0

0
0

文字

分享

0
0
0

【科學話猴年】什麼都有可能發生?無限猴子定理

PanSci_96
・2016/02/07 ・821字 ・閱讀時間約 1 分鐘 ・SR值 525 ・七年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

PanSci_2016_Monky-960-960-B-min

法國數學家埃米爾・博雷爾在機率、拓樸學、博弈理論等領域都有許多貢獻,許多專有名詞還以他為名。不過他最膾炙人口的作品卻是他在 1913 年的文章中提出的譬喻:

「想像有一百萬隻猴子每天打字十個小時,也幾乎不可能打出全世界藏書最豐富的圖書館裡所有的書。不過相較之下,違反統計學法則──那怕只有一下子──比這更不可能。」

這個比喻後來由英國物理學家艾丁頓爵士(Sir Arthur Stanley Eddington)在 1928 年重新詮釋:「一整個軍隊的猴子在打字機上亂敲是有可能寫出大英博物館裡所有的書,這件事比一個瓶子中的所有氣體分子同時跑到瓶子另一邊還有可能發生。」變得廣為人知。

經過不斷引述後,目前較常見的版本將字句改成「無限多隻猴子」或是「一隻猴子無限期地一直打字」,「圖書館裡的書」也變成「莎士比亞的作品」,總之,這個源自博雷爾的譬喻現在就叫「無限猴子定理」(Infinite monkey theorem)。

博雷爾的原意是要強調有些物理事件雖然就統計上來說,發生的機率並非等於零。但當它小到微乎其微,在足夠長的時間尺度內都還沒機會實現,我們就可以當它不可能發生。就像艾丁頓所指出的,瓶子裡的空氣分子不可能全部跑到同一邊。

Monkeys-typing-Shakespeare

不過,當無限猴子定理廣為流傳之後,就變成「一個定理,各自表述」,已不再拘泥於原創者的本意。有人反而用來指稱任何事都可能發生,有人則從中找到各種諷刺意味,因此它也常在許多文章與小說中出現,例如科幻經典《銀河便車指南》。還有人從中獲得靈感,設計相關實驗,2014 年就有人設計了由數以萬計的網路玩家模擬猴子隨機按鍵的闖關遊戲

博雷爾的思想實驗中,猴子難以隨機打出有意義的字句,不過他的思想實驗本身倒是衍生出各種出乎他意料的不同意義來了。

原文轉自【科學史上的今天】01/07—博雷爾誕辰(Émile Borel, 1871-1956)

文章難易度
PanSci_96
1011 篇文章 ・ 1129 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
準備出國啦!Surfshark VPN 快趁黑五買起來,上網購物最安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/01 ・2113字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 Surfshark VPN 贊助。

兩、三年以來的防疫生活,終於迎來全面 0+7 的這一天啦!返國之後不再需要隔離的一天來了,冰友們,你是不是已經收拾好心情、收拾好行李,在進行機+酒的比價了呢?除了規劃好出國行程、找好景點與美食店家,想要讓自己不可或缺的網路生活也更加安全,一定要趁即將到來了感恩節黑五期間,把超優惠的 Surfshark VPN 服務買起來,為自己的網路生活加買最平安的保險!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

在疫情下,網購成為了更多人的日常。不僅各樣的在地購物節為網友帶來眾多優惠,全球化的購物活動,台灣當然也不會缺席!美國感恩節(Thanksgiving)都是 11 月第四個星期四,但是感恩節後的週五,便是聖誕節前的購物佳期啟動日,這一天通常都會業績超標(在收支表上呈現正向收入(顯示為黑色字體,而非赤字的紅色字體),各家的瘋狂優惠都會在黑五祭出!相信許多精打細算的朋友,對黑五購物節絕對不陌生(很可能還搶過很多優惠!!)

網購怎能漏掉「亞馬遜」!

雅虎奇摩之於台灣,就像是亞馬遜(Amazon.com)之於美國那麼的有名!絕對也是什麼都賣、什麼都不奇怪的最佳代表。

如果你平常就很喜愛一些美國品牌,趁著黑五的日子到亞馬遜清空購物車,覺對優惠不會讓你失望。這時候,透過 Surfshark 連線到亞馬遜美國站,絕對會顯示的價格絕對讓你眼睛為之一亮,這時候最新搭載 M2 晶片的 iPad Pro,獨家支援動態島顯示的 iPhone 14 Pro,絕對是最好入手的時機。除此之外,亞馬遜平台經典的 Kindle 閱讀器,也是超合適的禮物,送禮自用兩相宜啊!另外要特別留意,購買時可以確認商品有沒有幫忙送到台灣,如果還沒有,可以先跟美國的朋友確認一下,邀請他們回國時幫你一起帶回來!

跨國追劇最爽快

對於喜愛追劇的朋友,品味可能相當豐富且多元,畢竟欣賞優秀影視作品,不現語言,更是不限地區啊!只不過,若是你訂閱 Netflix 等跨國 OTT 服務,都會有各地不同的上架影視作品,可能會讓你無法在第一時間就能夠立即「追」到劇,讓你等得心癢癢!還好這一切只要連上 Surfshark VPN 都能解決,Surfshark 支援超過 100 國的 VPN 連線,無論你想看韓國、日本還是哪一國的最新戲劇,通通讓你一秒追到最新進度!

Surfshark 黑五限時 18 折折扣,額外加送兩個月

專屬連結:https://lihi2.cc/8XwRN

出差大陸翻牆超方便

在過往出國、返國都需要隔離的階段,肯定讓不少工作上需要經常往返多國之間的朋友,感到生活驟變。所幸,在防疫政策解封之後,一切都可逐漸恢復正常。對於經常有需要到中國大陸出差的朋友,肯定都會感受到網路斷聯的不方便,因為無論是 LINE、Facebook Messenger、YouTube、Gmail 等你可很能天天都在使用的網路服務,大陸都無法使用。這還不打緊,連跟家人、朋友報平安也很不便。這時候 Surfshark 連上,就可以幫助你輕鬆「翻牆」,跟台灣親人網路無距離!

 

上網不留痕跡,不被追蹤最自由

對於一個人來說,最私密的資料之一,除了你的個資,就屬我們每天耗費大量時間逗留的網路。我們所在網路上留下的痕跡,絕對是超真實的自己,當然你不會期待這樣的自己被「搜尋引擎」、「網路廣告」公司了解得太透徹,好像你在網路上的一言一行,都被監視著。

..0000000\0;也可隱藏IP位置,避免被廣告商追蹤;更可以為你我阻擋惡意程式、釣魚軟體等,讓你防止被攻擊,以及被網路充斥的廣告打擾,好處多又多!

如果對於 Surfshark 還覺得不夠熟悉的話,不得不告訴大家,今年 Surfshark 榮獲第六屆 CyberSecurity Breakthrough 頒發的「VPN 年度最佳解決方案」(VPN Solution of the Year),也就是成為今年最推薦的 VPN 方案。CyberSecurity Breakthrough 是全球領先的獨立市場情報組織,致力於表揚當今全球資訊安全市場上的頂尖企業、技術和產品。有了他們「掛保證」,代表 Surfshark 絕對是品質、信譽都讓你安心的VPN 服務。

講了這麼多,是不是讓你感到很心動了。如果你原本就是網路重度使用者,用來上網的設備是樣樣都有,Surfshark 一個帳號就能支援所有設備,CP 值超高!趁著年度超狂黑五購物節的到來,送給你自己兩年安心無虞的網路生活,肯定是送自己的最好禮物!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

46
1

文字

分享

0
46
1
另外一個你可能存在嗎?從宇宙誕生到現在,你的存在需要經過一千兆個「偶然」——《宇宙大哉問》
天下文化_96
・2022/09/23 ・3064字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

還有另一個你嗎?

如果世界上某個地方有另一個版本的你,會不會很奇怪?

這是什麼科幻劇情?圖/天下文化提供

你們兩個之間有很多共通點,喜歡吃的水果(香蕉)、不喜歡吃的水果(桃子)、擁有同樣的技能(製作香蕉冰沙)和相同的缺點(香蕉冰沙吃了停不下來)、同樣的記憶、幽默感以及個性。當你知道有其他版本的你存在時,你會覺得很怪異嗎?你會想與他們會面嗎?

想像一下更詭異的情況:有個人幾乎和你完全一模一樣,僅稍稍有些不同。如果這個人比你更好呢?也許他做的水果冰沙更加美味,或者生活的方式更有意義。或者,這個人比較沒有才華,但是比較卑鄙,就像是邪惡的分身呢?

假如有幸能見到另一個你,或許你可以發現自己的更多可能。圖/天下文化提供

這有可能嗎?

雖然讓人難以想像,但物理學家不能排除另一個你存在的可能性。事實上,物理學家不只認為另一個你是可能存在的,甚至認為另一個你存在的可能性更高。也就是說,就在此刻,當你讀到這篇文章時,可能有另一個你正在某個地方,穿著和你一樣的衣服,以相同的方式坐著,甚至讀著同樣的一本書(好吧,也許是稍微有趣的版本)。

搞不好另一個你也正在看這篇文章喔!圖/天下文化提供

要瞭解另一個你存在的意義及可能性,我們得先考慮你的存在有多麼獨特。

你存在的機率

乍看之下,世界上有另一個與你毫無二致的人,機率好像是微乎其微。畢竟,想像一下,為了讓宇宙創造你,有多少事情必須發生,而且要環環相扣,缺一不可。

超新星必須在氣體和塵埃雲附近爆炸,藉著震動造成引力崩坍,形成我們的太陽和太陽系。這些塵埃中的一小塊(不到萬分之一)必須聚集在一起形成行星,並與太陽保持合適的距離,這樣水就不會結冰或變成蒸汽。生命一定要開始,恐龍必須滅絕,人類不得不演化,羅馬帝國必須崩潰,而你的祖先必須逃過黑死病。然後,你的父母必須相遇並且喜歡上了彼此。你的母親務必在正確時間排卵。在與數十億顆精子的馬拉松游泳賽中,帶有你一半基因的精子必須衝刺獲勝。單單是讓你誕生,就需要這一連串事件。

宇宙必須經歷一連串事件,才會有現在的你。圖/天下文化提供

想一想你在生活中做出的所有決定,使你成為今日的你。你有沒有吃很多香蕉。你有沒有遇到那個重要的朋友。你那時候決定待在家裡,否則會被水果推車碾過。不知何故你發現了這本關於宇宙的蠢書,並決定閱讀它。所有的一切,都從四十五億年前開始,導致了你此時此刻在這裡存在。

假如所有事情以完全相同方式再次發生,從而造就另一個你的機會有多大?這似乎不太可能,對吧?

也許不是喔!讓我們回溯所有導致你出現的隨機事件、決定和時刻,並試著計算機率是多少。

讓我們從今天開始算起:你醒來後做了多少決定呢?你可能決定怎樣起床,穿什麼衣服,吃什麼早餐。即使是看起來很小的決定,也可能改變你的人生歷程。例如,你選擇穿有香蕉圖案的襯衫或者是領帶,可能影響你未來的配偶有沒有注意到你。

讓我們假設,你每分鐘大約會做出一兩個可能改變人生的決定;這聽起來好像很有壓力,但如果你贊同量子物理學和混沌理論,數字應該會更高。假設每分鐘只有幾個決定,那麼你每天就要做出數千個重要決定,每年就高達約一百萬個。如果你超過二十歲,人生到目前為止,就已經做出超過兩千萬個決定,才會有今日的你。

接下來,假設你做的每個決定只有兩種可能,例如 A 或 B,或者香蕉和桃子。好啦,我知道通常要選擇的項目很多(譬如,早餐店的菜單選項多不勝數),但讓我們簡化問題。要計算那兩千萬次決定而成為你的可能性,你必須取 2 的兩千萬次方,即 220,000,000

如果你超過二十歲,人生到目前為止,就已經做出超過兩千萬個決定,才會有今日的你。圖/天下文化提供

為什麼?因為每做一次決定就會讓可能的數目加倍。舉例來說,你必須選擇從哪邊(左邊或右邊)下床、早餐吃什麼水果(香蕉或桃子),以及上班搭什麼交通工具(火車或公車),總共就有 2×2×2(或 23)種開啟一日行程的方式。你從左邊下床、吃香蕉並坐公車的機率是 23 分之一,或說 8 分之一。

因此,如果你在生活中做出兩千萬個 A 或 B 的決定,那就意味你的生活可能有 220,000,000 種不同的結果。這真是一個驚人的數字,是吧!但我們才剛開始暖身而已!

我們還必須考慮你的出生機率,包含你父母做決定的可能結果。如果將你父母的決定算進來,就必須再加上四千萬個決定(你父母各兩千萬個)。再加上你四個祖父母,還有八千萬個。曾祖父母呢?還有一億六千萬個。你瞭解了嗎?每回推一個世代,祖先數量就增加一倍,影響你出生的決定數量也跟著加倍。人類已經在地球上生活了至少三萬年,或許可換算為大約一千五百個世代。若將你所有祖先全部考慮進來,可能的數量會更龐大。

如果再將你父母的決定算進來,就必須再加上四千萬個決定。圖/天下文化提供

其實,真要計算起來實際情況更加複雜,如果回溯得夠遠,你會發現親戚之間盤根錯節的關係,同一個人可能在你的家譜中重複出現,除了引發令人尷尬的話題之外,也讓數學計算變得更加複雜。為簡單起見,我們假設你每代只受到兩個人的影響。這仍然有 1,500 代× 2 人× 2,000 萬個決定= 600 億個決定。及至目前為止,你發生的機率是 260,000,000,000 分之一。

只算到這裡就夠了嗎?讓我們考慮人類史前歷史並回溯到數十億年前最小微生物演化之時。在大約三十五億年前,地球上的生命開始孕育。如果你不得不製作年代如此久遠的家譜,就會發現祖先主要是微生物和簡單植物。他們大概無法做出有意識的決定,但仍會遭受到隨機事件影響,諸如風如何吹動,陽光是否照耀,天降甘霖與否等等。

假設你的微生物祖先每天至少受到一個隨機事件影響,每個隨機事件也有兩種可能結果(例如,一塊石頭是否砸落在你的微生物祖先身上)。這意味我們必須將另外一兆(1,000,000,000,000)個決定事件添加到我們的機率中。

現在,讓我們回到四十五億年前太陽系剛形成的時候,找到你的構成原子之前所在的恆星或行星,然後再一路回到一百四十億年前的大霹靂。讓我們做個超級的低估,假設在那些日子裡,每天都發生了一件可能影響你來到人世的重要大事。直到今日,大約有一千兆個關鍵事件,你存在的機率陡然劇降到約21,000,000,000,000,000 分之一。

總而言之,你存在的機率大概是 2 的 1000 兆次方分之一。圖/天下文化提供

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

天下文化_96
111 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
1

文字

分享

0
2
1
什麼是抽樣誤差?老師和媒體都沒教你的那些事
tml_96
・2020/11/19 ・3758字 ・閱讀時間約 7 分鐘 ・SR值 550 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文原文刊登時間為2020年11月6日,原文標題為《什麼是抽樣誤差?為何外國媒體報導的與老師教的不一樣?

美國總統大選進入最後一周時,許多媒體紛紛在搖擺州進行民調,其中佛羅里達是選情極其緊繃的大州。

美國2020總統大選情勢劍拔弩張,許多州出現極小的得票差距。圖/Pixabay

華盛頓郵報-ABC於10/24-10/29在該州民調的結果顯示:在 824 位可能投票的選民中,川普領先拜登 50−48個百分點,因為抽樣誤差為 ± 4.0 %,報導結論佛州選情難分難解。紐約時報於10/27-10/31在該州民調的結果則顯示:在1,451位可能投票的選民中,拜登領先川普47−44個百分點,其抽樣誤差為 ± 3.2%

兩個民調相隔只 2−3 天,拜登從落後 2 個百分點轉為領先 3 個百分點,這領先程度有統計顯著性嗎?(佛州開票 96% 的結果是川普 51.2% 拜登 47.8%)

弗羅里達州的民調與開票96%後的實際結果。圖/作者提供。

這裡有兩個相關問題要先解決:

  • 第一、樣本數 N=1,451 為何抽樣誤差是 ±3.2%?這個數字對嗎?一般民調若樣本數在N=1,000左右,抽樣誤差不是大約 ±3% 嗎?為何紐時的樣本數高達 N=1,451,抽樣誤差不是更低?反而更高?
  • 第二、如果抽樣誤差低於±3%,那拜登在佛州領先川普超過抽樣誤差,便可以說這差距有統計顯著性嗎

 什麼是「抽樣誤差」?

首先解釋第一個問題:所謂「抽樣誤差」(margin of error)的是當母體比例為π時,重複抽取許多樣本所得樣本比例 P 的標準差乘以 1.96。更詳細地說:當母體比例為π時,重複抽取許多樣本數為 N 的樣本會得到許多不同的P值,這些 P 值的分佈稱作 P 的「抽樣分佈」(sampling distribution)。

根據中央極限定裡,P 的抽樣分佈是以π為中心的常態分佈,其變異量是 π(1-π)/N。我們若以π為中心取一個區間(π-m, π+m)讓 P 落在區間內的機率為 95%,則代表此區間寬度的 m 即為 95% 信心水平之下的抽樣誤差,其公式為:

雖然這個公式可以適用於任何的π值,在沒有特別資訊的情況下,一般以 π=0.5 來計算 MOE。

舉例來說,聯合報在 2019 年 12 月 12-14 日實施了一個民調,它在報導中特別就調查方法報告如下:

「調查於十二月十二日至十四日晚間進行,成功訪問一千一百一十位合格選民,另二百九十一人拒訪;在百分之九十五信心水準下,抽樣誤差正負三點零個百分點以內。採全國住宅及手機雙電話底冊為母體作尾數隨機抽樣,藉由增補市話無法接觸的唯手機族樣本改善傳統市話抽樣缺點,調查結果依廿歲以上性別、年齡及縣市人口結構加權,調查經費來自聯合報社。」

同樣的,蘋果日報在報導其於 2019 年12月27-29 實施的民調時也提到:

「本次民調由《蘋果新聞網》委託台灣指標公司執行,經費來源是《蘋果新聞網》,調查對象為設籍在全國22縣市且年滿20歲民眾,調查期間為12月27日至29日,採用市內電話抽樣調查,並使用CATI系統進行訪問。市內電話抽樣依縣市採分層比例隨機抽樣法,再以電話號碼後2碼隨機抽出,成功訪問1,069位受訪者,在95%信心水準下,抽樣誤差為±3.0%。」

依上述公式分別代入 N=1,110 及 N=1069 可得 MOE=2.94%、3.00%,正是報導所說的「抽樣誤差正負三點零個百分點以內」、「抽樣誤差為 ±3.0%」。

紐時在佛州的選前最後民調的樣本數 N=1,451 要高出 1,110 甚多,為何它所報告的抽樣誤差反而較大?我們若把 N=1,451 套入上式,不是應該得到 MOE=2.57%嗎?為何紐時說是 3.2%?

其實不只紐時,華郵/ABC 民調的抽樣誤差 4.0% 也超過了以 N=824套入上式所算得的 3.41%。為何美國媒體計算民調抽樣誤差與基本統計學教科書所教的算法不一樣?華郵/ABC在描述其民調方法時特別強調其抽樣誤差是在「納入設計效應」(including design effects)之後計算所得;什麼是「設計效應」?

什麼是「設計效應」?

這個問題牽涉到「有效樣本數」(effective sample size)的概念。所謂「有效樣本數」並不是統計分析中除去遺漏值之後的「有效N」(valid N),而是在調整受訪者代表性之後的「加權樣本數」(weighted sample size)。

下面我會說明:紐時所報告的抽樣誤差其實是根據「有效樣本數」調整過的抽樣誤差,也就是納入設計效應之後算得的抽樣誤差。

一般民調樣本因為不是使用「簡單隨機抽樣」(simple random sampling)得到的結果,母體中每人被抽到的機率並不一致。因此,樣本中某些族群的代表性並不能反映它們在母體中的代表性。為了讓各族群在樣本中的代表性和母體一致,樣本必須經過加權處理。上述聯合報和蘋果日報的報導便報告了它們民調的抽樣設計和加權的概略步驟。一般民調機構會把加權所使用的權重存為資料中的一個變數,其數值代表樣本中每個受訪者所代表族群的權重。

例如「台灣選舉與民主化研究」2020年民調資料合併檔(TEDS2020)中便有這樣的一個權值變數w,它的值介於0.295至3.474之間,其變異範圍反映了各族群在原樣本中的代表性與它們在母體中的代表性差異的程度。

由於加權的關係,原來的樣本數已不能有效反映加權後的樣本數,因此有所謂「有效樣本數」(effective sample size)的概念,有效樣本數的計算方式因加權方式而異,抽樣理論大師 Leslie Kish 建議了一個粗略的算法:

除非根本沒有加權,否則這個公式一定小於N,也就是加權後的有效樣本數會比原樣本數小。以TEDS2020原樣本數N=2,847為例,ESS=2,359,也就是加權後的有效樣本數只有原樣本數的83%。

我們如果以加權後的有效樣本數來計算抽樣誤差,則調整後的抽樣誤差會比根據原樣本數算出的抽樣誤差還大。這個差異,可以說是因為實際樣本之抽樣設計背離簡單隨機抽樣而造成的結果,我們定義「設計效應」(design effect)為:

由於抽樣誤差之平方與樣本數成反比,上式也可導出:

再以TEDS2020為例,DE=1/0.83=1.21。換算可以得到加權後的抽樣誤差是原抽樣誤差的 1.1 倍。

跟據紐時所報告的加權後的抽樣誤差以及由原樣本數所算出的簡單隨機抽樣之抽樣誤差,我們可以算出佛州民調的設計效應:

這設計效應比TEDS2020要高出很多!這可能是因為TEDS採用分層隨機抽樣面訪,其設計比起新聞媒體採用電話+手機有所不同。有了設計效應的估計值,我們就可以算紐時佛州民調的有效樣本數了:它的 ESS=936,只有原樣本數的三分之二。相對而言,華郵/ABC的佛州民調的設計效應是 DE=1.37,其有效樣本數是ESS=600.

如果我們以 N=936 算基於簡單隨機抽樣設計的抽樣誤差,它會恰恰是紐時所報告的 3.2%。以 N=600 來算的話,抽樣誤差就剛好是ABC/華郵所報告的 4.0%。

值得注意的是: 如果紐時效仿聯合報用原樣本數 N=1,451 計算抽樣誤差,這2.57% 的誤差值可能會讓很多讀者誤以為拜登領先川普的三個百分點已經超過超過抽樣誤差,因而具有統計上的顯著性。紐約時報的分析家沒有這樣做,這是他們的嚴謹之處。

以有效樣本數算候選人支持度差距的顯著性

然而選舉用的對比式民調還有第二個問題:一般媒體通常只報告單一比例的抽樣誤差,而對比式民調著重的不是單一比例,而是兩位候選人所獲支持度比例的差距。此差距的抽樣誤差與單一比例的抽樣誤差完全不一樣,它可以達到單一比例抽樣誤差的兩倍或更多。

關於對比式選舉民調的抽樣誤差,我曾寫過一篇文章指出一般媒體在報導時的錯誤解讀,並提出一個計算正確抽樣誤差的公式。

這篇文章請見:對比式選舉民調的錯誤解讀 

佛州民調結果拜登領先川普47−44。我們現在可以用有效樣本數來算拜登領先差距的抽樣誤差了。我在網上提供了一個速算表歡迎讀者下載使用。

計算的結果是抽樣誤差高達 6.03 %:拜登領先的差距其實還在誤差範圍之內。

注意:如果以原樣本數 N=1,451 代入速算表,則抽樣誤差為 4.91%,比 6.03% 要小得多。

關於民調報導,還有很多進步空間

台灣的媒體在報導對比式民調的結果時,似乎都像聯合報、蘋果日報一樣報告以「簡單隨機抽樣」為假設的單一比例抽樣誤差,而未考慮設計效應。這個抽樣誤差本來就太小,再加上對比所產生的問題,可以說是雙重的誤導!

外國媒體的民調報導近年來有進步。除了一般會報告根據設計效應調整過的抽樣誤差以外,有些民調機構也報告了對比式民調抽樣誤差的正確解讀方式。有興趣的讀者可以參考 Pew Research Center 這篇解釋抽樣誤差的文章:5 Key Things to Know about the Margin of Error in Election Polls

tml_96
34 篇文章 ・ 227 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。