0

0
0

文字

分享

0
0
0

「世界末日」、Oreo餅乾以及「仲夏夜之夢」,竟然有共通點?

Write Science
・2012/11/05 ・3533字 ・閱讀時間約 7 分鐘 ・SR值 495 ・六年級

作者:Shane L. Larson
譯者:王人德(Ray)

我為什麼喜歡網路上的流言呢?因為它們的的確確代表著現代生活中極為荒誕的事物,說起來也不特別啦,但顯然我算是處在一群科學家中的少數族群。我可以理解那些對於時事的評論(或是網路流言),或者願意去看一部好萊塢的鉅作(像是《世界末日》),這些事物跟我腦中處理科學的機制完全搭不上邊,但它們卻和我平常所思考的事物產生衝突,我的腦因而產生化學反應,這些衝突感也為我帶來充實以及愉悅。這種「實事不求是」的精神其實對科學家們來說是非常痛苦的。

為什麼呢?科學家們已經被訓練成為一個不帶任何感情的個體,一切都只為了能夠更公正地觀察著這世間萬物。也就是說,他們已經完全和自然背道而馳,也總是將我們個人的想法像是放在一張桌子上一般,透過放大鏡來檢視。不過,我們終究是人類。但科學這項機制就是設計來保護我們的,不是嗎?我們想要並且需要一直重複做著實驗,而所得到的結果也需要被大家檢視以及懷疑,就為了找出是否哪個小細節有所矛盾。當我們發現了有矛盾的地方,而後新的實驗以及新的想法又出現了。這整個過程一直不斷地、不斷地重複著,永遠都不會停止。縱使實驗後所得到的新數據和想法被大家所肯定了,也只是被大眾認定為這是最好的「實驗示範」,快點改觀吧!若你不在科學這門學問中懂得變通,那你就錯了。若你一直墨守成規,就算你得到令人讚嘆、完美的數據,那麼你也錯了。科學這門學問會自行修正錯誤的數據,所以呢,我們做越多的實驗,我們會越來越了解大自然,對於那些自然界中的迷思也會越來越少,從小學的那些錯誤資訊也會日趨減少。

為何會日趨減少呢?而「高可能性」和「低可能性」又是甚麼意思呢?我們又該如何去理解呢?再一次地,為了理解這一切,我們又要回到先前所提到的「網路流言」了。曾經這麼流傳著:當有一百萬隻猴子站在一百萬台打字機前開始打字,最後一定會完成整部莎士比亞所寫的「仲夏夜之夢」。 

科學的美在於它的接觸範圍非常的廣,而且早已有著合適的方法去套用在你所感興趣的課題上,例如我們先前提到的想法「猴子竟然能夠完成一部莎士比亞的作品?」(這是一個很有趣的智力測驗,雖然也有人認為這樣的事情就像電影「決戰猩球」一樣令人害怕。 )

我們來討論一下「可能性」吧!這是一個被人們濫用的概念,而且常常被用在稀奇古怪的地方,但我們可以從這些基礎的假設當中來思考那些網路迷因(meme)。這裡是一個簡單的範例 : 擲銅板。(但我們這次要擲的是Oreo餅乾,正反兩面各是巧克力以及原味。) 遊戲規則如下 : 若結果是原味,你就可以得到那片餅乾;反之,若是巧克力,餅乾就屬於我。對於實驗結果,我們兩個人有著同樣的利害關係。現在假設我們兩人是公平的,沒有任何方法能夠控制其變因,就暫且稱它「公平的Oreo餅乾」吧!(其實就跟硬幣和骰子是同樣道理)

所以當我擲一枚餅乾,你有一半的機率可以得到它。這是甚麼意思呢? 也就是說你擲到原味的結果是兩種結果中的其中一種。

你想要的結果/有可能的結果 = 1/2 = 0.5 → 50%

一個對數學有著狂熱的人可能會向我們解釋 : 當我們拿著每袋各裝有100個餅乾的袋子,總計有10袋,而後將每一片像餅乾擲硬幣一樣,那麼平均來說,每一袋裡面都會有50片是我們想要的結果。「平均來說」是一個很重要的敘述─對於數學的困惑、爭議、發現以及理解,都隱含在這個敘述當中。統計並非一直都正確,稀奇古怪的事確實會發生機率遭到推翻的情況,所以他們才會被稱為「事變」!

那麼我們來點更複雜的問題吧!假設現在我們兩個人想要一次擁有兩塊餅乾,那麼機率又會是如何呢? 我將這個想法製作成下列的表格。有幾種方法可以得到原味Oreo餅乾呢? 兩種:在第一輪或者是第二輪拿到;同樣地也有兩種方法可以得到巧克力口味:在第一輪或者是第二輪擲到。

 

以上就是我們在這場良性競爭下所得到的結果。依序是:你得到所有的餅乾(G1-G2)、我得到所有的餅乾(C1-C2)、以及各自分攤自己的餅乾(C1-G2和G1-C2),我想應該不會影響到我們兩個人的友情吧?

看看這表格,你有四分之一的機率(1/4 = 0.25 = 25%)成為「Cookie Monster」拿走兩種餅乾。那麼我能夠不做表格就知道這結果嗎?當然!只要將每件事情發生的機率相乘就能夠得到你想求的獨立事件之機率。我們先前說過在正常情況下想得到原味餅乾的機率為50% (1/2 = 0.5 =50%),那麼如果我擲了兩次,就會得到 :

天啊!但老實講:就算我贏得了兩塊餅乾,到最後我還是會分你一塊的啊 😛

現在,我們言歸正傳吧。關於猴子和莎士比亞。經過了一番搜尋之後,我還是找不到有哪個人會知道仲夏夜之夢裡頭到底有幾個字!其實我大可寫出一個程式來計算裡頭的文字量,但我還有名聲要顧啊!怎麼可能讓這種怪事讓大眾知道呢!我們還是想點簡單一點的方法吧。

試問:猴子隨機在鍵盤上打出一個英文單字的機率是多少?就拿「cookie」這個字來當範例吧。我們假設鍵盤上有27個鍵─26個英文字母以及空白鍵。猴子打出任何一個字的機率為27分之1(1/27 = 0.037 = 3.7%) 。而先打出「c」再打出「o」的機率如下:

這並不是個大數字吧? 那麼打出完整的單字「cookie」呢?

我們可以發現,猴子想要隨機打出「cookie」這個字的機率就高達40億分之1!那麼一部莎士比亞的劇作難度就更高了。裡頭有更多的字需要訂正呢!

但是呢,「猴子」們在網路上更加活躍(當你看過網路上的評論或者是部落格就能夠理解)。當有一大群猴子開始打字,理所當然地一定會有一隻能夠完成這項壯舉,就讓我們來看一下這個有趣的想法吧:仲夏夜之夢一共有2165行,而每一行大致上有45個字,因此:2165(行)X 45(字) = 97425(字),猴子們有97425個字需要去完成。

一隻猴子完成這件事的機率會是多少呢? 以「cookie」這個實驗當作範例,1/27一共要相乘97425次,就成了97425分之一了(以數學符號來表示就是1/2797425)。如果你將27相乘97425次,那數字不只是大,更是令人嘆為觀止!因此1/2797425理所當然是個超級小的數字了。在科學中,我們學到了如何簡潔有力寫出極大和極小的數字,也就是科學記號,方法其實很簡單,只要將在一個數字後面乘上10的次方就行了。

舉例來說吧,1×103的意思就是將10連乘3次後再乘1(也有此一說:每當要乘以10時,就在數字後加個0),因此,1×103 = 1000,理所當然地,7×104 就是7x10x10x10x10 = 70000。

將這個想法套用在猴子實驗身上之後,我們該怎麼表達2797425呢? 科學記號中,這也可以轉換成1×10139,450(1後面有139,450個0)。所以一隻猴子想要完成一部仲夏夜之夢的機率將會是1/10139,450。換句話說,在我們開始實驗之前,我們需要先收集到10139,450隻猴子。

這是個令人瞠目結舌的數字啊!這麼龐大的數字根本不存在我們所認知的宇宙當中。例如:一個Oreo餅乾大約等於7×1023個原子;相較之下,太陽大約等於1×1057個原子;而整個銀河系大約等於1×1069原子;而在我們可見的宇宙中大約包含1×1080個原子。所以倘若你想要讓一隻猴子意外地打出一部莎士比亞的劇作,你會需要比整個宇宙的原子數量還要多的猴子,似乎是不可能的呢。

其實做這些實驗只是有趣的消遣娛樂而已,但他們真的跟現實世界有所關聯嗎?當然,統計一直與我們的生活息息相關。其實呢,Oreo實驗所使用的計算方式也能套用在其他事情上;得了癌症之後的存活率、無線網路一次可以支援幾支手機、以及計算我們未來登上那未知的星球─火星的成功率。(http://mars.jpl.nasa.gov/)

猴子實驗只是一個對現代文化的反思,也從來沒有想要去挑戰科學,但它卻真實反映了非常人性化的一面─也就是根深蒂固在我們心中的,那種人類無法掌控整個宇宙的無力感。但不可否認的─藝術和科學是我們唯一可以抒發無力感的管道。天才莎士比亞因為沒有同儕之間的影響,所以他能夠以純人類的角度來思考並且創作故事,不只啟發了我們,也深深影響著後代。同樣地,科學也是那些因為那些天才們努力不懈地發掘才有今日的成果。我們能夠發現新事物,並且藉由所學的知識來改善生活品質。我們能夠將所發現的事情記錄下來,而後啟發我們的子孫們,使他們更加了解自己所生活的世界中的點點滴滴。

對於透過科學來了解事物這件事,我深信不疑,甚至是相當有自信。我很欣慰並且敬畏我擁有「發現」的能力。但這並不代表每個問題都能夠容易解決。發展出能夠穿梭於星球間的科技依舊困難;完全了解動物(或植物)的演化依舊困難;了解癌症的本質也依舊困難。但我還是有信心,只要給我足夠的時間、足夠的資源、以及充足的腦力,任何問題都可以得到一個答案,而你們也應該這麼想。「盡信書,不如無書」,再看一次電影「世界末日」吧,雖然是個逃避現實的科幻故事,但卻也同時表達了一件事:科學永遠在你身邊。

原文:The Commonality of Armageddon, Oreos, & Shakespeare’s “A Midsummer Night’s Dream”

文章難易度
Write Science
17 篇文章 ・ 1 位粉絲
A collaborative project to practice the craft of communicating scientific ideas.

0

8
0

文字

分享

0
8
0
鑑識故事系列:Lucia de Berk 值班死幾人?荷蘭護理冤案
胡中行_96
・2023/02/27 ・2983字 ・閱讀時間約 6 分鐘

前言:本文為鑑識系列中,罕見提及統計學的故事。不過,繁複的計算過程全部省略,僅討論統計概念和辦案原理。請害怕數學的讀者放心。

護理人員 Lucia de Berk。圖/Carole Edrich on Wikimedia Commons(CC BY-SA 3.0)

荷蘭護理人員 Lucia de Berk,長年於海牙茱莉安娜兒童醫院(Juliana Kinderziekenhuis)的 1 個病房,與紅十字醫院(Rode Kruis Ziekenhuis)的 2 個病房工作。2001 年 12 月,她因謀殺罪嫌被捕。[1]

超幾何分佈

警方起先偵辦 2 名住院病患的死因,發現是中毒身亡;後來連帶調查 1997 至 2001 年間,幾家醫院可能的謀殺案件,於是找上了她。[2]在法庭上,司法心理學家 Henk Elffers 用機率的概念,證明 Lucia de Berk 有罪。簡單來說,就是計算嫌犯現身出事班次的機率。他採取的統計方法,叫做超幾何分佈(又稱「超幾何分配」;hypergeometric distribution)。[1]

超幾何分佈適合用在從一個母數中,隨機抽取樣本,不再放回的情形。例如:袋子裝有 N 顆球,其中 L 顆為紅球。一把抓出 n 顆球,不特別挑選的話,紅球碰巧被抓到的機率為 X。[3, 4]以此類推,在此案被調查的時間範圍內,病房總共有 N 個班次,其中 Lucia de Berk 值了 L 班,而有醫療事故的班次共 n 個。如果不刻意安排,則她正好出現在事故班次的機率為 X。[1]公式介紹。[4]

此處實際帶入數據後得到的答案,說明 Lucia de Berk 理論上應該只有 3 億 4 千 2 百萬分之一(X = 1 / 3.42 x 108)的機率,會剛好在醫療事故發生的班次值班。因此,法庭認定她的頻繁出現(> 1 / 3.42 x 108),絕非巧合。[1, 2, 5, 6]2003 年,Lucia de Berk因 7 起謀殺和 3 次殺人未遂,[2]被判終身監禁。[5]

茱利安納兒童醫院(Juliana Kinderziekenhuis)外觀。圖/Joris on Wikimedia Commons(CC BY-SA 3.0)
紅十字醫院(Rode Kruis Ziekenhuis)已於 2021 年關閉。圖/1Veertje on Wikimedia Commons(CC BY-SA 4.0)。

統計謬誤

當時有位醫師任職於 Lucia de Berk 待過的一家醫院。他的女性姻親 Metta de Noo-Derksen 醫師,以及 Metta 的兄弟 Ton Derksen 教授,都覺得事有蹊蹺。[7]Metta 和 Ton 檢視死者的病歷紀錄,並指出部份醫療事故的類型和事發時間,與判決所用的數據對不起來因為後者大半仰賴記憶,他們甚至發現有些遭指控的班次,Lucia de Berk 其實不在現場。然而,光是這些校正,還不足以推翻判決。[1, 7]

所幸出生於英國的荷蘭萊頓大學(Universiteit Leiden)統計學榮譽教授 Richard Gill,也伸出援手。[2]在協助此案的多年後,他的團隊發表了一篇論文,解釋不該使用超幾何分佈的理由,例如:[1]

  1. 護理人員不可互換:所有受訪醫師都說,護理人員可以相互替換;但是護理人員覺得,他們無法取代彼此。由於各別的個性與行事風格迥異,他們對病患的影響也不同。[1]
  2. 醫療事故通報機率:既然每個護理人員都有自己的個性,他們判定某事件為醫療事故,並且通報醫師的機率也不一樣。[1]畢竟醫院的通報規定是一回事;符合標準與否,都由護理人員判斷。比方說,有個病患每次緊張,血壓就破表。那就讓他坐著冷靜會兒,再登記第二次測量的正常結果即可。不過,難免會有菜鳥護士量一次就嚇到通報,分明給病房添亂。
  3. 班次與季節事故率:夜間與週末只剩護理人員和少數待命的醫師;季節性的特定病例增減;以及病患的生理時鐘等,都會影響出事的機率。[1]
  4. 護理排班並不平均:護理人員的班次安排,理想上會有帶狀的規律。可能連續幾天都是白班,接著是幾個小夜班之類的,[1]比較方便調整作息。此外,護理人員的資歷和個性,通常也會被納入考量。[1]以免某個班次全是資深人員;但另個班次緊急事故發生時,卻只剩不會臨機應變的新手。在這樣的排班原則下,如果單看某個時期的班表,每個人所輪到的各類班次總數,應該不會完全相同。
  5. 出院政策曾經改變:茱莉安娜兒童醫院在案發期間,曾經針對確定救不活的小病患,是否該在家中或病房離世,做過政策上的調整。帳面上來說,算在病房裡的事故量絕對會有變化。[1]

總之,太多因素會影響護理排班,或是干擾醫療事故的通報率,因此不能過度簡化成抽取紅球那樣的隨機概念。更嚴重的是,Henk Elffers 在計算過程中,分開處理 3 個病房的機率,然後再相乘。Richard Gill 的團隊強調,這樣會造成在多處上班的護理人員,比只為一處服務者,看起來有較高的嫌疑。[1]

帕松分佈

因應這種情境,Richard Gill 教授建議採用帕松分佈(又譯「布阿松分配」;Poisson distribution),[1]一種描述特定時間內,事件發生率的統計模型。[8]有別於先前的計算方法,在這裡事故傾向(accident proneness),以及整體排班狀況等變因,都納入了考量。前者採計護理人員通報醫療事故的意願強度;後者則為輪班的總次數。這個模型通常是拿來推估非尖峰時段的來電、大城市的火災等,也適用於 Lucia de Berk 的案子。[1](深入瞭解公式計算(p. 4 – 6)。[1, 8]

雖然此模型的細節複雜,統計學家得大費周章解釋給法官聽,但是考慮的條件比較趨近真實。倘若套用原始判決的數據,這個計算最後的答案是 0.0206161,意即醫療事故本來就有 49 分之 1 的機率,會與 Lucia de Berk 的班次重疊。如果帶入 Mettade Noo-Derksen 和 Ton Derksen 校正過的數據,機率更高達 9 分之 1。[1, 9]換句話說,她單純是倒楣出現在那裡,就被當作連續殺人犯。[6]

其他證據與翻案

大相逕庭的計算結果,顯示出選擇正確統計模型的重要性。然而,最不合理的,是以機率作為判決的主要根據。就謀殺案件來說,怎能不忠於病歷或驗屍報告?Richard Gill 教授接受美國犯罪學講師 Jon Robins 的訪問時,表示後來由醫師和毒物學家組成的獨立團隊,被允許瀏覽當初沒送上法庭的關鍵資料。[2]他們發現原本被視為受害者的病患,根本都喪命於自然死因。[2, 6]

在各方人士的協助下,Lucia de Berk 還是歷經兩次上訴失敗。[6]她曾於 2008 年,被允許在家等候重審結果。[1]但直到 2010 年 4 月,司法才還她清白。[7]Ton Derksen 認為,在荷蘭像這樣誤判的案件,約佔總判決數的 4 至 11%,也就是每年 1,000 人左右。不過,2006 到 2016 年間被判刑的 2 萬 3 千人裡,只有 5 個上訴到最高法院,而且僅 Lucia de Berk 的案子得以平反。[10]

Lucia de Berk 冤案改編電影的海報。圖/電影《Lucia de B.》(2014) on IMDB

  

參考資料

  1. Gill RD, Groeneboom P, de Jong P. (2018) ‘Elementary Statistics on Trial—The Case of Lucia de Berk’. Chance 31, 4, pp. 9-15.
  2. Robins J. (10 APR 2020) ‘Ben Geen: Statisticians back former nurse’s in last chance to clear name’. The Justice Gap.
  3. 超幾何分佈」國立高雄大學統計學研究所(Accessed on 03 FEB 2023)
  4. 李柏堅(06 FEB 2015)「超幾何分配CUSTCourses on YouTube.
  5. Sims J. (24 FEB 2022) ‘Are We in the Midst of a Data Illiteracy Epidemic?’. Inside Hook.
  6. Schneps L, Colmez C. (26 MAR 2013) ‘Justice Flunks Math’. The New York Times.
  7. Alexander R. (28 APR 2013) ‘Amanda Knox and bad maths in court’. BBC News.
  8. 李伯堅(04 FEB 2015)「布阿松分配」CUSTCourses on YouTube.
  9. Wilson D. (13 DEC 2022) ‘Red flag to be wary of when hunting a killer nurse’. The Herald, Scotland.
  10. One in nine criminals may have been wrongly convicted – research’. (21 NOV 2016) Dutch News.
胡中行_96
98 篇文章 ・ 33 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

0
0

文字

分享

0
0
0
「世界末日」、Oreo餅乾以及「仲夏夜之夢」,竟然有共通點?
Write Science
・2012/11/05 ・3533字 ・閱讀時間約 7 分鐘 ・SR值 495 ・六年級

作者:Shane L. Larson
譯者:王人德(Ray)

我為什麼喜歡網路上的流言呢?因為它們的的確確代表著現代生活中極為荒誕的事物,說起來也不特別啦,但顯然我算是處在一群科學家中的少數族群。我可以理解那些對於時事的評論(或是網路流言),或者願意去看一部好萊塢的鉅作(像是《世界末日》),這些事物跟我腦中處理科學的機制完全搭不上邊,但它們卻和我平常所思考的事物產生衝突,我的腦因而產生化學反應,這些衝突感也為我帶來充實以及愉悅。這種「實事不求是」的精神其實對科學家們來說是非常痛苦的。

為什麼呢?科學家們已經被訓練成為一個不帶任何感情的個體,一切都只為了能夠更公正地觀察著這世間萬物。也就是說,他們已經完全和自然背道而馳,也總是將我們個人的想法像是放在一張桌子上一般,透過放大鏡來檢視。不過,我們終究是人類。但科學這項機制就是設計來保護我們的,不是嗎?我們想要並且需要一直重複做著實驗,而所得到的結果也需要被大家檢視以及懷疑,就為了找出是否哪個小細節有所矛盾。當我們發現了有矛盾的地方,而後新的實驗以及新的想法又出現了。這整個過程一直不斷地、不斷地重複著,永遠都不會停止。縱使實驗後所得到的新數據和想法被大家所肯定了,也只是被大眾認定為這是最好的「實驗示範」,快點改觀吧!若你不在科學這門學問中懂得變通,那你就錯了。若你一直墨守成規,就算你得到令人讚嘆、完美的數據,那麼你也錯了。科學這門學問會自行修正錯誤的數據,所以呢,我們做越多的實驗,我們會越來越了解大自然,對於那些自然界中的迷思也會越來越少,從小學的那些錯誤資訊也會日趨減少。

為何會日趨減少呢?而「高可能性」和「低可能性」又是甚麼意思呢?我們又該如何去理解呢?再一次地,為了理解這一切,我們又要回到先前所提到的「網路流言」了。曾經這麼流傳著:當有一百萬隻猴子站在一百萬台打字機前開始打字,最後一定會完成整部莎士比亞所寫的「仲夏夜之夢」。 

科學的美在於它的接觸範圍非常的廣,而且早已有著合適的方法去套用在你所感興趣的課題上,例如我們先前提到的想法「猴子竟然能夠完成一部莎士比亞的作品?」(這是一個很有趣的智力測驗,雖然也有人認為這樣的事情就像電影「決戰猩球」一樣令人害怕。 )

我們來討論一下「可能性」吧!這是一個被人們濫用的概念,而且常常被用在稀奇古怪的地方,但我們可以從這些基礎的假設當中來思考那些網路迷因(meme)。這裡是一個簡單的範例 : 擲銅板。(但我們這次要擲的是Oreo餅乾,正反兩面各是巧克力以及原味。) 遊戲規則如下 : 若結果是原味,你就可以得到那片餅乾;反之,若是巧克力,餅乾就屬於我。對於實驗結果,我們兩個人有著同樣的利害關係。現在假設我們兩人是公平的,沒有任何方法能夠控制其變因,就暫且稱它「公平的Oreo餅乾」吧!(其實就跟硬幣和骰子是同樣道理)

所以當我擲一枚餅乾,你有一半的機率可以得到它。這是甚麼意思呢? 也就是說你擲到原味的結果是兩種結果中的其中一種。

你想要的結果/有可能的結果 = 1/2 = 0.5 → 50%

一個對數學有著狂熱的人可能會向我們解釋 : 當我們拿著每袋各裝有100個餅乾的袋子,總計有10袋,而後將每一片像餅乾擲硬幣一樣,那麼平均來說,每一袋裡面都會有50片是我們想要的結果。「平均來說」是一個很重要的敘述─對於數學的困惑、爭議、發現以及理解,都隱含在這個敘述當中。統計並非一直都正確,稀奇古怪的事確實會發生機率遭到推翻的情況,所以他們才會被稱為「事變」!

那麼我們來點更複雜的問題吧!假設現在我們兩個人想要一次擁有兩塊餅乾,那麼機率又會是如何呢? 我將這個想法製作成下列的表格。有幾種方法可以得到原味Oreo餅乾呢? 兩種:在第一輪或者是第二輪拿到;同樣地也有兩種方法可以得到巧克力口味:在第一輪或者是第二輪擲到。

 

以上就是我們在這場良性競爭下所得到的結果。依序是:你得到所有的餅乾(G1-G2)、我得到所有的餅乾(C1-C2)、以及各自分攤自己的餅乾(C1-G2和G1-C2),我想應該不會影響到我們兩個人的友情吧?

看看這表格,你有四分之一的機率(1/4 = 0.25 = 25%)成為「Cookie Monster」拿走兩種餅乾。那麼我能夠不做表格就知道這結果嗎?當然!只要將每件事情發生的機率相乘就能夠得到你想求的獨立事件之機率。我們先前說過在正常情況下想得到原味餅乾的機率為50% (1/2 = 0.5 =50%),那麼如果我擲了兩次,就會得到 :

天啊!但老實講:就算我贏得了兩塊餅乾,到最後我還是會分你一塊的啊 😛

現在,我們言歸正傳吧。關於猴子和莎士比亞。經過了一番搜尋之後,我還是找不到有哪個人會知道仲夏夜之夢裡頭到底有幾個字!其實我大可寫出一個程式來計算裡頭的文字量,但我還有名聲要顧啊!怎麼可能讓這種怪事讓大眾知道呢!我們還是想點簡單一點的方法吧。

試問:猴子隨機在鍵盤上打出一個英文單字的機率是多少?就拿「cookie」這個字來當範例吧。我們假設鍵盤上有27個鍵─26個英文字母以及空白鍵。猴子打出任何一個字的機率為27分之1(1/27 = 0.037 = 3.7%) 。而先打出「c」再打出「o」的機率如下:

這並不是個大數字吧? 那麼打出完整的單字「cookie」呢?

我們可以發現,猴子想要隨機打出「cookie」這個字的機率就高達40億分之1!那麼一部莎士比亞的劇作難度就更高了。裡頭有更多的字需要訂正呢!

但是呢,「猴子」們在網路上更加活躍(當你看過網路上的評論或者是部落格就能夠理解)。當有一大群猴子開始打字,理所當然地一定會有一隻能夠完成這項壯舉,就讓我們來看一下這個有趣的想法吧:仲夏夜之夢一共有2165行,而每一行大致上有45個字,因此:2165(行)X 45(字) = 97425(字),猴子們有97425個字需要去完成。

一隻猴子完成這件事的機率會是多少呢? 以「cookie」這個實驗當作範例,1/27一共要相乘97425次,就成了97425分之一了(以數學符號來表示就是1/2797425)。如果你將27相乘97425次,那數字不只是大,更是令人嘆為觀止!因此1/2797425理所當然是個超級小的數字了。在科學中,我們學到了如何簡潔有力寫出極大和極小的數字,也就是科學記號,方法其實很簡單,只要將在一個數字後面乘上10的次方就行了。

舉例來說吧,1×103的意思就是將10連乘3次後再乘1(也有此一說:每當要乘以10時,就在數字後加個0),因此,1×103 = 1000,理所當然地,7×104 就是7x10x10x10x10 = 70000。

將這個想法套用在猴子實驗身上之後,我們該怎麼表達2797425呢? 科學記號中,這也可以轉換成1×10139,450(1後面有139,450個0)。所以一隻猴子想要完成一部仲夏夜之夢的機率將會是1/10139,450。換句話說,在我們開始實驗之前,我們需要先收集到10139,450隻猴子。

這是個令人瞠目結舌的數字啊!這麼龐大的數字根本不存在我們所認知的宇宙當中。例如:一個Oreo餅乾大約等於7×1023個原子;相較之下,太陽大約等於1×1057個原子;而整個銀河系大約等於1×1069原子;而在我們可見的宇宙中大約包含1×1080個原子。所以倘若你想要讓一隻猴子意外地打出一部莎士比亞的劇作,你會需要比整個宇宙的原子數量還要多的猴子,似乎是不可能的呢。

其實做這些實驗只是有趣的消遣娛樂而已,但他們真的跟現實世界有所關聯嗎?當然,統計一直與我們的生活息息相關。其實呢,Oreo實驗所使用的計算方式也能套用在其他事情上;得了癌症之後的存活率、無線網路一次可以支援幾支手機、以及計算我們未來登上那未知的星球─火星的成功率。(http://mars.jpl.nasa.gov/)

猴子實驗只是一個對現代文化的反思,也從來沒有想要去挑戰科學,但它卻真實反映了非常人性化的一面─也就是根深蒂固在我們心中的,那種人類無法掌控整個宇宙的無力感。但不可否認的─藝術和科學是我們唯一可以抒發無力感的管道。天才莎士比亞因為沒有同儕之間的影響,所以他能夠以純人類的角度來思考並且創作故事,不只啟發了我們,也深深影響著後代。同樣地,科學也是那些因為那些天才們努力不懈地發掘才有今日的成果。我們能夠發現新事物,並且藉由所學的知識來改善生活品質。我們能夠將所發現的事情記錄下來,而後啟發我們的子孫們,使他們更加了解自己所生活的世界中的點點滴滴。

對於透過科學來了解事物這件事,我深信不疑,甚至是相當有自信。我很欣慰並且敬畏我擁有「發現」的能力。但這並不代表每個問題都能夠容易解決。發展出能夠穿梭於星球間的科技依舊困難;完全了解動物(或植物)的演化依舊困難;了解癌症的本質也依舊困難。但我還是有信心,只要給我足夠的時間、足夠的資源、以及充足的腦力,任何問題都可以得到一個答案,而你們也應該這麼想。「盡信書,不如無書」,再看一次電影「世界末日」吧,雖然是個逃避現實的科幻故事,但卻也同時表達了一件事:科學永遠在你身邊。

原文:The Commonality of Armageddon, Oreos, & Shakespeare’s “A Midsummer Night’s Dream”

文章難易度
Write Science
17 篇文章 ・ 1 位粉絲
A collaborative project to practice the craft of communicating scientific ideas.

0

4
2

文字

分享

0
4
2
你能想像棒球穿牆嗎?突破物理世界的常識:量子穿隧——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/20 ・1226字 ・閱讀時間約 2 分鐘

想像一個全壘打王,面對前方的來球,大棒一揮,球越過了全壘打牆,到了牆的另外一邊。

Home~~~Run!圖/GIPHY

但假如,那個全壘打牆變成了兩層樓高呢?也許,他更大力地擊球(給球更多的能量),那顆球還是能夠飛越過全壘打牆,到牆的另外一邊。但如果,那全壘打牆變成了三十層樓高呢?我想會認為,除非靠機器,否則再厲害的全壘打王,不管用了多少力氣,他應該都無法讓球飛過三十層樓那麼高。

上述的例子,正顯示了我們日常生活中的物理原則:只要物體(球)的能量不足以跨越障礙物(牆),那麼它永遠不可能到達障礙物的另一側——但是,在量子的世界,卻不是這樣。

粒子是怎麼跨越各種障礙的?

量子力學裡,一個粒子具備的能量即使不足以跨越障礙,它仍然有小機率會出現在障礙的另一邊;而且,若粒子的能量跟跨越障礙所需要的能量愈接近、或是說只少一點,那麼這個粒子出現在障礙另一邊的機率就愈大。

這樣神奇的現象,彷彿就像是粒子挖了隧道穿過障礙一般(儘管並沒有真的隧道),所以稱為「量子穿隧」效應。

不過,在丟球的例子裡,我們可以想像,若是牆愈高或愈厚,那麼球就愈難飛過牆壁。同樣地,在量子力學的情形下,雖然粒子有可能在能量不足的狀況下穿過障礙,但要是障礙無限高或無限厚的話,那麼粒子就還是過不去的

儘管在量子力學的情況下,障礙無限高或無限厚,粒子還是過不去的。圖/Envato Elements

事實上,量子穿隧效應跟我們先前提到的「物質具有波的特性」非常有關係。想像水池中間有一顆大石頭,池中的水波在遇到石頭這個障礙物時,會從旁邊繞道而過;但如果是一般物質,一旦遇到障礙物就直接被擋住了,沒辦法繞道而行。

就是因為在量子世界,物質也具有波的特性,我們才會看到粒子的穿隧效應。儘管量子效應感覺很奇特,但它在很多方面都有實際的影響。

例如,我們知道太陽核心是依賴核融合反應來產生能量;在過程中,會將兩個氫原子核,融合成更重的原子核。但因為氫原子核都帶正電,要抵抗正電荷間的排斥力,將它們融合在一起,其實非常困難。也幸虧有量子穿隧效應,太陽內部的氫原子核才能克服電荷排斥力的阻礙,順利融合在一起,並製造能量。

所以,在地球的我們,能夠享受到太陽的光和熱,說起來也要感謝量子穿隧效應呢!

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

未來親子學習平台
3 篇文章 ・ 2 位粉絲

1

1
2

文字

分享

1
1
2
「量子狀態」聽起來好難?其實就是機率與疊加——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/19 ・1256字 ・閱讀時間約 2 分鐘

想像我們往水池內丟兩顆石頭,以石頭的落點為中心,會個別產生漣漪,在水面上擴散開來。

而當兩個漣漪互相接觸時,交會之處的水面其實同時反應了兩個漣漪的影響;可以說,兩個漣漪疊加在一起了。漣漪是靠水傳遞的一種波,稱為水波;而「疊加」的現象,就是屬於波的一種特性

當兩個漣漪相互接觸時,會疊加在一起。圖/Envato Elements

物質的波,也就是物質波,同樣存在疊加的特性。只不過,物質波跟水波不同的地方在於,它不需要依賴「水」這種實際的東西來傳遞,而是一種「機率波」。機率波的數學形式長得像波,而它代表的,是量子系統處於不同狀態的機率分布

量子系統的狀態:機率波

當我們在描述量子系統的狀態時,就會用到「機率波」的概念。舉例來說,在電玩遊戲中要是打怪成功,死掉的怪物會留下寶物。怪物可能有 50% 的機率掉落寶物 A,也有 50% 的機率掉落寶物 B,但我們不會在事前就知道怪物會留下哪種寶物。

所以,怪物可以說是同時擁有「掉落寶物 A」和「掉落寶物 B」這兩種狀況,直到我們成功打完怪,才能確定牠究竟帶哪一種寶物。類似地,機率波告訴我們的,就是量子系統「有多少機率處於狀態 A、又有多少機率處於狀態 B」的資訊;如同兩個水波在水面上疊加,A 和 B 這兩個狀態同時存在這個量子系統上。所以,我們把量子系統「同時處於不同狀態疊加」的狀況,稱為「疊加態」

直到我們打怪成功,才能確定究竟掉哪一種寶物。圖/GIPHY

另一方面,也跟打完怪物才知道掉什麼寶物類似,在我們實際觀測量子系統前,並無法知道會看到狀態 A 還是狀態 B,要觀測完才會知道。因為量子疊加的特殊性質,科學家想到,或許可以拿來做一些實際的運用。

例如,在現代的電腦運算中,「位元」是資訊的最小單位,可以用 0 或 1 這兩個數值來表示。那麼,我們也許能夠把「同時存在兩種不同狀態的量子系統」當作位元使用,讓它的兩種狀態分別代表 0 跟 1 來儲存資訊,而這就被稱為量子位元

由於物理性質的不同,量子位元在某些狀況下,可以運算得比傳統位元更有效率;利用量子位元建構的電腦,就稱為量子電腦。雖然目前已經有少數量子電腦問世,能以最多一百多個量子位元進行運算,但要能大規模運用在日常生活中,除了要再想辦法增加量子位元之外,還有許多難題要克服,所以,現在就先讓漫畫的想像來代替很可能成真的未來吧。

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

所有討論 1
未來親子學習平台
3 篇文章 ・ 2 位粉絲