Loading [MathJax]/extensions/tex2jax.js

2

6
7

文字

分享

2
6
7

宇宙是靜態還是在膨脹?又是誰先發現宇宙微波背景輻射?

賴昭正_96
・2022/04/22 ・6136字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

有心栽花花不開,無心插柳柳成蔭

-明代《增廣賢文》

在十六世紀以前,宇宙的起源、歷史、與結構一直被認為是屬於宗教與哲學的範圍,因此最初的許多宇宙論都是以人為中心、基於神話和傳說,並認為宇宙是永恆不變的。

為什麼是永恆不變的?一個正在改變的宇宙,便應該有面臨終結的命運,這似乎不符合超越人類之創世者存在的宗教信仰。

因此 17 世紀末至 19 世紀初之歐洲啟蒙時代(也稱為理性時代)雖然企圖擺脫對宗教盲目的信仰,追求通過理性和感官證據去獲得知識,但似乎並未改變科學家深信自盤古開天闢地以來,宇宙是靜態、永恆不變的根深蒂固想法。

牛頓在 1687 年提出萬有引力來闡述宇宙星球的運行,但只有一個吸引力的宇宙是不可能保持靜態的,因此牛頓理論需要一個持續的奇蹟來保持宇宙的靜態,防止宇宙的崩潰(即防止宇宙因為太陽和恆星被拉到一起而崩潰)[1]

愛因斯坦 1915 年發表包括重力在內的廣義相對論後,當然也思考著宇宙結構的問題。但他 1917 年所提出來的宇宙模型也像其它只有吸引力的模型一樣,謂宇宙是不可能保持靜態,只能膨脹或收縮!所以愛因斯坦就將重力方程式做了「少許修改」,讓宇宙能保持靜態。

-----廣告,請繼續往下閱讀-----

1929 年,美國天文學家哈柏(Edwin Hubble)分析了一些從遙遠星群傳來之光譜的測量結果,發現其頻率很有系統地往較低之紅色位移(red shift),其位移值隨星群離我們之距離的增加而加大。顯然地,遙遠星群是依一定的規則在遠離我們:距離我們越遠,後退速率越快,稱為「哈柏–勒梅特定律」(Hubble-Lemaître law)]。

  • 紅移

多普勒效應(Doppler effect)或多普勒頻移(Doppler shift)是因聲音波源及觀察者的相對移動而造成波頻率變化的現象。當波源及觀察者互相接近時,觀察者會測到波源的頻率比原來的高;反之,當他們遠離時,觀察者會測到波源的頻率例比原來的低。頻率的改變與相對速度成正比。因為光也是一種振動,故也有類似的現象。就可見光而言,紅光頻率較低,藍光頻率較高,因此光頻因兩物體互相遠離而變低時,我們稱為「紅移」(redshift);反之,我們稱為「藍移」(blueshift)。

光源相對觀測者的運動導致紅移和藍移。圖/Wikipedia

這無可避免的結論是:宇宙正處於正在膨脹的狀態!此一完全出乎意外的發現,改變了宇宙論這一研究的整個面貌可是哈柏後來辯稱,不確定性的有限數據似乎支持靜止宇宙的概念,但他並沒有明確排除宇宙膨脹的可能性,因此他從未獲得諾貝爾獎——開玩笑的,他真正未得諾貝爾獎的原因見後。

有什麼證據可以說服像牛頓、愛因斯坦、哈柏這樣的大科學家相信宇宙是在膨脹呢?

標準大霹靂宇宙論

一個正在膨脹的宇宙是一個動態改變的宇宙,因此應該具有生命的歷史──甚至可能有出生與死亡。依現在廣為大部份科學家所接受的「標準大霹靂宇宙論」(standard cosmological Big Bang model),現在的宇宙年齡大約是 140 億年。

描述宇宙膨脹的藝術構想圖。圖/Wikipedia

我們雖然對 140 億年前的宇宙結構細節非常不清楚,但大部份的科學家均認為宇宙是由「一個時空特異點」突然大爆炸而出現的──雖然物理學家尚不知道可用什麼理論來解釋該特異點。

-----廣告,請繼續往下閱讀-----

剛爆炸時的宇宙處於一個高度均勻、非常高溫、及高輻射能密度的狀態;大約 10-12 秒後,溫度下降到太陽核心溫度的一億倍時,我們現在所知道的自然力就出現了,此時被稱為夸克的基本粒子在能量海洋中自由遊蕩。大約 10–6 秒時,自由夸克就被限制在中子和質子中。大爆炸一秒鐘後,宇宙充滿了中子、質子、電子、反電子、光子、和中微子。之後,隨著宇宙繼續膨脹,溫度也繼續下降,質子和中子開始結合形成原子核,然後又與電子結合形成現今宇宙中主要成分的氦和氘原子。這些中性原子透過重力開始合併成氣體雲,慢慢演變成恆星。當宇宙膨脹到現在大小的五分之一時,恆星已經形成了可以識別的年輕星系群體。

在電子、質子、和中子結合形成不帶電之原子前,因輻射能直接與帶電體作用,故宇宙是「不透明」的。當宇宙膨脹持續了 38 萬年、比現在小 1000 倍、溫度只有 ~3000K 時,中性原子開始大量出現;宇宙學家稱此一時期為「複合時期(recombination epoch)」。因為中性原子不能散射輻射,故輻射能在其間自由遊蕩,宇宙於是就變「透明」了,宇宙學家稱此一事件為「光子去耦(photon decoupling)」。

黑體輻射光譜

不同溫度的黑體輻射頻譜。隨著溫度下降,頻譜峰值波長增加。圖/Wikipedia

在物理學上,黑體(blackbody)是可以吸收所有入射電磁輻射的理想物理體;因它吸收所有顏色的光,故呈黑色,稱為「黑體」。黑體也發射所有頻率的電磁波,稱為「黑體輻射」;其頻率分佈稱為「黑體輻射光譜」(blackbody radiation spectrum)或「黑體光譜」。

實驗發現黑體光譜與物體之形狀或成分完全無關,只與其溫度有關。古典物理沒辦法解釋黑體光譜,導致了量子力學的發展(詳見《量子的故事》)。處於恆溫之熱平衡狀態的物體會發射該溫度之黑體輻射,其頻率或波長分佈如上圖。

黑體輻射的總能量與其溫度的四次方成正比,稱為「斯特凡-玻爾茲曼定律」(Stefan–Boltzmann law);其光譜的峰值波長與其溫度成反比,稱為「維恩位移定律」(Wien displacement law)。太陽表面溫度約為 6000K,其光譜的峰值落在可見光的範圍,正是我們眼睛所能感應到的電磁波(見上圖)!

-----廣告,請繼續往下閱讀-----

你說這是巧合還是演化的必然結果?

宇宙微波背景輻射—理論

1960 年代,普林斯頓大學物理學家迪克(Robert Dicke)及學生皮布爾斯(Jim Peebles)對 38 萬年前可以自由地穿過宇宙的輻射感到興趣,開始探討這些輻射遺留下來的可能性。他們推論說:如果宇宙是根據大爆炸理論創造的,那麼在「光子去耦」時,這些輻射應與物質作用達到平衡,其頻率分佈應是 3000K 之黑體輻射的光譜,強度最高的輻射在紅外線區(波長約為 970 nm)。托爾曼(Richard Tolman)在 1934 年的《相對論、熱力學和宇宙學》一書謂:宇宙因膨脹而溫度一直在下降,輻射頻率的分佈當然也一直隨其溫度在改變,但卻永遠保持著黑體輻射的分佈特性。

去耦時的宇宙大約比現在小 1000 倍,溫度大約為 3000K,因此當宇宙空間膨脹到現在之值時,當時之黑體輻射峰值波長便應該增長 1000 倍到微波範圍的 970 μm。因黑體光譜的峰值波長與其溫度成反比,故如果黑體輻射峰值波長增長 1000 倍,黑體的溫度便應該下降 1000 倍到 ~3K。所以現在的宇宙應充滿著 ~3K 的黑體輻射,稱為「宇宙微波背景輻射」(cosmic microwave background radiation,縮寫為 CMB 或 CMBR)。

根據 WMAP 對宇宙微波背景輻射的觀測所繪制的圖像。圖/Wikipedia

迪克及皮布爾斯都是動嘴不動手的理論物理學家,因此只好說服同事威爾金森(David Wilkinson)和羅爾(Peter Roll)去安裝天線搜索這些輻射(有心栽花…… )。

宇宙微波背景輻射——偵測

幾乎就在同時,貝爾實驗室的彭齊亞斯(Arno Penzias)和威爾遜(Robert Wilson)抓住機會,將該實驗室本想作廢的一個巨大的 20 英尺喇叭形天線,轉來作為輻射望遠鏡,以放大和測量來自星系之空間的無線電信號。為此,他們必須消除來自地面之雷達和無線電廣播的影響,並通過液氦冷卻接收器本身來抑制其核心的干擾。

在排除了能想到的一切過量輻射的來源後,他們發現接收器中仍持續存在有一種低沉、穩定、神秘的噪音。這殘留的噪音不但比他們預想的強烈一百倍,還晝夜均勻地散佈在天空;他們再次徹底檢查了設備,甚至清理了一些堆積在天線中的鴿子糞便後,噪音依然存在。顯然地,這 7.35 厘米波長的輻射不是來自地球、太陽、或我們的銀河系,而是來自銀河系外。可是什麼地方呢?

彭齊亞斯和威爾遜站在霍姆德爾號角天線下。圖/Wikipedia

當麻省理工學院物理學教授伯克(Bernard Burke)告訴彭齊亞斯他曾看到皮布爾斯的一篇預印本論文,討論在宇宙出現後可能留下的輻射時,彭齊亞斯和威爾遜立刻意識到他們之發現的可能重要性。彭齊亞斯打了電話給就在附近工作之迪克,要了一份尚未發表的皮布爾斯論文。讀完該論文後,彭齊亞斯又打了電話給迪克,邀請他到貝爾實驗室看喇叭天線,欣賞背景噪音。迪克與貝爾實驗室的研究人員分享了他的理論工作後,認為後者(無心插柳)所發現的微波輻射正是他們正在尋找的大爆炸的標誌(柳成蔭)。

-----廣告,請繼續往下閱讀-----

為了避免潛在的衝突,他們決定聯合發布他們的結果。 兩封快報同時迅速地在 1965 年的《天體物理學雜誌》(Astrophysical Journal)出現。在該雜誌裡,迪克和他的同事先概述了宇宙背景輻射作為大爆炸理論證據的重要性,然後彭齊亞斯和威爾遜報告了 3.5K 之殘餘背景噪音實驗,並謂迪克快報中的理論正可能是噪音的來源。

彭齊亞斯回憶說:「當我們第一次聽到莫名其妙的嗡嗡聲時,我們不明白它的意義,我們做夢也沒有想到它會與宇宙的起源有關。直到我們對聲音的起源用盡了所有可能的解釋後,我們才意識到我們偶然發現了一件大事。」彭齊亞斯和威爾遜因意外發現「微波背景輻射」而獲得了 1978 年的諾貝爾物理學獎。提供理論解釋的迪克及皮布爾斯則被排除在外[2]。據皮布爾斯的回憶:迪克在掛斷彭齊亞斯之電話後,曾無奈地向普林斯頓大學的同事說:「完了,同事們,我們被別人捷足先登了(Well, boys, we’ve been scooped.)」。皮布爾斯雖然在 1978 年與諾貝爾獎失之交臂,但在 2019 年還是因在物理宇宙學方面的貢獻而獲得諾貝爾物理學獎。

宇宙微波背景輻射——誰先提出?

事實上早在 1941 年科學界就開始有幾個對宇宙空間溫度的估計,但這些估計存在兩個缺陷。

首先,它們是對宇宙空間有效溫度的測量,並不表明宇宙空間充滿了黑體光譜。

-----廣告,請繼續往下閱讀-----

其次,它們依賴於地球在銀河系邊緣的特殊位置,也沒有表明輻射分佈與方向無關。儘管如此,現在很多文獻都錯誤地認為第一位提出宇宙微波背景輻射的科學家是名科普作家伽莫(George Gamow)。

1940 年代初期,伽莫想知道早期宇宙的條件是否會產生科學家現在所觀察到的氫、氦、和其他元素。這項研究需要核物理知識,但當時美國的大多數核物理學家都被招募去發展原子彈,因此伽莫基本上是獨自一人在研究核合成問題。伽莫本人並不特別擅長數學計算,因此建議他的博士生阿爾弗(Ralph Alpher)去做這雜事。他們假設大爆炸後的宇宙非常熱、充滿了中子,原子核是透過一次捕獲一個中子而形成的,偶爾原子核會衰變產生一個更重的原子核(加上一個電子和一個中微子)。在 1948 年 4 月的論文裡,他們成功地預測了宇宙中氫和氦的比例(佔所有原子的 99.99%),為大爆炸模型的另一次重大勝利。

在上面提到的 1948 年的論文裡,伽莫和阿爾弗並沒有提到「宇宙初始膨脹的殘餘輻射」。幾個月後,阿爾弗和約翰霍普金斯大學同事赫爾曼(Robert Herman)發表了另一篇論文,謂現今觀察到的氫和氦濃度說明了在宇宙誕生後的幾分鐘內,宇宙的溫度曾經處於十億度的範圍內;並預測那早期宇宙中強烈輻射的微弱殘餘現今大約在「5K 左右」(兩年後他們重新估計為 28K)。事實上,阿爾弗說伽莫最初是反對這一預測的;他在 1997 年 8 月 25 日的一封信中寫道:

1948 年末,我和赫爾曼發表那篇論文後,伽莫三年來對預測(宇宙背景溫度)的貢獻一直是:對其正確性及意義強烈地表達了保留意見。後來他返回(這題目)並發表了幾篇論文,在理論上承認了這種輻射的存在,但繼續錯誤地計算其性質,混淆了數年的(歷史)文獻!

結論——從背景輻射,到恆星的「種子」

事實上彭齊亞斯和威爾遜並沒有探測到輻射具有黑體的光譜分佈;在 8 個月後,威爾金森和羅爾的實驗才總算開花顯示出 2.7K 光譜分佈的證據。但完全證明輻射的黑體性質則在更長的時間後才出現。靜態宇宙論雖然也可以解釋宇宙背景溫度,卻沒辦法解釋其光譜分佈,因此黑體微波背景輻射光譜的發現終於鞏固了大霹靂宇宙論在天文學上的地位!

-----廣告,請繼續往下閱讀-----

一個在空間均勻分佈的輻射怎麼可能產生星球呢?因此這一充滿空間的輻射必須有一些局部變化⎯⎯無論多麼輕微,來提供形成物體的「種子」。1970 年代,天文學家發現了宇宙背景輻射在不同方向上確實有些微差異。這一發現激發了美國宇航局投入數十億美元,在戈達德太空飛行中心(Goddard Space Flight Center)開始研製一種不僅可以測量背景輻射的變化,還可以證明它是黑體輻射的「宇宙背景探測器」 (COsmic Background Explore;COBE)衛星。

「宇宙背景探測器」 (COsmic Background Explore;COBE)衛星。圖/Wikipedia

宇宙背景探測器於 1989 年發射。它準備花四年的時間來觀察蒐集資料。但在幾個小時內,它就證明了宇宙背景輻射的光譜分佈確實是黑體,完全符合與來自大爆炸時的理論計算。在 1992 年 4 月 3 日的新聞發布會上,加州大學柏克萊分校的天文物理學家斯穆特(George Smoot)宣布衛星探測器偵測到了宇宙微波背景的微小波動,為研究早期宇宙的一個突破:「我們觀察到早期宇宙中最古老和最大的現代結構(如星系、星系團等)的原始種子。不僅如此,它們也是(宇宙)創造時期遺留下來的時空結構中的巨大漣漪」;並謂「如果你有宗教信仰,那就像是看到了上帝」。馬瑟(John Mather)與斯穆特「因發現了宇宙微波背景輻射的黑體形式和各向異性」而獲得 2006 年諾貝爾物理學獎。

哈柏的發現改變了整個宇宙論研究的面貌,這麼大的貢獻,為什麼他從未獲得諾貝爾獎呢?原來那時的諾貝爾獎物理委員會不承認天文學是物理!因為這個關係,哈柏後來一直在努力爭取諾貝爾獎承認天文為一物理學的工作。

註解

  • 註 1:因為正在撰寫這篇文章,筆者在此就賣個關子,不談牛頓如何解決這個問題。
  • 註 2:是否因諾貝爾獎最多只能給三人之故就不得而知了。有趣的是:當初楊振寧與李政道因提出理論而獲得諾貝爾獎,吳建雄及雷德曼(Leon Lederman)之實驗驗證則被排除在外。

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
賴昭正_96
45 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
1

文字

分享

0
2
1
上網也要有「技術」!從言論、隱私到國安,你我都該懂的界線
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/18 ・2366字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

以為鍵盤俠天下無敵?小心一個不留神就觸法!人們常忽略「網路並非法外之地」這個重要事實。不只現實生活中的法律同樣適用於網路空間,隨著科技發展,更多應網路特性而生的法律規範也相繼出現。從基本的言論自由到隱私權保護,從智慧財產權到國家安全,法律體系正全面性地回應數位時代的種種挑戰。

在臺灣,網路上的言論自由權利源自《憲法》第 11 條的明確規定:「人民有言論、講學、著作及出版之自由。」釋字第 509 號則指出,「國家應給予最大限度之維護,俾其實現自我、溝通意見、追求真理及監督各種政治或社會活動之功能得以發揮。」網路快速傳播的特性放大了言論的影響力,而大法官的解釋將言論自由的邊際刻畫得更明確,這在數位時代裡顯得格外重要。

網路與社群媒體的快速傳播,放大了言論的影響力。圖/unsplash

網路上的性、暴力與未成年保護

顯然言論自由並非是毫無限制,2023 年 11 月的一起案件就展現其中一種界線的樣貌。當時,一名 36 歲男子將他和網友在網咖的性愛影片上傳至推特,還寫下「《網咖包廂實戰計 1》我跟某公司 OL 戰鬥」等文字。這段影片一經發布,當事女子立即採取法律行動。最終,法院依其以網際網路「供人觀覽猥褻影像」的罪名,判處該名男子拘役 30 日,得易科罰金。這個判決清楚說明了,即便在虛擬空間,散布猥褻影像仍須承擔實質的法律責任。

-----廣告,請繼續往下閱讀-----

特別是在保護未成年人方面,法律的規範更加嚴格。《刑法》第 235 條明文禁止散布、播送或販賣猥褻物品,無論形式是圖文、聲音還是影像。而《兒童及少年性剝削防制條例》第 36 條更進一步禁止任何形式的兒童色情製品被製造、散布和持有。2019年彰化縣曾層發生過這樣一起案件:一名陳姓中年男子將9歲女童帶往居所,不僅強迫她觀看色情影片,還對她進行猥褻行為,甚至將過程上傳至 Google 雲端。儘管他後來試圖以資助女童就學表達悔意,法院仍以加重強制猥褻等罪,判處他 4 年 4 個月有期徒刑。

不實言論的散布同樣可能觸犯法律。2021 年 9 月爆發的「台大狼師案」就是一個警示。一名女大生在網路上指控教師誘騙她發生關係並傳染性病,幾個月後又指控對方對她進行強制性行為。當她提出告訴時,檢方卻查無性侵事實,加上她反覆的說詞,不僅性侵告訴失敗,還因誹謗罪反被加重判刑。

當駭客、間諜都轉戰網路戰場

2013 年,一名退役空軍上校赴陸經商時被情治單位吸收,返台後透過人脈網絡發展組織、刺探軍事機密,並以空殼公司掩護非法報酬,這個情報網持續運作了 8 年之久。

在涉及國家安全的議題上,法律的態度更是嚴厲。根據《國家安全法》第 2 條的規定,任何人都不得為境外敵對勢力及其控制的組織、機構進行資助、主持、操縱、指揮或發展組織,更不能洩漏、交付或傳遞公務機密,違反者將面臨嚴厲的刑事處罰。《刑法》規定,意圖破壞國體、竊據國土,或以非法方法變更國憲、顛覆政府者,處7年以上有期徒刑,首謀更要判處無期徒刑。

-----廣告,請繼續往下閱讀-----

抄襲與轉貼的邊界在哪裡?

在智慧財產權的保護上,臺灣也經歷了數位時代的轉變。台灣第一個網路著作權相關判決,就發生在傳統出版與數位平台的碰撞之中。南方社區文化網路負責人陳豐偉等三人在中山大學 BBS 上發表的文章,未經同意就被《光碟月刊》收錄在隨刊光碟中發行。三人向台北地檢署提告後,《光碟月刊》發行人兼總經理黃俊義被判處七個月有期徒刑,緩刑三年。這個判決為數位時代的著作權保護樹立了重要典範。

臺灣首例網路著作權案判決,為數位時代智慧財產權保護樹立典範。圖/envato

近年來,影音平台的著作權爭議更趨複雜。2022 年,知名 YouTube 頻道「觸電網」就因為片商車庫娛樂檢舉七十多支未經授權的影片,導致經營 12 年的頻道被迫下架。車庫娛樂透過律師聲明,這是針對「未經合法授權影音內容」的標準處理,並表明將追究民事與刑事責任。

受害了怎麼辦?申訴管道報你知

當我們在網路上的權利受到侵害時,可以根據侵害類型尋求不同的救濟管道。最基本的言論自由權利受到侵犯時,可以先向社群平台提出檢舉。若遇到更嚴重的情況,如散布猥褻影像、非法性私密影片等,除了平台檢舉外,還可以向警方提告,或是尋求衛福部「性影像處理中心」的協助。

在面對網路霸凌、不實言論時,可以向台灣事實查核中心、MyGoPen 等組織求助,協助澄清真相。若發現有害兒少身心健康的不當內容,則可以向 iWIN 網路內容防護機構提出申訴。這個由國家通訊傳播委員會支持的組織,會在受理後進行查核、轉介業者改善或依法處理。

-----廣告,請繼續往下閱讀-----

智慧財產權的侵害在網路時代極為常見,就像「觸電網」遭片商檢舉下架的案例。這類情況可以透過平台既有的著作權保護機制處理,情節嚴重者也可以提起民事訴訟要求賠償。若發現可疑的廣告或不公平交易行為,則可以向公平交易委員會檢舉;若是特定領域的違規內容,則應該向各該主管機關反映,例如藥品廣告歸衛福部管轄、證券期貨廣告則由金管會負責。

網路時代的法律規範正不斷演進,從個人隱私到國家安全,從言論自由到智慧財產權,每個面向都在尋求數位環境下的最佳平衡點。作為網路使用者,我們必須理解並遵守這些法律界線,同時也要懂得運用各種救濟管道保護自身權益。唯有每個人都清楚了解並遵守這些規範,才能共同營造一個更安全、更有序的網路環境。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
當心網路陷阱!從媒體識讀、防詐騙到個資保護的安全守則
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/17 ・3006字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

網路已成為現代人生活中不可或缺的一部分,可伴隨著便利而來的,還有層出不窮的風險與威脅。從充斥網路的惡假害訊息,到日益精進的詐騙手法,再到個人隱私的安全隱憂,這些都是我們每天必須面對的潛在危機。2023 年網路購物詐欺案件達 4,600 起,較前一年多出 41%。這樣的數據背後,正反映出我們對網路安全意識的迫切需求⋯⋯

「第一手快訊」背後的騙局真相

在深入探討網路世界的風險之前,我們必須先理解「錯誤訊息」和「假訊息」的本質差異。錯誤訊息通常源於時效性考量下的查證不足或作業疏漏,屬於非刻意造假的不實資訊。相較之下,假訊息則帶有「惡、假、害」的特性,是出於惡意、虛偽假造且意圖造成危害的資訊。

2018 年的關西機場事件就是一個鮮明的例子。當時,燕子颱風重創日本關西機場,數千旅客受困其中。中國媒體隨即大肆宣傳他們的大使館如何派車前往營救中國旅客,這則未經證實的消息從微博開始蔓延,很快就擴散到各個內容農場。更令人遺憾的是,這則假訊息最終導致當時的外交部駐大阪辦事處處長蘇啟誠,因不堪輿論壓力而選擇結束生命。

-----廣告,請繼續往下閱讀-----

同年,另一則「5G 會抑制人體免疫系統」的不實訊息在網路上廣為流傳。這則訊息聲稱 5G 技術會影響人體免疫力、導致更容易感染疾病。儘管科學家多次出面澄清這完全是毫無根據的說法,但仍有許多人選擇相信並持續轉發。類似的例子還有 2018 年 2 月底 3 月初,因量販業者不當行銷與造謠漲價,加上媒體跟進報導,而導致民眾瘋狂搶購衛生紙的「安屎之亂」。這些案例都說明了假訊息對社會秩序的巨大衝擊。

提升媒體識讀能力,對抗錯假訊息

面對如此猖獗的假訊息,我們首要之務就是提升媒體識讀能力。每當接觸到訊息時,都應先評估發布該消息的媒體背景,包括其成立時間、背後所有者以及過往的報導記錄。知名度高、歷史悠久的主流媒體通常較為可靠,但仍然不能完全放下戒心。如果某則消息只出現在不知名的網站或社群媒體帳號上,而主流媒體卻未有相關報導,就更要多加留意了。

提升媒體識讀能力,檢視媒體背景,警惕來源不明的訊息。圖/envato

在實際的資訊查證過程中,我們還需要特別關注作者的身分背景。一篇可信的報導通常會具名,而且作者往往是該領域的資深記者或專家。我們可以搜索作者的其他作品,了解他們的專業背景和過往信譽。相對地,匿名或難以查證作者背景的文章,就需要更謹慎對待。同時,也要追溯消息的原始來源,確認報導是否明確指出消息從何而來,是一手資料還是二手轉述。留意發布日期也很重要,以免落入被重新包裝的舊聞陷阱。

這優惠好得太誇張?談網路詐騙與個資安全

除了假訊息的威脅,網路詐騙同樣令人憂心。從最基本的網路釣魚到複雜的身分盜用,詐騙手法不斷推陳出新。就拿網路釣魚來說,犯罪者通常會偽裝成合法機構的人員,透過電子郵件、電話或簡訊聯繫目標,企圖誘使當事人提供個人身分、銀行和信用卡詳細資料以及密碼等敏感資訊。這些資訊一旦落入歹徒手中,很可能被用來進行身分盜用和造成經濟損失。

-----廣告,請繼續往下閱讀-----
網路詐騙手法不斷進化,釣魚詐騙便常以偽裝合法機構誘取敏感資訊。圖/envato

資安業者趨勢科技的調查就發現,中國駭客組織「Earth Lusca」在 2023 年 12 月至隔年 1 月期間,利用談論兩岸地緣政治議題的文件,發起了一連串的網路釣魚攻擊。這些看似專業的政治分析文件,實際上是在臺灣總統大選投票日的兩天前才建立的誘餌,目的就是為了竊取資訊,企圖影響國家的政治情勢。

網路詐騙還有一些更常見的特徵。首先是那些好到令人難以置信的優惠,像是「中獎得到 iPhone 或其他奢侈品」的訊息。其次是製造緊迫感,這是詐騙集團最常用的策略之一,他們會要求受害者必須在極短時間內作出回應。此外,不尋常的寄件者與可疑的附件也都是警訊,一不小心可能就會點到含有勒索軟體或其他惡意程式的連結。

在個人隱私保護方面,社群媒體的普及更是帶來了新的挑戰。2020 年,一個發生在澳洲的案例就很具有警示意義。當時的澳洲前總理艾伯特在 Instagram 上分享了自己的登機證照片,結果一位網路安全服務公司主管僅憑這張圖片,就成功取得了艾伯特的電話與護照號碼等個人資料。雖然這位駭客最終選擇善意提醒而非惡意使用這些資訊,但這個事件仍然引發了對於在社群媒體上分享個人資訊安全性的廣泛討論。

安全防護一把罩!更新裝置、慎用 Wi-Fi、強化密碼管理

為了確保網路使用的安全,我們必須建立完整的防護網。首先是確保裝置和軟體都及時更新到最新版本,包括作業系統、瀏覽器、外掛程式和各類應用程式等。許多網路攻擊都是利用系統或軟體的既有弱點入侵,而這些更新往往包含了對已知安全漏洞的修補。

-----廣告,請繼續往下閱讀-----

在使用公共 Wi-Fi 時也要特別當心。許多公共 Wi-Fi 缺乏適當的加密和身分驗證機制,讓不法分子有機可乘,能夠輕易地攔截使用者的網路流量,竊取帳號密碼、信用卡資訊等敏感數據。因此,在咖啡廳、機場、車站等公共場所,都應該避免使用不明的免費 Wi-Fi 處理重要事務或進行線上購物。如果必須連上公用 Wi-Fi,也要記得停用裝置的檔案共享功能。

使用公共 Wi-Fi 時,避免處理敏感事務,因可能存在數據被攔截與盜取的風險。圖/envato

密碼管理同樣至關重要。我們應該為不同的帳戶設置獨特且具有高強度的密碼,結合大小寫字母、數字和符號,創造出難以被猜測的組合。密碼長度通常建議在 8~12 個字元之間,且要避免使用個人資訊相關的詞彙,如姓名、生日或電話號碼。定期更換密碼也是必要的,建議每 3~6 個月更換一次。研究顯示,在網路犯罪的受害者中,高達八成的案例都與密碼強度不足有關。

最後,我們還要特別注意社群媒體上的隱私設定。許多人在初次設定後就不再關心,但實際上我們都必須定期檢查並調整這些設定,確保自己清楚瞭解「誰可以查看你的貼文」。同時,也要謹慎管理好友名單,適時移除一些不再聯繫或根本不認識的人。在安裝新的應用程式時,也要仔細審視其要求的權限,只給予必要的存取權限。

提升網路安全基於習慣培養。辨識假訊息的特徵、防範詐騙的警覺心、保護個人隱私的方法⋯⋯每一個環節都不容忽視。唯有這樣,我們才能在享受網路帶來便利的同時,也確保自身的安全!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2399 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。