空總署及美國國家科學委員會已於 2005 年成立「黑能量特別小組」,來負責此一工作。

-----廣告,請繼續往下閱讀-----

如果真有暗能量存在,那是不是得改寫牛頓萬有引力及愛因斯坦相對論呢?幸運的是:由暗能量所造成的排斥力是與體積成正比的,在像太陽系這樣「小」的體積下,暗能量的效應是完全可以忽略不計的。

結論

為了符合當時的靜態宇宙觀,愛因斯坦於 1917 年強行地於其廣義相對論導出之宇宙觀中加入一稱為「宇宙論常數」的人為常數。1929 年,新數據顯示宇宙不是靜態,而是在膨脹中;愛因斯坦因而後悔當初為何不相信自己的推論,稱他那人為常數為一生中所犯之最大錯誤。80 年代末,「膨脹宇宙論」卻藉助了宇宙論常數,解釋了當時廣為科學家所接受之「標準大霹靂宇宙論」中的 3 個謎題。90 年代末期,新的發現顯示現在宇宙的膨脹速率不是隨時間減小、而是加大,宇宙論常數又再次提供了解釋膨脹率加快所需之排斥力的來源──雖然我們還不知道那所謂的「暗能量」是啥!當然,我們也不知道愛因斯坦在天之靈是否還認為宇宙論常數是他一生中所犯的最大錯誤?

〔註一〕陳俊郎及林琦峰,「伽利略與異想世界-全球天文年開幕」,科學月刊, 2009 年 1 月號。

〔註二〕因 E=mc^2 及質量會受重力之吸引,事實上愛因斯坦早在 1911 年時就已預測光會受重力場彎曲;但其「彎曲值」只有廣義相對論之計算值的一半。

-----廣告,請繼續往下閱讀-----

〔註三〕稱為「歐博斯謎題」(Olbers Paradox);內容詳見參考資料 1 ,第 164 頁。

〔註四〕我們可以用底下的例子來說明。A 為膨脹 1 秒後的原點,B 為膨脹 2 秒後的原點;如果從 O 點發出的光正好於 2 秒後抵達 B 點,因為光速為一定值,而 OB < 2OA(膨脹速率越來越慢),所以在1 秒時,兩點間的距離雖然已為 OA,但光線卻無法由 O 達到 A。

〔註五〕即我們中學所學的所謂「歐氏幾何」(Euclidean geometry)。在三度空間裡,我們很難感覺到「平」的意義。在二度空間, 平面的幾何就是「平」的;而球面雖也是二度空間,但其幾何不「平」;其三角形之內角和不等於 180 °!

〔註六〕像在攝氏零下的水,本應結成冰,但也可能存在於不穩定之超冷水狀態。

〔註七〕此一希格斯場不同於在自發性對稱破壞時,使基本粒子取得質量之希格斯場,內容詳見參考資料 2 。

〔註八〕為當初愛因斯坦用來「平衡宇宙」之常數的 10^100倍!

〔註九〕宇宙膨脹加速的理論當然不止愛因斯坦宇宙論常數一種──但它無疑地是較廣為接受的。另一個認為暗能量是一種第五類物質的 quintessence 理論,則認為暗能量密度不為定值(宇宙論常數裡的暗能量密度為定值,不會因為時間或宇宙膨脹而變)。

參考資料

  1. P. C. W. Davies ,賴昭正譯,《近代宇宙觀中的空間與時間》,新竹市,國興出版社,1982 年。
  2. 賴昭正,《量子的故事》,新竹市,凡異出版社,第二版,2005 年。

原刊載於 《科學月刊》第四十二卷第十二期

文章難易度
所有討論 5
科學月刊_96
249 篇文章 ・ 3437 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

5
4

文字

分享

1
5
4
高速移動的話時間流速會不一樣嗎?時間暫停是可能的嗎?——《關於宇宙我們什麼都不知道》
天下文化_96
・2023/11/08 ・2746字 ・閱讀時間約 5 分鐘

我們都感覺到相同的時間嗎?

在二十世紀之前,科學認為時間是普適的:每個人和宇宙中的一切,都感覺到相同時間。那時的假設是,你如果在宇宙裡四處擺滿了一模一樣的時鐘,那麼每個時鐘在任何時刻都會顯示相同時間。畢竟,這就是我們在日常生活中遇到的情況。想像一下,如果每個人的鐘都以不同的速度奔跑,會是多麼混亂!

但後來,愛因斯坦的相對論把空間與時間結合成「時空」*1 概念,改變了一切。愛因斯坦強調,移動中的時鐘運行速度較慢。如果你以接近光速行駛至附近的星星,那麼你體驗的時間,將遠遠少於在地球上的時間。這並不是說你覺得時間過得很慢,像是「駭客任務」中的慢動作鏡頭那樣,而是說地球上的人和時鐘測量到的時間,會比宇宙飛船上的時鐘量到的更長。我們都以同樣的方式(以每秒一秒的節奏)體驗時間,但是如果我們彼此以相對高速移動,我們的時鐘就不會同步。

在瑞士的某個地方,製錶師剛剛心臟病發作。

一模一樣的時鐘卻以不同速度運行,似乎違背了所有的邏輯論證,但宇宙就是這樣運行的。我們知道這是真的,因為我們己經在日常生活中見證了。你的手機(或汽車、飛機)上的 GPS 接收器,會假定繞地球跑的 GPS 衛星時間走得較慢(衛星以每小時數千里的速度,在受地球巨大質量彎曲的空間中移動)。沒有這些資訊,你的 GPS 設備將無法從衛星傳輸的信號中,精確的同步和進行三角定位。關鍵是當宇宙遵循某個邏輯法則時,這些法則有時不見得如你所想。以這個案例來說,宇宙有個最高速限:光速。根據愛因斯坦的相對論,沒有任何東西、資訊甚至是外送披薩的旅行速率,可以比光跑得快。這個速率(每個時段所移動的距離)的絕對上限,會產生一些奇怪後果,並挑戰我們的時間概念。

-----廣告,請繼續往下閱讀-----

首先,先確定我們了解這個速率限制是如何運作的。最重要的規則是:從任何角度來衡量任何人的速率時,這個速率限制都必須適用。我們說沒有什麼東西可以比光速還快時,無論你用什麼觀點來看,就是「沒有」。

所以我們來做個簡單的思考實驗。假設你坐在沙發上並打開手電筒。對你來說,手電筒的光線以光速遠離你。不過,我們是否可以把你的沙發綁在火箭上,點燃火箭然後讓沙發以驚人的速度移動呢?如果此時你打開手電筒,會發生什麼事?如果把手電筒指向火箭前方,光線是否以光速再加上火箭的速率移動呢?

我們將在第十章〈我們能以超光速移動嗎?〉花更多時間在這些想法上。但重要的是,為了讓所有觀察者(在火箭上的你和我們其他在地球上的人)看到,手電筒的光線都是以光速移動的,於是某些東西必須改變,這個東西就是「時間」。

為了幫助你理解這個概念,讓我們回到把時間當做時空第四維度的想法。這個想法有助於想像物體如何穿越時間和空間,而把宇宙速限應用在你的總速率上。如果你坐在地球上的沙發裡,你沒有穿越空間(相對於地球)的速率,所以你穿越時間的速率可以很高。

-----廣告,請繼續往下閱讀-----

但如果你坐在火箭上,對地球而言,火箭的移動速度接近光速,那麼你穿越空間的速率是非常高的。因此,為了讓你穿越時空的總速率在相對於地球時,保持在宇宙速限之內,你的時間速率必須減少,在此所有的速率量測都使用地球上的時鐘。

還讀得下去嗎?

對於不同人可以回報不同時間長度,你可能很難接受,但這是宇宙的運作方式。更奇怪的是,人們可能會在某些情況下,看到事件以不同順序發生,而且都是正確的。舉例來說,兩位誠實的觀察者,如果以非常不同的速度移動,他們會對誰贏得直線競速賽有不同的看法。

如果你的寵物美洲駝和雪貂進行賽跑,那麼,依據你的移動速度和相對於比賽場地的距離,你可以看到心愛的美洲駝或雪貂贏得比賽。每隻寵物都會有屬於自己事件的版本,如果你的祖母能夠以接近光速的速率移動,她看到的比賽結果可能完全不同。而且,所有人都是正確的!(不過要注意的是,每個人的時間起始點都不相同。)

-----廣告,請繼續往下閱讀-----
圖/《關於宇宙我們什麼都不知道》

我們喜歡認為宇宙有絕對真實的歷史,所以不同人可以體驗不同的時間,是令人難以接受的想法。我們可以想像,原則上有人可以寫下宇宙至今發生的每一件事(這會是非常冗長的故事而且大半都超級無聊)。如果這故事存在,那麼每個人都可以根據自己的經驗來進行檢查,除非是無心之過或視力模糊,每個人讀的故事應該要一致。但愛因斯坦的相對論使得一切都是相對的,所以不同觀察者對於宇宙裡事件的先後順序,會有不同的描述。

最終我們必須放棄宇宙有絕對單一時鐘存在的想法。雖然因此我們有時會遇到違反直覺且看似荒謬的領域,但驚人的是,這種看待時間的方式已測試為真。與許多物理革命一樣,我們被迫拋棄自我的直覺,並遵循受時間主觀意識影響較小的數學之道。

時間會停止嗎?

打從一開始,人們就想排除時間會停止的概念。時間除了向前,我們從未見過它做過其他事,既然如此,時間怎麼可能還有別的選項呢?由於我們本來就不清楚為什麼時間要前進,所以很難自信的說,時間向前是永恆真理。

一些物理學家相信,時間的「箭頭」是根據熵必須增加的法則所決定。也就是說,時間的方向與熵增加的方向相同。但如果這是真的,當宇宙達到最大熵時會發生什麼事?在這樣的宇宙裡,一切都將處於平衡而且不能創造秩序。那麼,時間會在這一點停下來嗎?還是時間不再有意義?一些哲學家猜測,在這個時刻,時間的箭頭和熵增加的法則可能會逆轉過來,導致宇宙縮小到一個微小奇點。不過,這個說法比較像是深夜裡藥吃多了後激發的猜測,而不是實際的科學預測。

-----廣告,請繼續往下閱讀-----

還有理論提出大霹靂創造了兩個宇宙,一個時間向前流逝,一個時間向後奔流。更瘋狂的理論則提出時間不只一個方向。為什麼不呢?我們可以在三個(或更多)空間方向中移動,為什麼不能有兩個或更多的時間方向?真相為何?如往常一樣,我們不知道。

註解

  1. 愛因斯坦的天才並沒有展現在為事物命名上面。

——本文摘自《關於宇宙我們什麼都不知道》,2023 年 9 月,天下文化出版,未經同意請勿轉載。

所有討論 1
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

2

2
2

文字

分享

2
2
2
諦聽宇宙深處的低吟,宇宙低頻重力波訊號代表的意義——《科學月刊》
科學月刊_96
・2023/11/01 ・3782字 ・閱讀時間約 7 分鐘

  • 作者/陳哲佑
    • 任職於日本理化學研究所,專長為黑洞物理、宇宙學、重力理論等。
    • 熱愛旅行、排球與珍珠奶茶
  • Take Home Message
    • 今(2023)年 6 月,北美奈赫茲重力波天文臺(NANOGrav)團隊觀察到宇宙中的低頻重力波。
    • NANOGrav 團隊利用數個脈衝星組成「脈衝星陣列」(PTA),測量各脈衝星訊號到達的時間,計算不同訊號的到達時間是否存在著相關性。
    • PTA 得到的重力波訊號相當持續,沒有明確的波源。科學家推測此訊號可能來自多個超大質量雙黑洞系統互繞而產生的疊加背景。

2015 年 9 月,位於美國的雷射干涉儀重力波天文臺(Laser Interferometer Gravitational-Wave Observatory, LIGO)成功偵測來自雙黑洞碰撞的重力波訊號(請見延伸閱讀 1)。

這個發現不僅再次驗證愛因斯坦(Albert Einstein)「廣義相對論」的成功,更引領人類進入嶄新的重力波天文學時代。到了現在,我們不僅能使用各種電磁波波段進行觀測,還多了重力波這個強而有力的工具能夠窺探我們身處的宇宙,甚至還有同時結合兩者的多信使天文學(multi-messenger astronomy)註1,皆能帶給人類許多單純電磁波波段觀測無法觸及的資訊(請見延伸閱讀 2)。

如同不同波段的電磁波觀測結果為我們捎來不同的訊息,重力波也有不同的頻譜,且頻譜與產生重力波的波源性質有非常密切的關係。以雙黑洞碰撞為例,系統中黑洞的質量與碰撞過程中發出的重力波頻率大致上成反比,因此當系統中黑洞的質量愈大,它產生的重力波頻率就愈低。

目前地球上的三個重力波天文臺:LIGO、處女座重力波團隊(The Virgo Collaboration, Virgo),以及神岡重力波探測器(Kamioka Gravitational wave detector, KAGRA, or Large-scale Cryogenic Gravitational wave Telescope, LCGT)都受限於干涉儀的長度,只對頻率範圍 10~1000 赫茲(Hz)的重力波有足夠的靈敏度,此範圍的重力波對應到的波源即是一般恆星質量大小的雙黑洞系統。

-----廣告,請繼續往下閱讀-----

然而,來自超大質量黑洞互繞所發出的重力波頻率幾乎是奈赫茲(Nano Hertz,即 10-9 Hz)級別,如果想要探測到此重力波,就需要一個「星系」規模的重力波探測器。雖然這聽起來彷彿天方夜譚,但就在今年 6 月,北美奈赫茲重力波天文臺(North American Nanohertz Observatory for Gravitational Waves, NANOGrav)的團隊利用「脈衝星計時陣列」(pulsar timing array, PTA)成功地觀測到這些低頻重力波存在的證據。

以不同方式觀察不同頻率的重力波

與電磁波相似,重力波也有不同的頻率。不同頻率的重力波會對應到不同性質的波源,且需要不同的方式觀測。圖/科學月刊 資料來源/Barack, et al. 2018

NANOGrav 如何觀測低頻重力波?

讀者聽過脈衝星(pulsar)嗎?它是一種高速旋轉且高度磁化的中子星(neutron star)註2,會從磁極放出電磁波。隨著脈衝星的旋轉,它的電磁波會以非常規律的時間間隔掃過地球,因而被身處於地球上的我們偵測到,就像是海邊的燈塔所發出的光,會規律地掃過地平面一般。由於脈衝星的旋轉模式相當穩定,掃過地球的脈衝就如同宇宙中天然的時鐘,因此在天文學上有相當多的應用——甚至可以用來觀測重力波。

利用脈衝星觀測重力波的第一步,首先要記錄各個脈衝星的電磁脈衝到達地球的時間(time of arrival),並且將這些訊號與脈衝星電磁脈衝的理論模型做比對。

如果訊號和理論模型相符,那麼兩者相減後所得到的訊號差(residual)只會剩下一堆雜訊;相反的,如果宇宙中存在著重力波,並且扭曲了該脈衝星和地球之間的時空,那麼兩訊號相減之後就不會只有雜訊,而會出現時空擾動的蹤跡。

-----廣告,請繼續往下閱讀-----
利用數個脈衝星組成的脈衝星計時陣列,可用來尋找宇宙中低頻的重力波訊號。圖/Tonia Klein, NANOGrav 

然而以觀測的角度來看,即便我們從來自單一脈衝星的訊號中發現訊號差出現偏離雜訊的跡象,也不能直接推論這些跡象一定是來自重力波。畢竟科學家對脈衝星的內部機制和脈衝傳遞的過程也並未完全了解,這些未知的機制都可能會使單一脈衝星的訊號差偏離雜訊。

因此為了要判斷重力波是否存在,就必須進行更進一步的觀測:利用數個脈衝星組成脈衝星陣列,測量每個脈衝星訊號到達的時間,並且計算這些不同脈衝星訊號的到達時間是否存在某種相關性。

舉例來說,如果脈衝星和地球之間沒有重力波造成的時空擾動,那麼即便每顆脈衝星的訊號差都出現偏離雜訊的跡象,彼此之間的訊號也會完全獨立且不相干;反之,如果脈衝星和地球之間有重力波經過,這些重力波便會扭曲時空,不僅會改變這些脈衝訊號的到達時間,且不同脈衝星訊號到達的時間變化也會具有某種特定的相關性。

根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。

-----廣告,請繼續往下閱讀-----

科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。

NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。

他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。

除了 NANOGrav,其他團隊例如歐洲的脈衝星計時陣列(European Pulsar Timing Array, EPTA)、澳洲的帕克斯脈衝星計時陣列(Parkes Pulsar Timing Array, PPTA)、印度的脈衝星定時陣列(Indian Pulsar Timing Array, InPTA),以及中國的脈衝星計時陣列(Chinese Pulsar Timing Array, CPTA)等,皆得到相符的結果。

-----廣告,請繼續往下閱讀-----

NANOGrav 觀測結果帶來的意義

與先前 LIGO 觀測到的瞬時重力波訊號不同,目前利用 PTA 得到的重力波訊號是相當持續的,而且並沒有較明確的單一波源,反而像是由來自四面八方數個波源組成的隨機背景訊號。

打個比方,LIGO 收到的重力波訊號像是我們站在海邊,迎面而來一波一波分明的海浪,每一波海浪分別對應到不同黑洞碰撞事件所發出的重力波;而 PTA 的訊號則是位於大海正中央,感受到隨機且不規則的海面起伏。

目前對這些奈赫茲級別的重力波訊號最合理也最自然的解釋,是來自多個超大質量雙黑洞系統互繞而產生的疊加背景。若真是如此,那這項發現將對天文學產生重大的意義。

過去科學界對於如此巨大的雙黑洞系統能否在可觀測宇宙(observable universe)的時間內互繞仍普遍存疑,如果PTA觀測到的重力波真的來自超大質量雙黑洞互繞,那代表這類系統不僅存在,它們的出現還比過去我們預期的更為頻繁,且產生的訊號也更強。

-----廣告,請繼續往下閱讀-----

NANOGrav 的觀測結果

橫軸為脈衝星陣列中,兩脈衝星位置之間的夾角;縱軸為訊號之間的相關性;藍色數據點為 NANOGrav 15 年的觀測結果;黑色虛線為 HD 曲線。可看出數據點的分布與 HD 曲線相當吻合。圖/科學月刊 資料來源/Agazie et al. 2023

不過除了雙黑洞系統,也有其他「相對新奇」的物理機制也可能產生這樣的重力波背景,包含早期宇宙的相變、暗物質,以及其他非標準模型的物理等。若要從觀測的角度去區分這些成因,最重要的關鍵在於,能否從隨機背景中找到特定的波源方向。

如果是雙黑洞系統造成的重力波,勢必會有來自某些方向的訊號比較強;反之,如果是早期宇宙產生的重力波,那麼這些重力波將會隨著宇宙的膨脹瀰漫在整個宇宙中,因此它們勢必是相當均向的。

為了找到波源方向,提升訊號的靈敏度成為了當務之急。而若要提升 PTA 的靈敏度,最主要的方式有兩種——其一是將更多的脈衝星加入陣列;其二則是延長觀測的時間。

目前,不同的 PTA 團隊已經組成國際脈衝星計時陣列(International PTA)互相分享彼此的脈衝星觀測資料。隨著觀測技術的進步,解密這些奈赫茲級別的神祕重力波將指日可待。

-----廣告,請繼續往下閱讀-----

註解

  1. 相較於過往只能以可見光觀測宇宙,多信使天文學能利用多種探測訊號,如電磁波、微中子、重力波、宇宙射線等工具探索宇宙現象,獲得更多不同資訊及宇宙更細微的面貌。
  2. 質量較重的恆星在演化到末期、發生超新星爆炸(supernova)後,就有可能成為中子星。

延伸閱讀

  1. 林俊鈺(2016)。發現重力波!,科學月刊556,248–249。
  2. 金升光(2017)。重力波獨白落幕 多角觀測閃亮登場,科學月刊576,892–893。
  3. NANOgrav. (Jun 28 2023). Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony. NANOgrav.
  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 2
科學月刊_96
249 篇文章 ・ 3437 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。