0

11
3

文字

分享

0
11
3

不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(下)

羅夏_96
・2021/03/23 ・3373字 ・閱讀時間約 7 分鐘 ・SR值 558 ・八年級

-----廣告,請繼續往下閱讀-----

本文接續上一篇:不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(上)

在上一篇文章中,科學家透過梭菌屬 (Clostridium) 、沙門氏菌屬 (Salmonella) 研究了細菌治療癌症的效果,其中,雖然沙門氏菌沒有明顯的治療效果,但是卻啟發了科學家將細菌當作「運輸抗癌藥物的載體」的想法。

李斯特菌:偷偷藏到吞噬細胞裡面!

在日常生活中,若我們感染李斯特菌 (Listeria monocytogenes, L. monocytogenes) ,將會出現腸胃道症狀,嚴重者會引發如敗血症、腦膜炎等症狀,是最致命的食源性病原體之一,主要以食物為傳染媒介,其致死率甚至高過沙門氏菌及肉毒桿菌。

李斯特菌。圖/Wikipedia

李斯特菌與沙門氏菌一樣,是兼性厭氧細菌,無論在缺氧、有氧的條件下均能夠生存,因此在細菌療法的考量下,科學家不用擔心當腫瘤失去微環境時,李斯特菌會失去治療的效果。

特別的是,李斯特菌也是兼性胞內寄生菌註1,可在吞噬細胞中生長,也可以在細胞外存活!

李斯特菌被吞噬細胞吞噬後,會分泌 listeriolysin O (LLO) 這個溶胞素註2破壞細胞膜,進而入侵到吞噬細胞的細胞質內,並在吞噬細胞的細胞質內繼續生長。這項讓免疫系統頭痛的特點,卻也成為科學家相中牠的原因。

-----廣告,請繼續往下閱讀-----

負責撰寫「死亡筆記本」的吞噬細胞

人體的免疫系統由先天和後天組成,其中兩者的主要差異在於「專一性」。

先天免疫系統沒有專一性,只要辨識到非人體的病原體,就會啟動殺敵系統,當病原體感染人體後,受損的細胞會產生發炎反應。

而先天免疫系統的發炎反應會活化諸多細胞激素,吸引吞噬細胞和自然殺手細胞 (Natural Killer Cell,後稱 NK 細胞) ,前者會將被感染的細胞吞噬消化,後者則分泌毒素直接殺死被感染的細胞。

李斯特菌在吞噬細胞內脫逃示意圖。圖/參考文獻 4

吞噬細胞還有另一個稱呼:抗原呈現細胞 (Antigen Presenting Cell, APC),APC 會把病原體的抗原放在自己的細胞膜上,就像是後天免疫系統的死亡筆記本一樣,藉此來提供訊息給後天免疫系統。

-----廣告,請繼續往下閱讀-----

後天免疫系統具備高度專一性,一旦接受到 APC 提供的死亡筆記本,便會開始「量身訂製」殺敵策略。

執行後天免疫系統的主角,主要為兩類淋巴細胞: B 細胞和 T 細胞。B 細胞會分泌專一性的抗體,可與病原體的抗原結合,使其失活;T 細胞則會訓練一批殺手,專門獵殺帶有抗原的病原體或細胞。

後天免疫系統還有「記憶性」,當人體再被同樣的病原體感染後,後天免疫系統會徵招曾經參戰的 B 細胞和 T 細胞,達到更快速的制敵效率,而這個記憶特性,也是疫苗背後的基本原理。

先天與後天免疫系統間的相互配合。圖/參考文獻 5

先天和後天免疫系統並非各自為政,而是相輔相成。其中可看出,APC 是連結兩者的重要橋梁。

-----廣告,請繼續往下閱讀-----

癌細胞會分泌抑制免疫細胞的細胞激素,讓 NK 細胞和吞噬細胞無法作用。NK 細胞不作用,就無法毒殺癌細胞;吞噬細胞不作用,腫瘤的抗體資訊就無法傳遞給後天免疫系統,身體就無法針對癌細胞產生專一的殺滅作用。

看到這兒你可能會想,這些和李斯特菌的兼性胞內寄生有什麼關係?關係可大了!

逼迫細菌把腫瘤送入「死亡筆記本」!

正常來說,雖然李斯特菌會引起先天免疫系統的反應,但因李斯特菌可以靠 LLO 逃避吞噬細胞的消化,使得吞噬細胞無法紀錄牠的抗原訊息,也無法將抗原訊息提供給後天免疫系統。

科學家:嘿嘿,那我就改造你!

當李斯特菌跑到吞噬細胞體內後,科學家強迫李斯特菌不斷生產抗原,而且這些抗原還會跑到吞噬細胞表面,讓本來不能呈現抗原的吞噬細胞,瘋狂表現腫瘤抗原,並藉此活化後天免疫系統。

-----廣告,請繼續往下閱讀-----

在動物實驗中,即使是沒有被改造完全、不會生產腫瘤抗原的李斯特菌,本來就具有腫瘤組織專一性,也和活化先天免疫系統的能力,確實能讓腫瘤消退9

注射李斯特菌到小鼠體內,能有效抑制黑色素瘤的生長。圖/參考文獻 6

當科學家改造李斯特菌之後,實驗結果顯示,李斯特菌除了保持「腫瘤專一性」和「活化先天免疫系統」的兩個能力,科學家也確實觀察到後天免疫系統被活化了1。也就是說,腫瘤抗原真的成功被李斯特菌帶入吞噬細胞,而且被記上死亡筆記本、送給後天免疫系統了!

動物實驗的結果讓科學家們相當振奮,他們認為,這代表「將李斯特菌當成表達腫瘤抗原的載體,並活化後天免疫系統」的想法,確實可行!

讓人沮喪的臨床試驗結果

雖然動物實驗的結果不錯,但李斯特菌,在臨床試驗的結果可謂差強人意。

-----廣告,請繼續往下閱讀-----

在最新的臨床試驗中,科學家對 15 位有侵犯性子宮頸癌的病患,施打了帶有腫瘤抗原的李斯特菌。所有的病患在施打後,都有很強烈免疫反應,但只有 6 位病患的腫瘤有消退(其中一位雖有消退,但腫瘤很快又長回);7 位病患的腫瘤沒有改變;2 位病患因強烈的免疫反應死亡2

從李斯特菌的臨床試驗來看,這種作法確實能活化後天免疫系統,也有消滅腫瘤的效果,但牠的「安全性」卻是非常嚴重的問題。

雖然用於治療的李斯特菌已減毒,但這種減毒李斯特菌的感染,仍會引起人體過度強烈的免疫反應,何況李斯特菌還會逃到吞噬細胞內,讓免疫細胞難以消滅,因此如何平衡毒性和治療性,是科學家們接下來的研究重點。

瘋狂的細菌療法,仍未到此為止

本文所簡介的梭菌、沙門氏菌、李斯特菌,是目前學術上最多人研究的 3 種細菌療法,除了這 3 種細菌療法外,還有更多我們並不清楚也並不瞭解的做法,永遠不要小看科學家們的腦洞,他們將各種奇思妙想融合到細菌療法中,造就許多遠比上面更瘋狂的方法3

-----廣告,請繼續往下閱讀-----

透過本文,大家也可以發現細菌療法仍有不少侷限,例如動物實驗和臨床試驗的結果之間的巨大鴻溝、治療性與安全性的平衡等等問題,都是科學家們必須正視的難題。

未來細菌療法究竟該往何處走,又有哪些難解的挑戰需要被克服?下期,也是細菌療法的最終章,將帶大家一起看看細菌療法的挑戰與展望。

註釋

  1. 兼性胞內寄生菌:可以在寄生於細胞內,在細胞外也可以存活。
  2. 溶胞素:一類由微生物、植物或動物分泌,對特定細胞有毒性的物質。溶胞素會因對某一類細胞具有特異性而獲得相應的名稱。例如專門裂解紅血球,並使其釋放出的胞內血紅蛋白的溶胞素,就被命名爲溶血素。

參考資料

  1. Jahangir A, Chandra D, Quispe-Tintaya W, Singh M, Selvanesan BC, Gravekamp C. Immunotherapy with Listeria reduces metastatic breast cancer in young and old mice through different mechanisms. Oncoimmunology. 2017 Jul 5;6(9):e1342025
  2. Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009 Jun 19;27(30):3975-83. doi: 10.1016/j.vaccine.2009.04.041. Epub 2009 May 3
  3. Torres W, Lameda V, Olivar LC, Navarro C, Fuenmayor J, Pérez A, Mindiola A, Rojas M, Martínez MS, Velasco M, Rojas J, Bermudez V. Bacteria in cancer therapy: beyond immunostimulation. J Cancer Metastasis Treat 2018;4:4.
  4. Pizarro-Cerdá, J., Kühbacher, A., & Cossart, P. (2012). Entry of Listeria monocytogenes in mammalian epithelial cells: an updated viewCold Spring Harbor perspectives in medicine2(11), a010009.
  5. Lindahl, G. (2019). The effects of flaxseed and tamoxifen on the inflammatory microenvironment in normal breast tissue and in breast cancer (Vol. 1714). Linköping University Electronic Press.
  6. Vitiello, M., Evangelista, M., Di Lascio, N., Kusmic, C., Massa, A., Orso, F., … & Poliseno, L. (2019). Antitumoral effects of attenuated Listeria monocytogenes in a genetically engineered mouse model of melanomaOncogene38(19), 3756-3762.

細菌療法系列文章

  1. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(上)
  2. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(下)
  3. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(上)
  4. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(下)
文章難易度
羅夏_96
52 篇文章 ・ 821 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

0
1

文字

分享

0
0
1
這樣吃安全嗎?用科學去看「劑量」與「食安」
衛生福利部食品藥物管理署_96
・2023/10/06 ・2743字 ・閱讀時間約 5 分鐘

本文轉載自食藥好文網

  • 文/黃育琳 食品技師

你喜歡吃香腸嗎?香腸嚐起來不但鹹甜多汁,飄散出來的香氣更是令人口水直流,是日常的菜色之一。

然而,香腸的內部環境容易滋生肉毒桿菌,並產生對人類最強的毒素「肉毒桿菌毒素(botulinum toxin)」,只需要 1 克便能毒死一百萬人。

為了避免吃香腸出人命,則需要在香腸內添加亞硝酸鹽以抑制肉毒桿菌生長,但亞硝酸鹽碰到二級胺(通常不新鮮的肉類或海鮮因產生發酵作用或腐敗而生成)可能會產生致癌物質亞硝胺(nitrosamines),一種經動物實驗結果顯示會導致腫瘤的致癌物質。

-----廣告,請繼續往下閱讀-----

天啊!聽起來加與不加,兩邊都很不妙,那我們為什麼還繼續吃下去呢?

這裡忽略了一個很重要的資訊,若導致亞硝酸鹽中毒,需要有一定「劑量」。我們應該去思考,人類如何在不會導致中毒的劑量下,有效運用亞硝酸鹽這個物質 [1]

毒理學中最重要的概念「劑量」

亞硝酸鹽是衛生福利部食品藥物管理署正面表列的合法食品添加物,只要按《食品添加物使用範圍及限量暨規格標準》限量添加(劑量遠低於導致中毒的劑量),那它對人體不但沒有危害,反而能讓我們免於受到肉毒桿菌毒素的威脅。

若是選擇完全不使用亞硝酸鹽,那麼肉毒桿菌毒素中毒的風險則會大大增加。相較之下,使用亞硝酸鹽必然安全許多,既然這樣,世界上還有無毒物質的存在嗎?

-----廣告,請繼續往下閱讀-----

毒理學之父 Paracelsus 先生(西元 1493-1541 年)曾說:「所有化學物質都有毒,世界上沒有不毒的化學物質,但依使用劑量的多寡,可區分為毒物或藥物。」這也是毒理學最重要的基礎概念 [註]

所有化學物質都有毒,差別僅在「劑量」。 圖/envato.elements

所以世界上並不存在完全無毒的食品,只要過量都可能會導致中毒甚至致死,單純用致癌物、有害物質來區分所有物質其實並不正確,而是要注意它的「劑量」。

當然,加工食品也是同樣的道理。

加工食品吃了不好?也是由劑量決定

常聽大家說,常吃加工食品會對人體有害,對健康造成負擔,但是真的完全都不能吃嗎?

-----廣告,請繼續往下閱讀-----

適量吃加工食品對身體是不會造危害的,大家所認為天然非加工食品吃太多也一樣會出事。如維繫人體生命的必需物質「水」,這個看似無害的物質,喝太多卻會造成水中毒。

或者是「母乳」這個直接來自人體的物質,也都可能含有微量抗生素、重金屬或塑化劑等,因為人體在長久接觸整個大環境中的污染後,多少會有毒素累積,要完全無毒是不可能的 [2]

許多人說加工食品之所以不好,是因為有部分加工食品,如早餐加糖的穀片、汽水、零食餅乾、罐裝高湯或熱狗等,糖份、鹽份和脂肪含量通常很高,也沒有其它營養價值,吃太多確實會對身體帶來負擔。

另一方面,前面提到的肉毒桿菌毒素,現在已廣泛應用於去除皺紋、瘦臉或瘦腿等醫學美容;人人聞之色變的劇毒「砒霜」,還可以應用在急性前骨髓細胞白血病(APL)的治療 [2]

-----廣告,請繼續往下閱讀-----

只要使用正確的「劑量」,毒藥也可以變仙丹。

要如何判別毒性大小?看半數致死劑量

如此重要的劑量該怎麼看呢?在毒理學觀察物質毒性大小時,有一項很常用的工具——半數致死劑量 LD50

不同用量的化學物質,實驗動物死亡率亦各不相同,通常物質的劑量與實驗動物的死亡率呈現正比。而半數致死劑量(lethal dosage 50%, LD50),指的就是在動物實驗中,使實驗動物產生 50% 死亡率所需要的化學物質之劑量,值愈小表示毒性愈強。

如肉毒桿菌毒素 LD50 約為 100 ng/kg(毒素重量/實驗動物重量),小白鼠的體重為 0.02 公斤,所以只需要 2 奈克(10-9 克),就可以使一半的實驗小白鼠死亡;日常生活中的食鹽(氯化鈉) LD50 約為 40 g/kg,需要 0.8 克才能使一半的實驗小白鼠死亡,兩者的毒性可說是天差地遠 [3]

-----廣告,請繼續往下閱讀-----

不過在日常生活中,若要妥善運用食品添加物、農藥等物質,就先得找出不會導致中毒的劑量,也就是「無明顯不良反應劑量(no-observed-adverse-effect-level, NOAEL)」。

它是指在動物實驗中,統計上未觀察到任何不良反應的最大劑量,在後續制定容許量時,NOAEL 是很重要的參考指標 [1]

化學物質的毒性大小,要看它半致死劑量的多寡。 圖/envato.elements

「每日可接受攝取量」v.s.「最大殘留容許量」或「使用限量」

若是要找出「人」即使長期每天攝取,也不會對健康造成危害的量,科學家們會根據動物實驗,計算出「每日可接受攝取量(acceptable daily intake, ADI),這個數值將作為政府單位作為安全評估的界線,於此界線下會再考量到飲食習慣或田間施藥測試結果,訂定更嚴格的使用限量(如:食品添加物)或最大殘留容許量(maximal residue level, MRL)作為行政執法的依據,超標的廠商將受到懲罰。

但是超標並不代表會中毒,使用限量或 MRL 是依據一般飲食習慣設定,每日的「總曝露量」遠低於 ADI,對人體不會有不良影響。使用限量或 MRL 皆是在科學的基礎下所計算出的管制劑量,對於在管理食品添加物或農藥殘留是非常重要的 [1]

-----廣告,請繼續往下閱讀-----

毒物學所熟知的「劑量」,大眾也應瞭解

有了劑量的觀念即可明白,即使不小心喝到一杯某一農藥殘留超標 MRL 5 倍的茶飲料,雖然聽起來很可怕,但其農藥總暴露量可能仍遠低於 ADI,更低於 NOAEL,故不需為此感到恐慌。

當大眾看到不認識的毒物名稱時,很容易被恐懼帶著走。而食品安全無法僅靠科學去維護,也需要消費者、媒體、政府和食品業界一起努力,才能做好安全把關。

購買時,建議詳閱食品標示。 圖/envato.elements

因此我們應該了解到食品安全資訊,是需要培養深入認知與討論議題的能力,才能避免流於情緒的宣洩或受到媒體的操弄。

註解

原文為 “All substances are poisons; there is none which is not a poison. The right dose differentiates the poison from a remedy.” [3]

-----廣告,請繼續往下閱讀-----

參考資料

  1. 陳亭瑋,2022。這是毒還是藥?先搞懂「每日容許攝取量」和「最大殘留安全容許量」吧!。行政院環境保護署毒物及化學物質局。
  2. 李霜茹,2017。怎麼決定多少「劑量」對人體有害?── 「PanSci TALK:食品安全基本功」──「PanSci。食藥好文網 TFDA。
  3. Shibamoto, T. and Bjeldanes, L. F. 2009. Introduction to food toxicology.
衛生福利部食品藥物管理署_96
65 篇文章 ・ 22 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

0

4
1

文字

分享

0
4
1
想吃牠卻反被殺!如何解決甘蔗蟾蜍對澳洲的威脅?——《在大滅絕來臨前》
臉譜出版_96
・2022/02/05 ・4877字 ・閱讀時間約 10 分鐘

位於吉朗(Geelong)的澳洲動物健康實驗室(The Australian Animal HealthLaboratory)是世界上受到最嚴密控管的實驗室之一。這座實驗室位於兩座大門之後,而第二道門是專為抵擋卡車炸彈而設計的。有人跟我說,這座水泥牆的厚度禁得起飛機撞擊。設施內有 520 道氣密門,並有四種安全等級。「若殭屍來襲,你會希望自己能待在這裡。」一位工作人員跟我說。在最高安全層級管制區內——四級生物安全等級——處理的是裝有地球上最棘手的動物傳播病原體的小玻璃瓶,其中也包含伊波拉病毒(Ebola)病毒。(電影《全境擴散》(Contagion)的台詞就曾點名過這座實驗室。)

在四級生物安全等級單位工作的人不能在實驗室中穿自己的衣服,而且在回家至少三分鐘以前,必須先淋浴。對他們來說,設施裡的動物全都不能離開這裡。「離開的唯一途徑只能經由焚化爐。」有位員工這樣跟我說。

四級生物安全等級實驗室的必要功能。圖/維基百科

吉朗位於墨爾本的西南方,車程約為一小時。在我見到范.歐朋的同一次行程中,我也造訪了這座縮寫為 AAHL(與「maul」同韻腳)的實驗室。我聽說那裡正在進行基因編輯實驗,為此大感興趣。由於生物防治手段再度失敗的關係,一種名為甘蔗蟾蜍(cane toad)的大型蟾蜍成了澳洲人的心頭大患。AAHL 的研究者延續著不斷自我重覆的人類世邏輯,希望能用新一輪的生物控制手段來解決這場災難。他們的計畫也包含用 CRISPR 技術修改蟾蜍的基因組。

負責這項計畫的生物化學家馬克.提薩(Mark Tizard)同意帶我去現場參觀。提薩的身材高瘦,留著有瀏海的白髮,一雙藍眼睛炯炯有神。一如我在澳洲遇到的許多科學家,他也不是本國人,而是來自倫敦。

-----廣告,請繼續往下閱讀-----
在 CRISPR 的技術中,嚮導 RNA(guide RNA)用來鎖定要被剪掉的DNA 段。在細胞試圖修補損傷時,經常會發生錯誤,導致基因失去功能。如果這時提供「修復的範本」,就能引入新的基因序列。※出處:MGMT. design

在蛋殼裡就能分辨小雞性別

在研究兩棲類之前,提薩主要研究的是家禽。幾年前,他跟一些 AAHL 的同事將水母的基因嵌入母雞體內。這種基因跟我準備要嵌入酵母菌的一樣,帶有會發出螢光的蛋白。因此,擁有此基因的雞會在紫外燈下發出詭異的光芒。提薩接著又找出一種嵌入基因的方法,得以使會發光的基因只傳給雄性後代。這麼一來,即便小雞還在蛋殼裡,就能讓人辨別出性別。

提薩知道很多人對經過基因改造的生物感到害怕。他們認為吃這些生物非常噁心,也極度厭惡讓這些生物問世的做法。雖然他不像是柴納那樣的煽動者,但卻也深信這些人的看法大錯特錯。

「我們有一種雞會發出綠光,」提薩跟我說,「某次有個學校團體來訪,當他們看到綠色雞的時候,有些小朋友說:『哇,太酷了。請問如果吃了這些雞,我會變綠色嗎?』

我回答:『你本來就會吃雞肉對嗎?那你有長出羽毛跟雞嘴嗎?』」

-----廣告,請繼續往下閱讀-----

無論如何,按照提薩的看法,現在才在擔心這一小部分的基因問題未免為時已晚。

編輯基因是為了讓受損的生態系獲得改善

「在澳洲的自然環境裡,你會看到尤加利樹、無尾熊、笑翠鳥(kookaburras)等生物,」他說,「在我這個科學家眼中,看到的是多重版本的尤加利樹基因組、多重版本的無尾熊基因組,以此類推。這些基因組都在互相交流。接著,突然之間——『碰』一聲,你把別的基因組放過來,也就是甘蔗蟾蜍的基因組,而因為過去牠從未出現在這裡,所以與其他基因組的交流成了大災難——牠把其他基因組給消滅殆盡了。」

「大家沒看到的是,這已經是個基因修改過的環境。」他接著說道。入侵物種會改變環境,因為牠們帶來完全不屬於這裡的基因組。相較之下,基因工程師不過是在東一點、西一點改變一小部分的 DNA。

「我們做的事可能只是在蟾蜍兩萬個基因之中,加上約莫十個原本不存在的基因,但那十個基因會破壞其他的基因、把蟾蜍從生態系統中移出並回復平衡,」提薩說,「一般人對分子生物學(molecular biology)最經典的問題就是:『你們在扮演上帝嗎?』

-----廣告,請繼續往下閱讀-----

「嗯,當然不是。我們是利用對生物體的理解,摸索著該如何讓受損的生態系獲得改善。」甘蔗蟾蜍的學名是 Rhinella marina,身上有棕色斑點、粗壯的四肢與凹凸不平的外皮。要形容這種動物的外觀,很難不強調尺寸。「甘蔗蟾蜍是體型巨大、長著疣的蟾蜍科生物。」美國魚類與野生動物管理局寫道。「坐在路邊的大型甘蔗蟾蜍容易讓人誤以為是圓石。」美國地質調查局也評道。

紀錄上最大的甘蔗蟾蜍身長約 38.1 分,重達 2.7 公斤——跟吉娃娃一樣重。1980 年代,在布里斯本的昆士蘭博物館中,有一隻名為貝堤.戴維斯(Bette Davis)的蟾蜍,牠長度約為 24 公分,幾乎跟餐盤一樣寬。只要是能塞進牠大嘴裡的東西,這隻蟾蜍幾乎什麼都吃,從老鼠、狗糧以及其他的甘蔗蟾蜍——統統沒問題。

甘蔗蟾蜍的原生地是中南美洲與德州的最南端。有人在 19 世紀中將其引進加勒比海地區。原先的想法是要讓蟾蜍去應付對當地經濟作物甘蔗造成危害的甲蟲幼蟲。(甘蔗也是外來物種;原本生長於新幾內亞。)這些蟾蜍從加勒比海地區被人送到了夏威夷,再從夏威夷送到澳洲。1935 年,有 102 隻蟾蜍被裝上開往檀香山的蒸汽船,其中 101 隻活了下來,最後來到澳洲東北海岸某個種植甘蔗的鄉村研究站。在一年內,牠們產出超過 150 萬顆卵。這些小蟾蜍被人刻意放入該區的河川與池塘中。

自從甘蔗蟾蜍被人引入之後,牠們已經擴散至澳洲多處。目前估計牠們
還會持續拓展地盤。出處:MGMT. design

許多人質疑蟾蜍對甘蔗是否真的有益。因為吃甘蔗的幼蟲棲息在離地很高的地方,這種體型相當於圓石大小的兩棲類碰不到牠們。但這並沒有打倒蟾蜍,因為牠們又找到許多其他東西吃,並且持續繁衍大量的小蟾蜍。從昆士蘭海岸的一小塊地方開始,牠們往北擴散至約克角半島(Cape York Peninsula),往南挺進新南威爾斯州(New SouthWales)。在 1980 年代的某個時間點,蟾蜍進入了北領地(Northern Territory)。在 2005 年,牠們抵達位於北領地西部,離達爾文(Darwin)不遠處的中點區(MiddlePoint)。

-----廣告,請繼續往下閱讀-----

這一路上發生了有趣的事情。在蟾蜍攻城掠地的前期,牠們的入侵速度大概是每年 9.6 公里。幾十年後變成每年約 19.2 公里。當牠們抵達中點區時,已經加速到每年 48 公里。研究人員在測量最前線的蟾蜍大小時,他們找到了原因。最前線的這些蟾蜍的腿與昆士蘭的蟾蜍相比明顯長了許多,而且這項特質是會遺傳的。《北領地新聞》(Northern Territory News)將這則消息放在頭版,標題是〈超級蟾蜍〉。文章的配圖是一張穿著披風的甘蔗蟾蜍合成圖。「這些入侵北領地的可惡甘蔗蟾蜍仍在持續演化中。」報導大嘆。此現象跟達爾文的說法不同,演化的過程似乎「能」讓人類觀察得到。

澳洲一開始其實沒有蟾蜍!

甘蔗蟾蜍不僅體積大得惱人;從人類的角度來看,外觀還很醜:突出的頭骨,外加那一臉鄙夷的神情。但這種動物真正「討人厭」之處,其實是其身體的毒性。若成年蟾蜍被咬到或感覺受威脅,就會釋放出一種乳白色黏液,裡面有足以導致心臟停止的化合物。甘蔗蟾蜍的毒性時常讓狗遭殃,症狀從口吐白沫到心跳停止都有。笨到去吃甘蔗蟾蜍的人,通常最後都死了。

海蟾蜍(學名:Bufo marinus),又名美洲巨蟾蜍、甘蔗蟾蜍。圖/維基百科

澳洲原先沒有有毒的蟾蜍;事實上,這裡最初根本沒有蟾蜍。所以當地的動物都尚未演化到懂得提防牠們。甘蔗蟾蜍的案例有點像美國鯉魚案例的翻版,但角度又有些不同。鯉魚在美國之所以造成麻煩,是因為沒有生物要吃牠們;但甘蔗蟾蜍成為澳洲的威脅,是因為所有生物都想吃牠們。

因捕食甘蔗蟾蜍而導致數量銳減的物種清單長度相當長,並且包羅萬象。其中包含澳洲人稱為「freshies」的澳洲淡水鱷(freshwater crocodile);身長可達 1.5 公尺長的斑巨蜥(yellow- spottedmonitor lizard);其實就是一種小蜥蜴的北部藍舌蜥蜴(blue-tongued lizards);看起來像小型恐龍的橫紋長鬣蜥(water dragon);在英文中蛇如其名、帶有毒性的南棘蛇(common death adder);以及也有毒性的巨棕蛇(king brown snake)。目前,這份受害者名單裡的冠軍,是長相可愛的有袋目動物:北部袋鼬(northern quoll)。北部袋鼬體長約三十公分,有尖尖的臉和長了斑點的棕色皮毛。當袋鼬寶寶離開母親的育兒袋之後,母親會揹著小袋鼬四處走。

-----廣告,請繼續往下閱讀-----

為了要減緩甘蔗蟾蜍的侵略速度,澳洲想出各種巧妙與笨拙程度不一的對策。

蟾蜍終結者(Toadinator)是一種搭載行動式喇叭的陷阱,能播放甘蔗蟾蜍的鳴叫聲(有人覺得聽起來像電話撥號聲,有人則認為像馬達的嗡嗡聲。)昆士蘭大學的研究人員研發出一種誘餌,能夠引誘甘蔗蟾蜍的蝌蚪並消滅牠們。還有人會用空氣步槍去射蟾蜍、用錘子重擊、用高爾夫球桿暴打、故意開車輾壓、把牠們黏在冷凍庫直到結凍、對牠們噴一款名為「止跳(HopStop)」的化合物(這項產品保證「能在幾秒內讓蟾蜍癱瘓」,並在一小時內送牠們上西天)。

各地社區也會招募「蟾蜍剋星」義勇軍。有個名為「金百利蟾蜍剋星(the Kimberley Toad Busters)」的團體建議,澳洲政府應該為捕獵蟾蜍提供獎金。該團體的訴求精神是:「如果人人都是蟾蜍剋星,那蟾蜍會被剋到死!」

一位澳洲小女孩與她的寵物甘蔗蟾蜍「冰雪皇后(Dairy Queen)」。
※出處:Photo: Arthur Mostead Photography, AMPhotography.com.
au

讓甘蔗蟾蜍失去毒性與對澳洲的威脅

當甘蔗蟾蜍開始引起提薩的興趣時,他其實沒親眼看過這種動物。吉朗位於維多利亞州南部,蟾蜍尚未進犯。但在某一天的會議上,他隔壁坐著研究兩棲類的分子生物學家。她對他說,雖然大家不斷努力打擊蟾蜍,但牠們仍在持續擴散。

-----廣告,請繼續往下閱讀-----

「她說,這實在很惱人,若能有什麼新的解決方法就好了,」提薩回憶道,「然後,我坐下來抓了抓頭。」

「我心想:毒素是透過代謝產出的,」他又說道,「也就是酵素,而酵素的產生必然有相關的基因編碼。嗯,我們有能毀掉基因的工具,或許也能毀掉生成毒素的基因。」

提薩找了博士後研究員凱特琳.庫柏(Caitlin Cooper)來幫忙處理這個技術。庫柏有頭及肩的棕長髮,笑聲很有感染力。(她也不是本地人,而是來自麻薩諸塞州。)過去沒有人對甘蔗蟾蜍做過基因改造,所以庫柏需要自己找出方法。她發現,蟾蜍的卵不僅要先洗過,還得用非常細的移液器快速刺穿,否則卵就會開始分裂。「我花了一點時間精進顯微注射技術。」她跟我說。

庫柏先著手改變甘蔗蟾蜍的體色,她把這件事當成某種暖身活動。某個關鍵的色素基因裡含有能讓蟾蜍(人類也一樣)製造酪胺酸酶(tyrosinase)的編碼,而酪胺酸酶能控制黑色素的生成。庫柏推測,若是讓這個色素基因失去作用,就能產出淡色而非深色的蟾蜍。她在培養皿中混合了一些精子與卵子,並在生成的胚胎中,以顯微注射技術注入數種 CRISPR 的相關混合物,並靜待結果。最先出現了三隻有奇怪斑點的蝌蚪——其中一隻死掉了,而另外兩隻(都是雄性)順利長成小蟾蜍。牠們被取名為小花與金金。「結果出爐時,我簡直欣喜若狂。」提薩跟我說。

-----廣告,請繼續往下閱讀-----

庫柏接著把焦點轉向「破壞」蟾蜍的毒性。甘蔗蟾蜍將毒素存在肩膀上的腺體中。

若光憑毒素本身,那只會讓人作嘔。但蟾蜍遭到攻擊的時候,會產生一種蟾蜍毒鹼水解酶(bufotoxin hydrolase),能將毒素的毒性提升一百倍。透過 CRISPR 的技術,庫柏編輯出第二批胚胎的基因,她刪掉了帶有蟾蜍毒鹼水解酶編碼的基因,結果一批沒有毒性的小蟾蜍就誕生了。

——本文摘自《 在大滅絕來臨前:人類能否逆轉自然浩劫?》,2022 年 1 月,臉譜出版
臉譜出版_96
85 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

2

26
3

文字

分享

2
26
3
意外不只帶來新發現,也可能引發重大悲劇——疫苗科學的里程碑(二)
miss9_96
・2021/05/23 ・3661字 ・閱讀時間約 7 分鐘

科學終會勝利。Science will win. 

佐劑的發現,要從一個故意把麵包屑打進馬體內、故意讓傷口化膿的科學家說起。佐劑是疫苗科學的第三個里程碑,直至今日,它仍然在許多疫苗中扮演重要的角色。

這一章,我們不只談科學的進展,也談談歷史上的悲劇。近代史上,科學知識飛速發展,政府監管如未同時進步,將導致救命的疫苗變為致命的凶器,引發重大悲劇。

偶然發現的佐劑,為老人小孩帶來大大的便利

有些人的體質,疫苗無法在他們的身體裡產生足夠的免疫力。如:

  • 老年人服用抑制免疫力藥物(如:器官移植者、自體免疫疾病者)、特殊疾病患者(如:HIV感染者/愛滋病患者),他們的T細胞老化,或受到抑制,或受到感染
  • 嬰兒,他們的免疫系統尚未成熟

相較於一般人,疫苗在上述族群體內,更難激發出足夠的免疫力。因此需要一種可幫助疫苗效力的物質,也就是佐劑(adjuvant。該詞源於拉丁語 adjuvare,意為「助人為樂」)。

-----廣告,請繼續往下閱讀-----

1924 年,法國巴斯德研究所的獸醫-加斯頓·拉蒙 (Gaston Ramon) 正將白喉、破傷風毒素注入馬匹,讓動物產生中和毒素的抗體,再收集抗體,準備治療被白喉或破傷風感染的病人。然而,某日發現,若注射的傷口化膿,馬匹反而會產生更大量的抗體。因此他開始嘗試同時注入麵包屑、木薯粉等,結果發現,能引起局部發炎的物質,也能刺激身體生成更強的抗體 [1, 2]

純化白喉毒素,找到最有效的佐劑

而在對岸的倫敦,免疫學家亞歷山大·格蘭尼 (Alexander Glenny) 也正在做白喉毒素刺激動物產生抗體的實驗。他在純化白喉毒素時,利用硫酸鋁鹽讓毒素沉澱(因為蛋白質多帶負電,而鋁鹽帶正電且難溶於水。加入鋁鹽後,正負電吸附毒素蛋白質後,即可在底部收集乳狀沉澱物),收集後再打進天竺鼠體內 [3]。格蘭尼驚訝的發現,相較於純粹的毒素,毒素/鋁鹽乳狀物能引起更強的抗體。1932 年,鋁鹽正式成為人類疫苗的佐劑,並且沿用至今;現行二價 HPV 疫苗(保蓓 Cervarix,荷蘭葛蘭素史克)、COVID-19 疫苗(CoronaVac,中國科興。MVC-COV1901,高端疫苗)也用鋁鹽作為佐劑

約 19 世紀,科學家開發了向馬匹注射破傷風、白喉等毒素,抽取血液中的抗體作為治療用的技術,且沿用至今。圖/ Science
上圖:1809年畫作,描繪感染破傷風後全身痙攣的病徵,下圖:感染白喉可能會導至喉嚨腫脹。
圖/wikipedia & wikipedia

佐劑的種類、原理,以及重要性

佐劑在疫苗領域上有高度重要的地位 [3]

  • 疫苗裡增加佐劑,可協助老年人、幼兒等特定體質的族群,在接種後產生和足夠的保護力
  • 搭配佐劑,可減少抗原的使用。在緊急、須快速生產疫苗的情況,降低藥廠生產抗原的產線壓力
  • 部分疫苗的抗原難以刺激免疫細胞(如:蛋白質類型的疫苗),佐劑的使用可讓抗原發揮效力

而且單一佐劑系統可以搭配多種疫苗,如:美國 Novavax 公司開發的 Matrix-M™ 佐劑系統,同時應用在流感、伊波拉出血熱、新冠肺炎/COVID-19 等疫苗。而最古老的鋁鹽系統,被應用在 HPV 疫苗(預防子宮頸癌,葛蘭素史克二價「保蓓 (Cervarix)」)、新冠肺炎/COVID-19 疫苗(中國科興「CoronaVac」、台灣高端疫苗)等不同藥廠、不同疾病上。

-----廣告,請繼續往下閱讀-----

僅管佐劑在上世紀初已被發現,但原理直到近代才比較清晰。人體的免疫系統可分為:

  • 先天免疫 (innate immunity):不針對特定病原,只要疑似入侵者就吞噬、清除。反應快速,如:巨噬細胞、嗜中性白血球。
  • 後天免疫 (adaptive immunity):只有特定病原體才會啟動。反應較慢,如:產生抗體的 B 細胞、活化其他免疫細胞的 T 細胞。產生的記憶型免疫細胞可維持多年。

雖然疫苗的目標是活化 B 和 T 細胞,但近期研究認為,先天免疫對活化 B 和 T 細胞至關重要。局部發炎吸引巨噬細胞和樹突細胞 (DC, dendritic cell) 等到達現場並活化它們,而吞噬抗原後的樹突細胞,再將抗原傳遞給 B 和 T 細胞並活化後天免疫系統 [3]。因此,鋁鹽等佐劑能引起局部發炎,吸引樹突細胞、巨噬細胞聚集,進而活化後天免疫系統,以達到疫苗產生抗體、記憶型免疫細胞的目的。

而現今的佐劑多樣,可分為三類 [2]

  • 讓局部組織發炎/受損 (Damage-associated molecular patterns-type adjuvants),如:鋁鹽
  • 模仿病原體入侵訊號 (Pathogen-associated molecular patterns-type adjuvants),如:未甲基化的 CpG 序列 DNA
  • 讓白血球更有效地捕獲疫苗 (Particulate adjuvants):製備成奈米等級的顆粒,以利淋巴系統捕捉

儘管科學對佐劑的原理尚未完全理解,但佐劑已在 B 型肝炎、HPV(子宮頸癌相關病毒)等疫苗中,用實戰證明了它的價值。未來面對無法培養的病原體(如:C 型肝炎病毒)、無法誘導免疫力的抗原,相信都會因佐劑的加入而逐步看見曙光。無論是現在或未來,佐劑的出現,都為疫苗科學帶來無窮的潛力。

-----廣告,請繼續往下閱讀-----

疫苗科學在研究者的努力下,進步神速,彷彿疫苗即將幫助人民遠離所有惡疾。然而,政府監管卻沒能與時並進,一昧求快的壓力下,一宗慘案在上世紀 50 年代的美國發生了…

小兒麻痺肆虐的美國,急需疫苗來控制疫情

小兒麻痺在 20 世紀中期,仍是嚴重、兇殘的傳染病。病毒 (poliovirus) 透過糞口傳染,在腸道繁殖,藉由排泄物汙染食物和水,尋找新的宿主。少數病毒會侵入神經系統、破壞運動神經元,導致永久殘疾、癱瘓,甚至死亡。光是 1952 年,美國就有近 6 萬人感染,2 萬多人殘廢、數千人死亡。

上圖:因小兒麻痺導致殘疾之患者,下圖:古埃及 18 王朝(約西元前 1403~1365 年)的石版畫中繪製了疑似因小兒麻痺導致殘疾之患者。圖/wikipedia

1951 年,美國科學家喬納斯·沙克 (Jonas Salk) 開始研究小兒麻痺疫苗。他採取死病毒策略,用福馬林/甲醛殺死病毒,試圖在最安全的形式下誘發免疫力。初步結果發現,沙克疫苗 (salk vaccine) 活化了抗體,且安全無虞。不幸的是,暴發的疫情、劇增的死亡人數,讓監管疫苗的政府機關,壓力越來越大 [4]

政府釀成的悲劇——殺人疫苗,卡特事件 (Cutter incident)

1955 年 4 月 12 日,數十萬人的臨床試驗結果公佈,沙克疫苗可以阻止小兒麻痺,媒體一片歡欣鼓舞。當天下午,美國政府僅花了 2 個半小時,就許可了五家藥廠生產沙克疫苗,其中就包含出事的卡特藥廠 (Cutter Laboratories) [5]

1955 年 4 月 12 日,沙克疫苗公布臨床試驗結果,極佳的保護力獲得各媒體大幅報導。
圖/ wikipedia

4 月 26 日,疫苗大規模施打後僅兩週,兒童接種後癱瘓的消息開始湧入。追查發現,癱瘓患者都曾接種卡特藥廠生產的疫苗。政府緊急召回該廠的疫苗,但此時已有 38 萬劑注入孩童的體內。

-----廣告,請繼續往下閱讀-----

調查後發現,原本只能有死病毒的疫苗裡,在卡特藥廠的製造下,竟高達 12 萬劑的疫苗裡有活病毒。出問題的疫苗不僅讓孩童染病、更引爆社區大流行,4 萬人發病、近兩百人癱瘓、10 人死亡。原可阻止疫情的疫苗卻導致人民死亡,成了科學史上的大悲劇。事後調查認為,此事件的最大責任為政府監管單位政府未依照科學組織的建議,嚴格要求藥廠遵守嚴謹的生產規範 [6, 7]。儘管該事件提升了後續保護和監管,但人類應深刻的記住,若科學屈服在政治和輿論的壓力時,悲劇就可能會引爆,人命和公信力將危在旦夕。

系列文章

參考文獻

  1. Alberta Di Pasquale, Scott Preiss, Fernanda Tavares Da Silva and Nathalie Garçon (2015) Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccine.
  2. Ian R. Tizard (2021) Adjuvants and adjuvanticity. Vaccines for Veterinarians. DOI: 10.1016/B978-0-323-68299-2.00016-2
  3. Amos Matsiko (2020) Alum adjuvant discovery and potency. Nature
  4. The tainted polio vaccine that sickened and fatally paralyzed children in 1955. The Washington Post. 2020/04/14
  5. Paul A Offit (2005) The Cutter Incident, 50 Years Later. The New England Journal of Medicine. DOI: 10.1056/NEJMp048180.
  6. Paul-Henri Lambert (2006) A successful vaccine that missed its target. Nature Medicine. DOI: https://doi.org/10.1038/nm0806-879
  7. 美國歷史系列147:卡特疫苗事件。美國在台協會
所有討論 2
miss9_96
170 篇文章 ・ 1016 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9