Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

「別來無恙」不只是招呼

顯微觀點_96
・2025/04/12 ・2344字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

顯微觀點_96
27 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
0

文字

分享

1
1
0
【公視《神廚賽恩師》】 除了麵粉之外,「捲」食物的方式竟然也會影響到餅皮的 Q 彈?!
公視《神廚賽恩師》_96
・2023/03/02 ・1060字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

明明同樣都是「捲」的食物,為什麼潤餅皮這麼有彈性,而蛋捲卻這麼脆呢?原來阿,是因為潤餅皮是用高筋麵粉做的,蛋白質含量最高,而蛋捲則是採用蛋白質含量最少的低筋麵粉做成。

捲捲人生-捲的古往今來

為什麼每當到了清明節時,我們都要吃潤餅呢?這個故事就要回到春秋時代的晉國,當時的國君晉文公非常想恭請介之推來輔佐自己,他是晉文公在海外流亡 19 年的救命恩人,但介之推卻遲遲不答應,因此晉文公聽了某個官員的意見,只要在他住家   的山腳下放火,就會讓宅在家的介之推和母親不得不往反方向逃,到時候就可以輕鬆的在山腳的另一頭等待他了。而久等在山腳另一邊,想喜孜孜迎接的晉文公,迎來的卻是晴天霹靂的噩耗…介之推和母親因為不肯下山,而被大火活活燒死了!這個結果讓晉文公悲痛萬分,於是規定每年清明節左右不得生火,只能吃冷食。而此時百姓也正值在吃老祖先們用來祭祀春神的「五辛」,分別是都會辣的蔥、蒜、韭菜、芫荽和油菜,預先準備好配料,用餅皮包著吃就成了「潤餅」的由來了!

只要是「捲」的食物,不管是什麼捲,在包饀料時,不論生熟一定要把水分瀝乾,不然餅皮再堅固也會破皮,就算沒破也不 Q 彈了。除了要注意內餡之外,也要注意捲的方式!通常圓筒狀的捲,有全包覆和開放式的,全包覆捲皮要薄,兩端折起來再捲,抹麵糊固定,開放式的饀料不宜太細碎;螺旋捲法用的捲皮會比較厚,但更好固定饀料,也很好切開;雙向捲則是兩端捲起,擺盤漂亮。看來對於不同方式的「捲」,可說是非常講究呢!

圖片 / 公共電視提供

全新第三季《神廚賽恩師

公共電視科普節目《神廚賽恩師》 ,結合科學、廚藝與食育教育,引領大眾用有趣的方式、從 Science-科學角度讓大眾了解傳統廚藝「伙房 36 法」中的科學知識。第三季節目於 2023 年 2 月 3 日起,每週五晚上 6 點在公視主頻首播,公視 3 台每週五晚上 7 點首播,重播時段為公視主頻每週六早上九點三十分與公視 3 台週日晚上六點播出。

▸《神廚賽恩師》第三季將於 2/3(五)起,18:00 在公視主頻首播

-----廣告,請繼續往下閱讀-----

其他播出資訊

▍ 公視頻道每週五晚間 18:00、公視三台每週五晚間 19:00 (首播)

▍ 公視頻道每週六早上 09:30、公視三台每週日晚間 18:00 (重播)

▍ 並將於公視+ 影音平台完整上架 敬請期待

-----廣告,請繼續往下閱讀-----

▍ 烹調中蘊含科學原理,一起發現料理中樂趣

-----廣告,請繼續往下閱讀-----
所有討論 1
公視《神廚賽恩師》_96
8 篇文章 ・ 3 位粉絲
公共電視科普節目《神廚賽恩師》 ,結合科學、廚藝與食育教育,引領大眾用有趣的方式、從Science-科學角度讓大眾了解傳統廚藝「伙房36法」中的科學知識。第三季節目於2023年2月3日起,每週五晚上6點在公視主頻首播,公視3台每週五晚上7點首播,重播時段為公視主頻每週六早上九點三十分與公視3台週日晚上六點播出。

0

0
0

文字

分享

0
0
0
【特輯】清明連假春暖花開,來認識這幾種蟲蟲危機吧
PanSci_96
・2019/04/04 ・1041字 ・閱讀時間約 2 分鐘 ・SR值 468 ・五年級

-----廣告,請繼續往下閱讀-----

Summer is coming.

又到了一年一度的兒童-清明連假,踏春掃墓兩不誤的時節,春暖花開的時節,當然各種蟲蟲也開始出沒啦!

聽來嚇人的「恙蟲病」是什麼?

首先,是每逢清明之際就會開始流行的恙蟲病。

恙蟲病是經由帶有立克次體的恙螨幼蟲叮咬而感染;恙螨幼蟲會停留於草叢中,伺機攀附到經過的動物或人身上,因此出入草叢而未做好保護措施,可能遭恙螨叮咬感染的機會較高。恙蟲病的潛伏期通常為 9 至 12 天,會出現持續性高燒、頭痛、淋巴結腫大等症狀,約發燒一週後,皮膚出現紅色斑狀丘疹,恙螨叮咬處通常會出現無痛性焦痂,如未經妥適治療,死亡率可高達百分之六十,經治療死亡率小於百分之五。

於連假期間至郊外踏青,建議穿著淺色長袖衣褲,皮膚裸露部位塗抹防蚊藥劑,並於離開草叢後儘快沐浴且換洗全部衣物,以減少恙螨叮咬的機會。

-----廣告,請繼續往下閱讀-----

http://pansci.asia/archives/flash/99849

摸到就會腫起來?隱翅蟲到底是怎麼回事?

沾到會引起嚴重過敏的隱翅蟲皮膚炎是大家很不喜歡隱翅蟲的一個原因。但為何會染上隱翅蟲皮膚炎呢?首先,我們要先來認識「隱翅蟲素」。

隱翅蟲素是由毒隱翅蟲體內的共生細菌所產生的一種「醯胺」,它可以有效地抑制 DNA 的合成,並阻斷細胞的分裂導致細胞死亡,進而造成隱翅蟲皮膚炎。皮膚接觸到隱翅蟲素會引發皮膚刺痛、紅腫、水泡等症狀。不過隱翅蟲素並不會分泌在毒隱翅蟲的體表,而是在身體破裂時才有可能將隱翅蟲素釋放出來,因此只有在將毒隱翅蟲打死並讓皮膚沾染到毒隱翅蟲的體液,才會發生隱翅蟲皮膚炎。

最強的昆蟲對手,當然還是小強莫屬

談到夏天的昆蟲,無可奈何(?)讓人驚聲尖叫的莫過於俗稱小強的蟑螂了。無論是德國蟑螂或是美洲家蠊,都是天生的生存高手。

地上的紅豆不要亂撿! 關於蟑螂卵鞘的二三事

-----廣告,請繼續往下閱讀-----

來一碗夏日的紅豆冰,蚊子大軍駕到!

嗡嗡嗡,嗡嗡嗡!或許不像蟑螂那樣能引發驚呼,但蚊子也的確是夏日最惱人的昆蟲之一了。

蚊子是根據什麼條件來鎖定目標的呢?研究發現,對蚊子來說,遠距離的時候二氧化碳最重要,但是等到距離拉近以後,溫度、氣味以及視覺也對蚊子選擇目標有很重大的影響。

書蝨、跳蟲、衣蛾、米蟲:那些家中的昆蟲室友們

其實,你一直都跟昆蟲們住在一起。

我們所住的屋子,不管是公寓、別墅或大廈,除了蟑螂、蚊子、蒼蠅等這些廣為人知的「衛生害蟲」,還存在著許多你可能從未留意過的昆蟲室友,這是千真萬確的。家裡面常見的小蟲有哪些?

現代人接觸到昆蟲的機會較少,在初次見面的時候往往手忙腳亂。這些都是與我們一同生活在地球上的昆蟲們,只要好好認識牠們,自然無需驚慌,輕鬆度過蟲蟲危機吧!

-----廣告,請繼續往下閱讀-----