Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

如何增進夫妻感情?答案比你想像中簡單——《怪咖心理學之 59 秒的練習》

azothbooks_96
・2023/06/01 ・3982字 ・閱讀時間約 8 分鐘

怎樣才能讓夫妻的感情加溫且長長久久?研究證實,只要夫妻一起玩障礙競賽就會大有幫助! 

實驗證明:墜入愛河可能比想像中簡單

一九八○年代末期,麻州克拉克大學(Clark University)的詹姆斯‧萊爾德(James Laird)與同仁刊登廣告,招募自願者參與一項罕見的實驗,探討第六感有沒有可能存在。他們安排互不相識的男女同時抵達實驗室,經歷一段特別的流程。研究人員解釋,兩位受測者做心電感應測試以前,必須先做默契培養練習。研究人員請受測者花點時間凝視對方的眼睛,然後再把他們帶到不同的房間,讓其中一人看幾張簡單的照片,請另一人用感應的方式猜測那些照片的性質。

研究結束後,萊爾德觀察他的資料,發現沒有證據顯示心電感應力。他覺得失望嗎?一點也不。事實上,這個研究和心電感應無關,所謂的心電感應測試只是一個幌子,他們的目的是想做愛情心理研究。

心電感應測驗只是一個幌子,實際上是為了研究人們的「愛情心理」。 圖/envato

很多人認為墜入愛河是很複雜的事,視外表、個性、默契、機會等複雜的因素混合而定。不過,萊爾德有另一番看法,他懷疑這種獨特神祕的感覺可能很直接了當,或許有可能用幾個小心安排的時間點製造出來。他的假設很簡單,從日常生活即可明顯看出,相愛的人會花不少時間凝視彼此的雙眼。萊爾德想知道反過來是否也成立:讓兩人彼此凝視一會兒,是不是也有可能產生愛意?

一般而言,盯著陌生人瞧,頂多讓人覺得很怪或不禮貌,所以萊爾德必須編出可信的理由,讓人可以彼此凝視更久,所以他才會想出用心電感應測試做為幌子。受測者在不知情下凝視彼此的雙眼,那行為看起來就像他們覺得彼此有魅力一樣,萊爾德覺得這樣就足以激發愛意了。

-----廣告,請繼續往下閱讀-----

假心電感應測試結束後,萊爾德請所有受測者評估他們對實驗伙伴有多少愛戀的感覺。驚人的是,資料證明萊爾德想得沒錯,受測者果然對新認識的伙伴有好感,覺得對方有吸引力。

這研究變成了解感情心理的一種創新方式。根據這種觀點, 不僅我們的想法與感覺會影響我們的行動,我們行動的方式也會反過來影響我們的想法與感覺。

萊爾德發現長時間凝視對方,也有機率增加彼此好感度。 圖/envato

增加新奇感,可以增加對彼此的吸引力

萊爾德不是唯一探索如何用這種方式幫助研究人員更了解人心運作的人,紐約州立大學石溪分校的艾隆與同仁做的另一個研究顯示,同樣的方法也可以讓夫妻變得更親近。感情的發展一開始通常充滿興奮,愛戀的雙方都很享受和新伙伴一起體驗生活的新鮮感。

但是快轉二十年後,往往會出現全然不同的情況,雙方都很熟悉彼此,生活變得平淡無奇。同樣的餐廳、同樣的度假地點、同樣的交談。雖然熟悉感令人放心,也讓人覺得無聊,不太可能讓人再像以往一樣怦然心動。

艾隆心想,如果凝視彼此的雙眼可以讓人產生愛意,讓老夫老妻這麼做,是不是也能讓他們感受到戀愛時期的興奮感,幫他們重燃愛火。也就是說,打破一成不變的婚姻生活,做點新奇好玩的事,也可以讓他們覺得彼此更有吸引嗎?在最初的實驗中,艾隆刊登報紙廣告,徵求夫妻參與實驗,探討「影響婚姻關係的因素」。

-----廣告,請繼續往下閱讀-----

如何增加生活新奇感?一起玩障礙賽就好!

自願受測者到達實驗室時,他們就請每對夫妻做一份有關婚姻關係的問卷,並隨機把他們分成兩組。之後研究人員搬開所有桌椅,鋪上健身房用的墊子,開始做下一階段的研究。

研究人員給其中一半的夫妻一卷魔鬼氈,告訴他們即將參與一個比較奇怪的遊戲。如果那對夫妻一聽到說明就雙眼為之一亮,會心相視,研究人員就馬上拿走魔鬼氈,請他們離開。至於留下來的人,研究人員用魔鬼氈把一人的右手腕和配偶的左手腕綁在一起,也把他們的左右腳踝綁在一起。

研究人員忍住哼唱萊諾‧李奇〈Stuck On You〉(譯註:直譯是「黏上你」,亦即「戀上你」)一曲的衝動,在房間的中央放一個一米高的泡棉障礙,給每對夫妻一個大枕頭。每對夫妻都必須趴在地上,爬過障礙,到房間的另一端,再轉頭爬回障礙,再次跨過它,回到起點。

為了讓過程更有趣,他們必須隨時把枕頭夾在兩人身體之間(不准用手掌、手臂或牙齒),必須在六十秒內完成。為了不讓任一組失望,研究人員請受測者都拿下手錶(「我們不希望手錶在混亂中刮傷了」),假裝每個人都在限定時間內完成任務。

-----廣告,請繼續往下閱讀-----

他們叫另一組的夫妻做比較平常的事,給其中一人一顆球, 請他趴下來,把球滾到房間中央,讓他的配偶在房間的另一邊觀看。球滾到中央時,兩人再交換角色,由另一人把球滾回起點。

研究人員假設多數夫妻不會有很多機會一起爬過泡棉障礙, 所以那經驗應該滿新奇有趣的,那是給他們機會一起達成目標,並從罕見的新觀點觀看彼此。概念上來說,這就像他們初次見面時,比較令人興奮的經驗。相反的,另一組是對照組,他們做的事情比較平凡無奇,也沒有合作效果。

實驗結束後,他們請所有夫妻填寫幾份問卷(其中包括一份名稱很不浪漫的問卷〈浪漫愛情徵狀核對表〉),評估的項目包括配偶讓他們「心動」與「滿心歡喜」的程度。誠如預期,爬過大型泡棉障礙的夫妻對彼此的愛意比完成滾球任務的夫妻還深。只花幾分鐘一起做新奇有趣的活動,似乎產生了意想不到的效果。

一個新奇的體驗(障礙賽),就可以幫助夫妻加深感情。圖/envato

在上述結果的鼓勵下,艾隆與研究團隊又重複了一次實驗, 不過這次他們是以不同的方式衡量婚姻的滿意度。研究結束時, 研究人員拍下每對夫妻閒聊下次假期規畫或如何裝修家裡的影片,然後請另一組研究人員觀察影片,仔細計算影片裡夫妻任一人反對對方的次數。結果顯示,綁魔鬼氈的夫妻做出較多的正面評論。

-----廣告,請繼續往下閱讀-----

艾隆的研究再次證明,我們的行為會大幅影響我們的思考與感覺。就像凝視陌生人可以讓雙方互相產生吸引力一樣,進行和熱戀時期有關的活動,也可以幫人重新點燃過去的熱情。

根據這個研究,想要常保感情的熱度,可能只要靠一卷魔鬼氈、一大塊泡棉障礙和開放的心胸就夠了。

同場加映:了解對方想要什麼

最近我做了一次大規模的網路調查,探討浪漫舉動的心理。我和作家瑞秋‧阿姆斯壯(Rachael Armstrong)合作設計一份問卷,裡面列了許多不同的浪漫敘述,例如「另一半辛苦工作一天後,幫他放滿一盆溫熱的洗澡水」、「對方感到冷時,脫下自己的外套幫他披上」、「突然帶另一半去某個刺激的地方共度週末」。

那份調查總共吸引一千五百多位來自英美的網友完成問卷,研究結果有助於透露浪漫背後不為人知的心理。女人常抱怨男人不夠浪漫,但調查結果也確認她們的懷疑嗎? 

我們請女性閱讀那份清單,指出他們的伴侶多常做那些浪漫舉動,結果頗令人失望。55% 的女性表示,她們辛苦工作一天回家後,另一半從來沒幫她們放過洗澡水。45% 表示她們覺得冷時,另一半從來沒脫下外套讓她們禦寒。53% 表示另一半從來沒有突然帶她們去度意外的週末。這些客觀的數據證實了長久以來女性覺得男性不夠浪漫的抱怨,但是這些失望數據可能是什麼因素造成的? 

在另一部份的調查中,我們請男性受訪者閱讀浪漫清單,用一到十來評分他們做任一舉動時,女性覺得有多浪漫。我們也請女性受訪者用一到十評分,如果另一半做任一浪漫舉動時,她們覺得有多浪漫。結果顯示,連最簡單的舉動男性都會大幅低估它的浪漫程度。

-----廣告,請繼續往下閱讀-----

例如,只有 11% 的男性覺得「告訴她,她是你見過最棒的女人」非常浪漫,但有 25% 的女性覺得那很浪漫。同樣的,只有 8% 的男性覺得「女人辛苦工作一天後,幫她放洗澡水」很浪漫,但有 22% 的女性覺得那很浪漫。幾乎每一項浪漫舉動都得出同樣的結果,這顯示男性不願做浪漫的舉動可能不是因為懶惰或不體貼,而是因為他們低估了女性對浪漫舉動的觀感。

那份調查的結果也透露了女性覺得最浪漫與最不浪漫的舉動,剛好可以為有心求愛的男性提供一點指南。以下列出十大浪漫舉動,以及認為那舉動非常浪漫(給十分)的女性比率: 

1. 蒙上她的眼,給她一個驚喜(40%)。
2. 突然帶她到某個地方共度意外週末(40%)。
3. 為她寫首歌或寫一首詩(28%)。
4. 告訴她,她是你遇過最棒的女人(25%)。
5. 她辛苦工作一天後,幫她放洗澡水(22%)。
6. 傳給她一則浪漫簡訊或電子郵件,或在家裡留一張浪漫的紙條(22%)。
7. 幫她準備床前早餐(22%)。
8. 她感到冷時,脫下外套幫她披上(18%)。
9. 送一大束花或一盒巧克力到她上班的地方(16%)。
10. 幫她把最愛的音樂編集在一起(12%)。

有趣的是,有逃離現實與意外驚喜的舉動最受女性青睞,之後是反映體貼的舉動,明顯偏物質享樂的舉動則殿後。科學證明,關於浪漫,最重要的或許是心意。

-----廣告,請繼續往下閱讀-----

——本文摘自《怪咖心理學之 59 秒的練習,靠表情、姿勢和小動作,輕鬆翻轉工作與人生!、社區裡的用藥悲劇與重生》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

17
4

文字

分享

0
17
4
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
賭博與愛情公式:用數學擬定你的擇偶策略——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/06 ・2486字 ・閱讀時間約 5 分鐘

理解期望值,有助於分析賭場裡的大部分賭局,以及美國中西部和英國的嘉年華會中,常有人玩、但一般人比較不熟悉的賭法:骰子擲好運(chuck-a-luck)。

招攬人來玩「骰子擲好運」的說詞極具說服力:你從 1 到 6 挑一個號碼,莊家一次擲三顆骰子,如果三個骰子都擲出你挑的號碼,莊家付你 3 美元。要是三個骰子裡出現兩個你挑的號碼,莊家付你 2 美元。

假如三個骰子裡只出現一個你挑的號碼,莊家付你 1 美元。如果你挑的號碼一個也沒有出現,那你要付莊家 1 美元。賽局用三個不同的骰子,你有三次機會贏,而且,有時候你還不只贏 1 美元,最多也不過輸 1 美元。

我們可以套用名主持人瓊安.李維絲(Joan Rivers)的名言(按:她的名言是:「我們能聊一聊嗎?」),問一句:「我們能算一算嗎?」(如果你寧願不算,可以跳過這一節。)不管你選哪個號碼,贏的機率顯然都一樣。不過,為了讓計算更明確易懂,假設你永遠都選 4。骰子是獨立的,三個骰子都出現 4 點的機率是 1/6×1/6×1/6=1/216,你約有 1/216 的機率會贏得 3 美元。

-----廣告,請繼續往下閱讀-----

僅有兩個骰子出現 4 點的機率,會難算一點。但你可以使用第 1 章提到的二項機率分布,我會在這裡再導一遍。三個骰子中出現兩個 4,有三種彼此互斥的情況:X44、4X4 或 44X,其中 X 代表任何非 4 的點數。而第一種的機率是 5/6×1/6×1/6=5/216,第二種和第三種的結果也是這樣。三者相加,可得出三個骰子裡出現兩個 4 點的機率為 15/216,你有這樣的機率會贏得 2 美元。

圖/envato

同樣的,要算出三個骰子裡只出現一個 4 點的機率,也是要將事件分解成三種互斥的情況。得出 4XX 的機率為 1/6×5/6×5/6=25/216,得到 X4X 和 XX4 的機率亦同,三者相加,得出 75/216。這是三個骰子裡僅出現一個 4 點的機率,因此也是你贏得 1 美元的機率。

要計算擲三個骰子都沒有出現 4 點的機率,我們只要算出剩下的機率是多少即可。算法是用 1(或是100%)減去(1/216 +15/216 + 75/216),得出的答案是 125/216。所以,平均而言,你每玩 216 次骰子擲好運,就有 125 次要輸 1 美元。

這樣一來,就可以算出你贏的期望值($3×1/216)+($2×15/216)+($1×75/216)+(–$1×125/216)=$(–17/216)=–$0.08。平均來說,你每玩一次這個看起來很有吸引力的賭局,大概就要輸掉 8 美分。

-----廣告,請繼續往下閱讀-----

尋找愛情,有公式?

面對愛情,有人從感性出發,有人以理性去愛。兩種單獨運作時顯然效果都不太好,但加起來⋯⋯也不是很妙。不過,如果善用兩者,成功的機率可能還是大一些。回想舊愛,憑感性去愛的人很可能悲嘆錯失的良緣,並認為自己以後再也不會這麼愛一個人了。而用比較冷靜的態度去愛的人,很可能會對以下的機率結果感興趣。

在我們的模型中,假設女主角——就叫她香桃吧(按:在希臘神話中,香桃木﹝Myrtle﹞是愛神阿芙蘿黛蒂﹝Aphrodite﹞的代表植物,象徵愛與美)有理由相信,在她的「約會生涯」中,會遇到 N 個可能成為配偶的人。對某些女性來說,N 可能等於 2;對另一些人來說,N 也許是 200。香桃思考的問題是:到了什麼時候我就應該接受X先生,不管在他之後可能有某些追求者比他「更好」?我們也假設她是一次遇見一個人,有能力判斷她遇到的人是否適合她,以及,一旦她拒絕了某個人之後,此人就永遠出局。

為了便於說明,假設香桃到目前為止已經見過 6 位男士,她對這些人的排序如下:3—5—1—6—2—4。這是指,在她約過會的這 6 人中,她對見到的第一人的喜歡程度排第 3 名,對第二人的喜歡程度排第 5 名,最喜歡第三個人,以此類推。如果她見了第七個人,她對此人的喜歡程度超過其他人,但第三人仍穩居寶座,那她的更新排序就會變成 4—6—1—7—3—5—2。每見過一個人,她就更新追求者的相對排序。她在想,到底要用什麼樣的規則擇偶,才能讓她最有機會從預估的 N 位追求者中,選出最好的。

圖/envato

要得出最好的策略,要善用條件機率(我們會在下一章介紹條件機率)和一點微積分,但策略本身講起來很簡單。如果有某個人比過去的對象都好,且讓我們把此人稱為真命天子。如果香桃打算和 N 個人碰面,她大概需要拒絕前面的 37%,之後真命天子出現時(如果有的話),就接受。

-----廣告,請繼續往下閱讀-----

舉例來說,假設香桃不是太有魅力,她很可能只會遇見 4 個合格的追求者。我們進一步假設,這 4 個人與她相見的順序,是 24 種可能性中的任何一種(24=4×3×2×1)。

由於 N=4,37% 策略在這個例子中不夠清楚(無法對應到整數),而 37% 介於 25% 與 50% 之間,因此有兩套對應的最佳策略如下:

(A)拒絕第一個對象(4×25%=1),接受後來最佳的對象。

(B)拒絕前兩名追求者(4×50%=2),接受後來最好的求愛者。

如果採取A策略,香桃會在 24 種可能性中的 11 種,選到最好的追求者。採取 B 策略的話,會在 24 種可能性中的 10 種裡擇偶成功。

以下列出所有序列,如同前述,1 代表香桃最偏好的追求者,2 代表她的次佳選擇,以此類推。因此,3—2—1—4 代表她先遇見第三選擇,再來遇見第二選擇,第三次遇到最佳選擇,最後則遇到下下之選。序列後面標示的 A 或 B,代表在這些情況下,採取 A 策略或 B 策略能讓她選到真命天子。

-----廣告,請繼續往下閱讀-----

1234;1243;1324;1342;1423;1432;2134(A);2143(A);2314(A, B);2341(A, B);2413(A, B);2431(A, B);3124(A);3142(A);3214(B);3241(B);3412(A, B);3421;4123(A);4132(A);4213(B);4231(B);4312(B);4321

如果香桃很有魅力,預期可以遇見 25 位追求者,那她的策略是要拒絕前 9 位追求者(25 的 37% 約為 9),接受之後出現的最好對象。我們也可以用類似的表來驗證,但是這個表會變得很龐雜,因此,最好的策略就是接受通用證明。(不用多說,如果要找伴的人是男士而非女士,同樣的分析也成立。)如果 N 的數值很大,那麼,香桃遵循這套 37% 法則擇偶的成功率也約略是 37%。接下來的部分就比較難了:要如何和真命天子相伴相守。話說回來,這個 37% 法則數學模型也衍生出許多版本,其中加上了更合理的戀愛限制條件。

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。

3

4
1

文字

分享

3
4
1
如何不做出後悔的決定?短暫轉移注意力,讓潛意識幫助你——《怪咖心理學之 59 秒的練習》
azothbooks_96
・2023/05/30 ・2801字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

你通常如何做決定?

使用潛意識思考理論,為複雜的問題做出正確的決定;不想讓自己後悔,就積極把握任何的機會。

做比較不重要的決策時,我總覺得考慮所有利弊是有益的,不過,做重要的決策時⋯⋯則應該由潛意識、大腦內的某處決定。 ——佛洛伊德

想像老闆告訴你,他覺得你們辦公室看起來沒什麼藝術氣息,想請你幫他買一幅看來要價不斐的現代藝術印刷品來妝點牆面。你穿上外套,開車去藝廊,發現他們只剩次頁所示的四幅印刷品。你如何做決定?

老闆叫你買畫,這 4 幅你選哪一幅?圖/《怪咖心理學之 59 秒的練習

一種可能是根據老闆的個性、公司的形象、目前辦公室的裝潢,思考每幅畫作的利弊。又或者,你可以相信直覺,挑選你「覺得」適合的作品。你也可以根據最近的研究, 依賴不同的技巧,幫你做出更好的決策。

什麼是「潛意識思考理論」?

幾年前,心理學家狄克斯特霍斯與柴格.凡歐登(Zeger van Olden)用同樣的海報挑選流程,做了一個特別的實驗。

-----廣告,請繼續往下閱讀-----

在研究中,他們請受測者進實驗室裡看五張海報,用三種技巧中的一種幫他們挑選最喜歡的一張;他們請第一組研究每張海報約一分半鐘,列出他們喜歡與不喜歡每一張的主因,仔細分析他們的想法,再挑選最喜歡的那張。他們叫第二組大略看一下海報後,就從五張裡挑出最喜歡的一張。他們讓第三組迅速瞄過海報,請他們花五分鐘解困難的字謎,然後再讓受測者迅速瞄一次海報,之後就做決定。

做完決策後,他們請所有受測者評估他們喜歡五張海報的程度。

實驗中,研究人員用三種方法幫助受測者找出最喜歡的畫作。 圖/envato

每個人都做了選擇與評估後,實驗者做出前所未有的慷慨決定,把每個人最喜歡的那張海報當成禮物送給受測者,以感謝他們參與研究。等每個人拿著禮物準備離開實驗室時,實驗者不經意地向每個人要電話,宣稱萬一資料儲存有問題或是需要重做實驗時,可以聯絡他們。

假設你參與研究,研究人員又告訴你,因為怕硬碟出問題, 需要你的電話,這表示他們一定在打什麼主意。最有可能的情況是,實驗還沒結束,未來他們會打電話給你。打電話的形式可能有好幾種,你的電話可能半夜響起,市調員問你願不願意參與有關肥皂的調查;又或者,你可能接到一通電話,那人聲稱自己是你長期失聯的朋友,問你想不想見面;也有可能,就像本例中發生的,研究團隊打電話來問好,問你還喜歡那張海報嗎。

-----廣告,請繼續往下閱讀-----

實驗完後一個月,研究人員聯絡受測者,問他們對海報的滿意度,要多少錢才願意割愛出售。當初在實驗室裡剛選好海報時,仔細思考過每幅海報的利弊才做決定的人,都確定他們做了正確的選擇,事實上,他們比另外兩組的人還要確定。不過,一個月後,情況完全不同了。花時間解字謎後才選海報的人反而最滿意他們的選擇,他們要求的割愛價格也比其他兩組高出許多。

實驗結束後,研究人員電訪受測者,發現他們對自己的決定出現不同的看法。 圖/envato

你可能會主張,這類研究做的選擇不像我們真實生活做的選擇那麼複雜。事實上,研究人員做了很多實驗,他們一再獲得同樣的奇怪效果。不管是決定租哪間公寓、買哪輛車、或是投資哪檔股票——先看過選擇,然後忙著動腦處理困難的問題,之後再做決定,往往可以做出比較好的決策。

為什麼會這樣?狄克斯特霍斯與凡歐登認為,這和掌握潛意識的力量有關。當你必須從差別不大的選擇中做決定時,大腦意識很擅長用理性、清醒的方式研判情況,做出最佳選擇。

不過, 大腦同一時間能思索的事實與數字量有限,所以事情一複雜,大腦意識就不是那麼靈通了,它不會觀看全局,只鎖定最明顯的要素。相反的,潛意識比較擅長處理生活中常見的複雜決策。給它一點時間,它就會慢慢地考慮所有因素,最後做出比較平衡的決定。狄克斯特霍斯與凡歐登為這種效果所做的解釋,就是所謂的「潛意識思考理論」(Unconscious Thought Theory)。

-----廣告,請繼續往下閱讀-----

這理論主張,做複雜的決策時應該尋求中庸之道,為一個議題想太多或是太快做決定時,結果一樣糟。重點在於知道需要決定什麼,然後轉移你的大腦意識,讓潛意識來思考。怎麼做才能讓潛意識思考這個問題呢?就像我們在提升創意那個單元裡看到的,有一種技巧是讓大腦意識忙著處理其他困難的事,例如解字謎或每隔三倒數數字。

在做重要的決定前先解字謎,當然不是確保你不會反悔的唯一方法。事實上,根據其他的研究,還有一種更快的方法可以讓你不會反悔。

世上沒有後悔藥,有什麼方法可以幫助人們不會後悔嗎? 圖/envato

真的有讓人不後悔的方法嗎?

康乃爾大學的湯瑪斯.季洛維奇(Thomas Gilovich)研究後悔心理已經超過十年,他的研究結果相當耐人尋味。他的研究大多是叫人回顧人生並說出他們最大的遺憾。約 75% 的受訪者後悔沒做某件事,前三名分別是在學校不夠用功、沒有把握某個重要機會、沒有多陪陪親人與朋友。相反的,只有 25% 的人後悔做了某件事,例如入錯行、嫁錯郎(娶錯人)、或是在錯誤的時間點有了孩子。

不過這裡有個問題,要看已發生的事有什麼負面後果比較容易。你選錯行,所以你陷在討厭的工作裡動彈不得。你很年輕時就有小孩,所以無法隨性地和朋友出遊。你和不適合的人結婚, 經常爭吵。負面後果是已知的,後悔的程度雖大,畢竟還是有限。

-----廣告,請繼續往下閱讀-----

但是,如果事情沒發生過,情況就完全不同了。突然間,可能的正面效益近乎無限大,如果你當初接下那份工作,會發生什麼事?如果你當初勇敢約心儀的對象,或是在校時多念點書,會發生什麼事?在這些情況下,你的後悔程度只受想像力的限制而已。

季洛維奇的有趣研究也驗證了十七世紀美國詩人惠蒂爾的一番話,惠蒂爾說:「在言語或筆墨所能表達的悲傷話語中,最可悲的莫過於:『要是⋯⋯就好了!』」

——本文摘自《怪咖心理學之 59 秒的練習,靠表情、姿勢和小動作,輕鬆翻轉工作與人生!、社區裡的用藥悲劇與重生》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 3
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。