0

0
0

文字

分享

0
0
0

「世界末日」、Oreo餅乾以及「仲夏夜之夢」,竟然有共通點?

Write Science
・2012/11/05 ・3533字 ・閱讀時間約 7 分鐘 ・SR值 495 ・六年級

-----廣告,請繼續往下閱讀-----

作者:Shane L. Larson
譯者:王人德(Ray)

我為什麼喜歡網路上的流言呢?因為它們的的確確代表著現代生活中極為荒誕的事物,說起來也不特別啦,但顯然我算是處在一群科學家中的少數族群。我可以理解那些對於時事的評論(或是網路流言),或者願意去看一部好萊塢的鉅作(像是《世界末日》),這些事物跟我腦中處理科學的機制完全搭不上邊,但它們卻和我平常所思考的事物產生衝突,我的腦因而產生化學反應,這些衝突感也為我帶來充實以及愉悅。這種「實事不求是」的精神其實對科學家們來說是非常痛苦的。

為什麼呢?科學家們已經被訓練成為一個不帶任何感情的個體,一切都只為了能夠更公正地觀察著這世間萬物。也就是說,他們已經完全和自然背道而馳,也總是將我們個人的想法像是放在一張桌子上一般,透過放大鏡來檢視。不過,我們終究是人類。但科學這項機制就是設計來保護我們的,不是嗎?我們想要並且需要一直重複做著實驗,而所得到的結果也需要被大家檢視以及懷疑,就為了找出是否哪個小細節有所矛盾。當我們發現了有矛盾的地方,而後新的實驗以及新的想法又出現了。這整個過程一直不斷地、不斷地重複著,永遠都不會停止。縱使實驗後所得到的新數據和想法被大家所肯定了,也只是被大眾認定為這是最好的「實驗示範」,快點改觀吧!若你不在科學這門學問中懂得變通,那你就錯了。若你一直墨守成規,就算你得到令人讚嘆、完美的數據,那麼你也錯了。科學這門學問會自行修正錯誤的數據,所以呢,我們做越多的實驗,我們會越來越了解大自然,對於那些自然界中的迷思也會越來越少,從小學的那些錯誤資訊也會日趨減少。

為何會日趨減少呢?而「高可能性」和「低可能性」又是甚麼意思呢?我們又該如何去理解呢?再一次地,為了理解這一切,我們又要回到先前所提到的「網路流言」了。曾經這麼流傳著:當有一百萬隻猴子站在一百萬台打字機前開始打字,最後一定會完成整部莎士比亞所寫的「仲夏夜之夢」。 

-----廣告,請繼續往下閱讀-----

科學的美在於它的接觸範圍非常的廣,而且早已有著合適的方法去套用在你所感興趣的課題上,例如我們先前提到的想法「猴子竟然能夠完成一部莎士比亞的作品?」(這是一個很有趣的智力測驗,雖然也有人認為這樣的事情就像電影「決戰猩球」一樣令人害怕。 )

我們來討論一下「可能性」吧!這是一個被人們濫用的概念,而且常常被用在稀奇古怪的地方,但我們可以從這些基礎的假設當中來思考那些網路迷因(meme)。這裡是一個簡單的範例 : 擲銅板。(但我們這次要擲的是Oreo餅乾,正反兩面各是巧克力以及原味。) 遊戲規則如下 : 若結果是原味,你就可以得到那片餅乾;反之,若是巧克力,餅乾就屬於我。對於實驗結果,我們兩個人有著同樣的利害關係。現在假設我們兩人是公平的,沒有任何方法能夠控制其變因,就暫且稱它「公平的Oreo餅乾」吧!(其實就跟硬幣和骰子是同樣道理)

所以當我擲一枚餅乾,你有一半的機率可以得到它。這是甚麼意思呢? 也就是說你擲到原味的結果是兩種結果中的其中一種。

你想要的結果/有可能的結果 = 1/2 = 0.5 → 50%

-----廣告,請繼續往下閱讀-----

一個對數學有著狂熱的人可能會向我們解釋 : 當我們拿著每袋各裝有100個餅乾的袋子,總計有10袋,而後將每一片像餅乾擲硬幣一樣,那麼平均來說,每一袋裡面都會有50片是我們想要的結果。「平均來說」是一個很重要的敘述─對於數學的困惑、爭議、發現以及理解,都隱含在這個敘述當中。統計並非一直都正確,稀奇古怪的事確實會發生機率遭到推翻的情況,所以他們才會被稱為「事變」!

那麼我們來點更複雜的問題吧!假設現在我們兩個人想要一次擁有兩塊餅乾,那麼機率又會是如何呢? 我將這個想法製作成下列的表格。有幾種方法可以得到原味Oreo餅乾呢? 兩種:在第一輪或者是第二輪拿到;同樣地也有兩種方法可以得到巧克力口味:在第一輪或者是第二輪擲到。

 

以上就是我們在這場良性競爭下所得到的結果。依序是:你得到所有的餅乾(G1-G2)、我得到所有的餅乾(C1-C2)、以及各自分攤自己的餅乾(C1-G2和G1-C2),我想應該不會影響到我們兩個人的友情吧?

看看這表格,你有四分之一的機率(1/4 = 0.25 = 25%)成為「Cookie Monster」拿走兩種餅乾。那麼我能夠不做表格就知道這結果嗎?當然!只要將每件事情發生的機率相乘就能夠得到你想求的獨立事件之機率。我們先前說過在正常情況下想得到原味餅乾的機率為50% (1/2 = 0.5 =50%),那麼如果我擲了兩次,就會得到 :

-----廣告,請繼續往下閱讀-----

天啊!但老實講:就算我贏得了兩塊餅乾,到最後我還是會分你一塊的啊 😛

現在,我們言歸正傳吧。關於猴子和莎士比亞。經過了一番搜尋之後,我還是找不到有哪個人會知道仲夏夜之夢裡頭到底有幾個字!其實我大可寫出一個程式來計算裡頭的文字量,但我還有名聲要顧啊!怎麼可能讓這種怪事讓大眾知道呢!我們還是想點簡單一點的方法吧。

試問:猴子隨機在鍵盤上打出一個英文單字的機率是多少?就拿「cookie」這個字來當範例吧。我們假設鍵盤上有27個鍵─26個英文字母以及空白鍵。猴子打出任何一個字的機率為27分之1(1/27 = 0.037 = 3.7%) 。而先打出「c」再打出「o」的機率如下:

這並不是個大數字吧? 那麼打出完整的單字「cookie」呢?

-----廣告,請繼續往下閱讀-----

我們可以發現,猴子想要隨機打出「cookie」這個字的機率就高達40億分之1!那麼一部莎士比亞的劇作難度就更高了。裡頭有更多的字需要訂正呢!

但是呢,「猴子」們在網路上更加活躍(當你看過網路上的評論或者是部落格就能夠理解)。當有一大群猴子開始打字,理所當然地一定會有一隻能夠完成這項壯舉,就讓我們來看一下這個有趣的想法吧:仲夏夜之夢一共有2165行,而每一行大致上有45個字,因此:2165(行)X 45(字) = 97425(字),猴子們有97425個字需要去完成。

一隻猴子完成這件事的機率會是多少呢? 以「cookie」這個實驗當作範例,1/27一共要相乘97425次,就成了97425分之一了(以數學符號來表示就是1/2797425)。如果你將27相乘97425次,那數字不只是大,更是令人嘆為觀止!因此1/2797425理所當然是個超級小的數字了。在科學中,我們學到了如何簡潔有力寫出極大和極小的數字,也就是科學記號,方法其實很簡單,只要將在一個數字後面乘上10的次方就行了。

舉例來說吧,1×103的意思就是將10連乘3次後再乘1(也有此一說:每當要乘以10時,就在數字後加個0),因此,1×103 = 1000,理所當然地,7×104 就是7x10x10x10x10 = 70000。

-----廣告,請繼續往下閱讀-----

將這個想法套用在猴子實驗身上之後,我們該怎麼表達2797425呢? 科學記號中,這也可以轉換成1×10139,450(1後面有139,450個0)。所以一隻猴子想要完成一部仲夏夜之夢的機率將會是1/10139,450。換句話說,在我們開始實驗之前,我們需要先收集到10139,450隻猴子。

這是個令人瞠目結舌的數字啊!這麼龐大的數字根本不存在我們所認知的宇宙當中。例如:一個Oreo餅乾大約等於7×1023個原子;相較之下,太陽大約等於1×1057個原子;而整個銀河系大約等於1×1069原子;而在我們可見的宇宙中大約包含1×1080個原子。所以倘若你想要讓一隻猴子意外地打出一部莎士比亞的劇作,你會需要比整個宇宙的原子數量還要多的猴子,似乎是不可能的呢。

其實做這些實驗只是有趣的消遣娛樂而已,但他們真的跟現實世界有所關聯嗎?當然,統計一直與我們的生活息息相關。其實呢,Oreo實驗所使用的計算方式也能套用在其他事情上;得了癌症之後的存活率、無線網路一次可以支援幾支手機、以及計算我們未來登上那未知的星球─火星的成功率。(http://mars.jpl.nasa.gov/)

猴子實驗只是一個對現代文化的反思,也從來沒有想要去挑戰科學,但它卻真實反映了非常人性化的一面─也就是根深蒂固在我們心中的,那種人類無法掌控整個宇宙的無力感。但不可否認的─藝術和科學是我們唯一可以抒發無力感的管道。天才莎士比亞因為沒有同儕之間的影響,所以他能夠以純人類的角度來思考並且創作故事,不只啟發了我們,也深深影響著後代。同樣地,科學也是那些因為那些天才們努力不懈地發掘才有今日的成果。我們能夠發現新事物,並且藉由所學的知識來改善生活品質。我們能夠將所發現的事情記錄下來,而後啟發我們的子孫們,使他們更加了解自己所生活的世界中的點點滴滴。

-----廣告,請繼續往下閱讀-----

對於透過科學來了解事物這件事,我深信不疑,甚至是相當有自信。我很欣慰並且敬畏我擁有「發現」的能力。但這並不代表每個問題都能夠容易解決。發展出能夠穿梭於星球間的科技依舊困難;完全了解動物(或植物)的演化依舊困難;了解癌症的本質也依舊困難。但我還是有信心,只要給我足夠的時間、足夠的資源、以及充足的腦力,任何問題都可以得到一個答案,而你們也應該這麼想。「盡信書,不如無書」,再看一次電影「世界末日」吧,雖然是個逃避現實的科幻故事,但卻也同時表達了一件事:科學永遠在你身邊。

原文:The Commonality of Armageddon, Oreos, & Shakespeare’s “A Midsummer Night’s Dream”

-----廣告,請繼續往下閱讀-----
文章難易度
Write Science
17 篇文章 ・ 1 位粉絲
A collaborative project to practice the craft of communicating scientific ideas.

0

0
0

文字

分享

0
0
0
肺癌不只是抽菸惹禍!PM2.5、油煙、腸道菌失衡全都中,TW01 益生菌提升肺部保護力!
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/07 ・2808字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文與 江欣樺營養師 合作,泛科學企劃執行。

肺癌連四冠 成為台灣十大癌症之首的背後原因

根據衛福部國民健康署於 2024 年 12 月公布的最新數據,肺癌已穩居台灣十大癌症榜首。這不只是發生人數最高,更同時擁有死亡率最高、晚期發現比例最高、醫療費用最高等三項不名譽的紀錄,可說是名副其實的「癌症四冠王」。

肺癌不只是台灣十大癌症榜首,更同時是發生人數最高、死亡率最高、晚期發現比例最高、醫療費用最高的疾病。圖 / unsplash

肺癌新確診人數在過去十年中持續上升,尤其在 2022 年 7 月政府推動肺癌篩檢政策後,越來越多過去未被發現的病例被篩檢出來。這項針對高風險族群的篩檢措施,有助於提高早期發現的比例,但也凸顯出台灣肺癌潛藏病例數量之大。

過去,大腸直腸癌曾長期穩居癌症發生率第一位,如今退居第二位,仍值得高度關注。不過,肺癌的快速上升與普及化趨勢,則反映出不僅吸菸者受影響,越來越多不吸菸卻罹患肺癌的人也在增加,使得肺癌防治策略面臨新的挑戰。

-----廣告,請繼續往下閱讀-----

基因變異遇上空污 PM2.5:台灣肺癌高發生率的雙重危機

在肺癌逐年升溫的背後,科學家持續探究其背後的成因。其中,一篇刊登於《Cell》2020 年 7 月號的研究引起了國際關注。這項研究由中央研究院團隊主導,聯合臺灣大學、臺北醫學大學及臺中榮總等單位共同完成,發現一種名為「APOBEC 變異」的基因特徵,可能與臺灣女性罹患肺癌發生率偏高有關。該變異會影響細胞內 DNA 的穩定性,使其更容易累積損傷並進一步發展為癌症,這項研究也讓人們開始重新思考肺癌與遺傳體質之間的關聯性。

除了基因之外,環境因素依然是不可忽視的關鍵。2023 年 4 月《Nature》的一篇封面故事則指出,空氣污染對肺癌的影響,可能不是直接造成新的 DNA 突變,而是透過誘發「慢性發炎」的機制,促使原本已帶有變異的細胞被「喚醒」並增殖形成腫瘤。這如同將原本處於沉睡狀態的壞細胞,因長期的空氣污染刺激而被激活。

由此可見,預防癌症的策略或許不應僅著重於防止癌細胞的「產生」,更重要的是避免讓它們「活化」。這也代表預防策略的重點,正從過去單純的「避免基因突變」,轉向同時「減少發炎反應」。而導致這些發炎與突變的因素,其實仍然是我們熟悉的環境污染源,例如 PM2.5、香菸二手煙、油煙與室內空氣品質等。

值得注意的是,這種風險機制並不只侷限於肺癌。大腸直腸癌的發生同樣與基因變異及環境因子的交互作用密切相關,顯示癌症成因不再是單一來源,而是多層次、需整合多面向來防範的健康議題。

-----廣告,請繼續往下閱讀-----

遠離肺部發炎:從廚房油煙到腸道保健的肺癌預防關鍵

在空氣品質頻頻亮紅燈的臺灣,要保護肺部健康,關鍵就在於避開引發發炎反應的因子。國民健康署明確指出,「吸菸」仍是肺癌最主要的危險因子,佔所有患者的七至八成。然而,非吸菸者也絕不能掉以輕心,二手菸、交通廢氣、PM2.5 等空氣污染物,同樣是導致肺部慢性發炎的重要元凶。

肺癌元凶不只有吸菸,空污也是一大原因。圖 / unsplash

此外,有一項常被忽略卻與肺癌風險高度相關的危險因子,來自我們每天的廚房——烹飪油煙。國民健康署指出,臺灣女性長期暴露於烹飪油煙中,罹患肺癌的風險不容忽視,尤其是在長時間未使用抽油煙機的情況下。國民健康署指出,未使用抽油煙機的非吸菸女性,其肺癌風險竟比有使用者高出約8.3倍。這項數據提醒我們,日常看似平常的行為,可能正是健康風險的關鍵所在。

除了遠離風險因子,江欣樺營養師也提出,從「腸道」著手是提升免疫力、降低全身發炎反應的新方向。維持腸道健康不僅能調節整體免疫系統,更與肺部的發炎反應息息相關。以益生菌株 TW01 為例,研究指出它能有效抵達腸道內的免疫關鍵區域——貝爾斑(Peyer’s patch),調節 T 細胞中 TH1 與 TH2 的平衡,有助於緩解過度的免疫反應或過敏現象。

此外,TW01 菌株也能促進B細胞分泌 IgA 免疫球蛋白,強化腸道黏膜層的保護力,減少「腸漏」的發生,進而間接保護其他器官免受炎症的侵擾。更令人關注的是,該菌株亦在研究中展現抑制大腸癌細胞的潛力,對於目前台灣排名第二的大腸直腸癌,可能提供另一層預防上的助力。

-----廣告,請繼續往下閱讀-----
國民健康署指出,未使用抽油煙機的非吸菸女性,其肺癌風險竟比有使用者高出約8.3倍。圖 / shutterstock

TW01 益生菌對抗肺癌:從腸-肺軸線降低空污引發的肺損傷

腸道與肺部之間存在一條重要的生理連結,稱為「腸-肺軸線」。今年初發表於《Nutrients》期刊的一項臺灣研究指出,TW01 益生菌能透過腸-肺軸線機制,從腸道出發,間接守護我們的肺部健康。研究結果顯示,TW01 益生菌有三大關鍵作用:首先,有助於減輕空污 PM2.5 所造成的肺損傷;其次,可降低肺部發炎物質(如 TNF-α、IL-6、IL-10 等);第三,降低肺纖維化,主要透過調節 TGF-β1/Smad 信號傳導來達成。

其實,腸道與其他器官之間也存在類似的「軸線」關係,例如腸-腦軸線影響情緒與睡眠,腸-皮膚軸線與皮膚狀況密切相關。這些軸線代表著腸道菌叢的健康與代謝活動,很容易影響到其他器官。反過來,器官之間的影響同樣是雙向的——空污中的 PM2.5 不只損害肺部,也會擾亂腸道菌相,甚至引發「腸漏症」,讓體內毒素再次回到肺部,進一步惡化發炎反應。

預防肺癌、對抗 PM2.5,從 TW01 益生菌構築更健康的防線

面對癌症這個複雜的敵人,我們或許無法改變基因,但我們可以從每天的選擇中,建立更堅固的健康防線。越來越多研究顯示,身體各個器官並非獨立運作,而是彼此緊密串聯——肺與腸的關聯,正是一個明顯的例子。從腸道微生物的平衡,到肺部的免疫狀態,生活中的每一項小習慣,其實都可能悄悄影響著我們罹癌的風險。

空氣品質意識、健康飲食內容、規律運動習慣、定期健康檢查,這些看似平凡的日常行為,正是最切實且有效的預防行動。特別在台灣,肺癌與大腸癌長期高居發生率前兩名,更提醒我們——預防不能等到症狀出現才開始,而應該從日常做起。

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
只要有無限的時間,猴子也能打出莎士比亞?什麼是「無限猴子定理」?
F 編_96
・2025/01/05 ・2391字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

想像有一群猴子,各自拿著打字機或電腦鍵盤,隨機敲擊鍵盤上的字符。若猴子數量無窮大、時間也無限長,牠們最終能否打出《哈姆雷特》或《羅密歐與茱麗葉》所有文本?這個乍聽荒謬的問題,正是「無限猴子定理」(Infinite Monkey Theorem)所探討的核心。無限猴子定理誕生於 20 世紀初,至今已被視為一則展示機率和隨機性的幽默譬喻。它強調的是:在「無限」的前提下,哪怕事件本身概率微乎其微,也終有可能實現。但若將「無限」抽離,狀況就大幅改觀。

無限猴子定理的起源:是數學巧思還是玩笑話?

只要給猴子一台打字機,和無限的時間,就有可能打出莎士比亞嗎?圖/unsplash

無限猴子定理最早可追溯至法國數學家埃米爾·博雷爾(Émile Borel)在 1913 年的著作。他假設若有無限多隻猴子,分別隨機敲擊打字機上字母的鍵盤,那麼理論上能產生所有已經寫下或尚未誕生的文本——從簡單的「banana」字串到複雜的《哈姆雷特》、《馬克白》等莎劇。此「定理」之所以著名,在於它鮮明地說明了在「無限」長度的時間/試驗數中,任何不可能事件皆可能變得「可能」,甚至機率可達 100%。

然而,博雷爾在提出時,也暗示這只是一個數學論證,用來說明「幾近不可能事件」和「無窮大」的辯證關係。後人紛紛加以演繹,結合機率論與字母組合概念,強調這種理論上的結果不意味實際世界能夠成真;它比較像是一場「思想實驗」,或令人莞爾的理論示範。

實猴子 vs. 理論猴子:有限生命與不可預測行為

「若給一隻猴子足夠時間,牠能打出莎士比亞全集。」這句話聽起來驚世駭俗,但真正挑戰並不在於「敲出哪個字」。關鍵是,如果缺乏「無限時間」,任何一隻猴子在有限壽命裡,幾乎無法輸出任何可讀句子。澳洲悉尼科技大學數學家史蒂芬·伍德科克(Stephen Woodcock)便在相關研究中,做了現實條件下的機率估算:

-----廣告,請繼續往下閱讀-----
  • 以黑猩猩當模擬對象,因牠們與人類關係相近,體型與智力也更易想像。
  • 設定:黑猩猩可用一台打字機,每秒都敲一次鍵。
  • 理論上,若要輸出一個八字母詞彙(如 “banana”),黑猩猩在 30 年內碰巧完成的機率僅約 5%。
  • 更別提複雜的句子,機率下降至 10-20 以下,幾乎趨近於零。

伍德科克的研究認為,即便地球所有黑猩猩都在不斷敲擊鍵盤,倘若只給定數十億年的宇宙壽命,仍難以看到「完整抄出莎士比亞某部劇作」的奇蹟。只有在真正意義上的「無限猴子、無限時間」裡,才可說這件事「必然」成真。

為何「無限」只是理論

「無限猴子定理」的核心基礎在「無限」。然而,現實宇宙是有限的:從已知的膨脹速度、暗能量演化、最終熱寂(Heat Death)的走向來看,科學家推估宇宙壽命遠遠達不到真正的「無限」。無論如何,宇宙總有盡頭——能供養猴子族群繁衍與敲字的條件更是隨著時間劇烈下降。因此,哪怕猴子數量再龐大,實際上都無法達成理論中的「無限次嘗試」。

「無限猴子定理」只能是理論,是因為現實不存在「無限」的情況。圖/unsplash

在數學上,小概率事件若能重複嘗試足夠多次,便能「接近確定會發生」。不過,現實環境提供的試驗次數並非真正無窮。因此,本理論更像是用來解釋「僅憑隨機過程,最終可產生任何結構」的純粹數學概念,並不是真正能期待在有生之年或宇宙壽命中目睹它發生。

歷史上的「猴子打字機實驗」

為了更生動地理解此定理,英國藝術團隊曾在 2002 年做過一項實地實驗:他們在動物園裡放置一台電腦鍵盤,並讓 6 隻黑冠長尾獼猴(Celebes crested macaques)在上面亂敲四週。結果最終只得到五頁幾乎全是 S 的亂碼。更具諷刺的是,這群獼猴還對鍵盤進行了「實體攻擊」,甚至拉屎在上面。可見理論上的「緩慢敲擊,終能輸出經典」到了現實環境,不僅在機率上趨近於零,更在人性(以及「猴性」)互動、實驗干擾等層面上無法持續執行。

-----廣告,請繼續往下閱讀-----

這場實驗的參與者──藝術家 Geoff Cox 等人表示,結果「顯然科學上是失敗的」,但他們本來就不打算證明什麼數學命題,而是做一個行為藝術,藉此反思「動物行為本質」與「機率論」之間的斷層。在這些原本就不安於室的獼猴面前,所謂的「靜靜打字機敲鍵」更像是人類一廂情願的想像。

值得一提的是,無限猴子定理在科學與哲學層面引申出更多思考。例如量子力學背後有一定程度的「隨機」或「機率」原理,一個足夠大的時間尺度裡,看似小概率事件也可能成真;然而,我們目前所在的宇宙實際是有限之地,其法則與條件亦不斷演變。有些科學家於是把此定理視為「多世界詮釋」的類比:即在多重宇宙或平行時空中,也許某個平行宇宙里真的有個「猴子」寫下莎士比亞——但這終究超越當前能檢驗的範疇。

理想與現實的交叉

無限猴子定理雖然只是個引人發笑的比喻,卻也提醒我們「大」與「無限」之間的落差有多巨大。

正如著名科學家所言:「無限是個美好的概念,卻永遠跳脫我們的現實。」或許,下次再聽到有人提「無限猴子也能打出天才之作」,不妨微笑回應:在那個純理論的世界裡,莎士比亞的確有再版,但在我們的宇宙之內,能等到的,恐怕只是字母“S”不断刷屏,以及一堆被猴子糞便污損的鍵盤罷了。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
賭博與愛情公式:用數學擬定你的擇偶策略——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/06 ・2486字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

理解期望值,有助於分析賭場裡的大部分賭局,以及美國中西部和英國的嘉年華會中,常有人玩、但一般人比較不熟悉的賭法:骰子擲好運(chuck-a-luck)。

招攬人來玩「骰子擲好運」的說詞極具說服力:你從 1 到 6 挑一個號碼,莊家一次擲三顆骰子,如果三個骰子都擲出你挑的號碼,莊家付你 3 美元。要是三個骰子裡出現兩個你挑的號碼,莊家付你 2 美元。

假如三個骰子裡只出現一個你挑的號碼,莊家付你 1 美元。如果你挑的號碼一個也沒有出現,那你要付莊家 1 美元。賽局用三個不同的骰子,你有三次機會贏,而且,有時候你還不只贏 1 美元,最多也不過輸 1 美元。

我們可以套用名主持人瓊安.李維絲(Joan Rivers)的名言(按:她的名言是:「我們能聊一聊嗎?」),問一句:「我們能算一算嗎?」(如果你寧願不算,可以跳過這一節。)不管你選哪個號碼,贏的機率顯然都一樣。不過,為了讓計算更明確易懂,假設你永遠都選 4。骰子是獨立的,三個骰子都出現 4 點的機率是 1/6×1/6×1/6=1/216,你約有 1/216 的機率會贏得 3 美元。

-----廣告,請繼續往下閱讀-----

僅有兩個骰子出現 4 點的機率,會難算一點。但你可以使用第 1 章提到的二項機率分布,我會在這裡再導一遍。三個骰子中出現兩個 4,有三種彼此互斥的情況:X44、4X4 或 44X,其中 X 代表任何非 4 的點數。而第一種的機率是 5/6×1/6×1/6=5/216,第二種和第三種的結果也是這樣。三者相加,可得出三個骰子裡出現兩個 4 點的機率為 15/216,你有這樣的機率會贏得 2 美元。

圖/envato

同樣的,要算出三個骰子裡只出現一個 4 點的機率,也是要將事件分解成三種互斥的情況。得出 4XX 的機率為 1/6×5/6×5/6=25/216,得到 X4X 和 XX4 的機率亦同,三者相加,得出 75/216。這是三個骰子裡僅出現一個 4 點的機率,因此也是你贏得 1 美元的機率。

要計算擲三個骰子都沒有出現 4 點的機率,我們只要算出剩下的機率是多少即可。算法是用 1(或是100%)減去(1/216 +15/216 + 75/216),得出的答案是 125/216。所以,平均而言,你每玩 216 次骰子擲好運,就有 125 次要輸 1 美元。

這樣一來,就可以算出你贏的期望值($3×1/216)+($2×15/216)+($1×75/216)+(–$1×125/216)=$(–17/216)=–$0.08。平均來說,你每玩一次這個看起來很有吸引力的賭局,大概就要輸掉 8 美分。

-----廣告,請繼續往下閱讀-----

尋找愛情,有公式?

面對愛情,有人從感性出發,有人以理性去愛。兩種單獨運作時顯然效果都不太好,但加起來⋯⋯也不是很妙。不過,如果善用兩者,成功的機率可能還是大一些。回想舊愛,憑感性去愛的人很可能悲嘆錯失的良緣,並認為自己以後再也不會這麼愛一個人了。而用比較冷靜的態度去愛的人,很可能會對以下的機率結果感興趣。

在我們的模型中,假設女主角——就叫她香桃吧(按:在希臘神話中,香桃木﹝Myrtle﹞是愛神阿芙蘿黛蒂﹝Aphrodite﹞的代表植物,象徵愛與美)有理由相信,在她的「約會生涯」中,會遇到 N 個可能成為配偶的人。對某些女性來說,N 可能等於 2;對另一些人來說,N 也許是 200。香桃思考的問題是:到了什麼時候我就應該接受X先生,不管在他之後可能有某些追求者比他「更好」?我們也假設她是一次遇見一個人,有能力判斷她遇到的人是否適合她,以及,一旦她拒絕了某個人之後,此人就永遠出局。

為了便於說明,假設香桃到目前為止已經見過 6 位男士,她對這些人的排序如下:3—5—1—6—2—4。這是指,在她約過會的這 6 人中,她對見到的第一人的喜歡程度排第 3 名,對第二人的喜歡程度排第 5 名,最喜歡第三個人,以此類推。如果她見了第七個人,她對此人的喜歡程度超過其他人,但第三人仍穩居寶座,那她的更新排序就會變成 4—6—1—7—3—5—2。每見過一個人,她就更新追求者的相對排序。她在想,到底要用什麼樣的規則擇偶,才能讓她最有機會從預估的 N 位追求者中,選出最好的。

圖/envato

要得出最好的策略,要善用條件機率(我們會在下一章介紹條件機率)和一點微積分,但策略本身講起來很簡單。如果有某個人比過去的對象都好,且讓我們把此人稱為真命天子。如果香桃打算和 N 個人碰面,她大概需要拒絕前面的 37%,之後真命天子出現時(如果有的話),就接受。

-----廣告,請繼續往下閱讀-----

舉例來說,假設香桃不是太有魅力,她很可能只會遇見 4 個合格的追求者。我們進一步假設,這 4 個人與她相見的順序,是 24 種可能性中的任何一種(24=4×3×2×1)。

由於 N=4,37% 策略在這個例子中不夠清楚(無法對應到整數),而 37% 介於 25% 與 50% 之間,因此有兩套對應的最佳策略如下:

(A)拒絕第一個對象(4×25%=1),接受後來最佳的對象。

(B)拒絕前兩名追求者(4×50%=2),接受後來最好的求愛者。

如果採取A策略,香桃會在 24 種可能性中的 11 種,選到最好的追求者。採取 B 策略的話,會在 24 種可能性中的 10 種裡擇偶成功。

以下列出所有序列,如同前述,1 代表香桃最偏好的追求者,2 代表她的次佳選擇,以此類推。因此,3—2—1—4 代表她先遇見第三選擇,再來遇見第二選擇,第三次遇到最佳選擇,最後則遇到下下之選。序列後面標示的 A 或 B,代表在這些情況下,採取 A 策略或 B 策略能讓她選到真命天子。

-----廣告,請繼續往下閱讀-----

1234;1243;1324;1342;1423;1432;2134(A);2143(A);2314(A, B);2341(A, B);2413(A, B);2431(A, B);3124(A);3142(A);3214(B);3241(B);3412(A, B);3421;4123(A);4132(A);4213(B);4231(B);4312(B);4321

如果香桃很有魅力,預期可以遇見 25 位追求者,那她的策略是要拒絕前 9 位追求者(25 的 37% 約為 9),接受之後出現的最好對象。我們也可以用類似的表來驗證,但是這個表會變得很龐雜,因此,最好的策略就是接受通用證明。(不用多說,如果要找伴的人是男士而非女士,同樣的分析也成立。)如果 N 的數值很大,那麼,香桃遵循這套 37% 法則擇偶的成功率也約略是 37%。接下來的部分就比較難了:要如何和真命天子相伴相守。話說回來,這個 37% 法則數學模型也衍生出許多版本,其中加上了更合理的戀愛限制條件。

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。