0

0
0

文字

分享

0
0
0

小行星撞擊地球的威脅性可能比之前認為的還要高

臺北天文館_96
・2014/05/02 ・2016字 ・閱讀時間約 4 分鐘 ・SR值 524 ・七年級

臺北時間2014年4月21日凌晨6:14,有顆火球飛越俄羅斯接近北極圈的領土,再度引起大眾對小行星撞擊地球的憂慮。

根據一個建造非營利性的小行星搜尋望遠鏡的組織B612基金會(B612 Foundation)所釋出的最新研究結果顯示:達城市毀滅等級的小行星撞擊地球的機會,可能比科學家之前認為的還要高。已退役的美籍華裔太空人盧傑(Ed Lu)表示:「社會大眾普遍有個錯誤觀念,認為小行星撞擊非常稀少,其實這是不對的。」目前盧傑為總部位在加州的B612基金會負責人;B612之名來自世界名著「小王子」中,主角居住的那顆小行星之名。

科學家根據全面禁止核試驗條約組織(Comprehensive Nuclear Test Ban Treaty Organization)2000到2013年間的全球核武監測網資料,總共發現了26起小行星在地球大氣中爆炸的事件。其中最受人矚目的當然是2013年2月15日撞擊俄羅斯車里雅賓斯的事件,當時在空中爆炸的震波引起地面建築碎裂而造成2000多人受傷。B612基金會於上週四公布一段影片,影片中顯現了這26起小行星事件的先後順序和墜落地點,提醒大眾要注意小行星撞擊的威脅。

盧傑表示:小行星直徑若大於40公尺,約比半個美式足球場還小一點,就達到可能摧毀城市的等級。想像一棟公寓大小的建築物,以50馬赫(Mach)的速度移動,可能造成多大的傷害?(註:1馬赫為1倍音速。50馬赫相當於時速61740公里或每秒17公里。)

-----廣告,請繼續往下閱讀-----

事實上,這26起小行星撞擊事件所釋出的能量,多半在1~10千噸(kiloton)TNT黃色炸藥爆炸當量(TNT equivalent),有3起在10~20千噸,有2起甚至超過20千噸;以1945年廣島原子彈能量約15千噸來比較,可知這些小行星撞擊時釋出的能量其實是非常高的。

NASA已經執行多年的小行星監測計畫,常態性追蹤監測直徑大於1公里的小行星;這樣大小的小行星,大約相當於一座小型山丘,若撞擊到地球,將引起全球性的連鎖災難。約6500萬年前,則是估計有顆直徑約10公里的小行星撞擊地球,引發氣候變化,科學家相信這可能是成後來恐龍滅絕的原因。

2013年2月15日墜落俄羅斯車里雅賓斯的小行星,直徑約為20公尺左右,就已經引起如此明顯的效應,更遑論其他更大的小行星?

科學家先前估計:城市毀滅級的小行星,撞擊地球的機率約每100年1次。但這個估計數值,並沒有夠硬實的證據以茲證明。B612基金會計畫以私人贊助的經費,耗資2億5000萬美元來建立哨兵紅外太空望遠鏡(Sentinel infrared space telescope ),預定2018年發射升空後,在預定6.5年的任務期間,估計可找出90%與地球軌道交錯的140米級近地小行星,以及50%30米級小行星,然後想辦法讓這些小行星轉向,避免地球受到傷害。

-----廣告,請繼續往下閱讀-----

哨兵紅外太空望遠鏡以類似金星軌道繞行太陽,任何時間監測的範圍為2×5.5度,每小時可掃瞄165平方度的天區,整體守護視野則寬達200度,如此一來,它便可從太陽系內側向外監看包含地球軌道在內的區域,以避免因為太陽光輝掩蔽了這些不太明亮的小天體;這樣的軌道,約每2.2年會與地球重疊一次。

Fragile_oasis_2-2-1

_61243566_sentinel
紅外線哨兵望遠鏡

一旦發現對地球有撞擊威脅之後,可採取的救援措施有很多種。首先可能採取利用重物撞擊使小行星改變軌道,雖然按以往經驗,重物撞擊後的小行星速度與方向改變量很小,但只要在預定撞擊時間點之前,提前很多時間進行重擊任務,長期下來的小行星軌道改變量可能就足以讓它避開地球。

第二種避禍方式是採用重力牽引(gravity tractor),發射太空船至鄰近小行星之處,然後讓太空船的離子推進器長期運作,仔細維持太空船與小行星之間的距離,藉由太空船和小行星彼此間的重力吸引,一點一滴地將小行星帶離原來的軌道。很簡單易懂的作法,不過同樣的,需要長時間運作才能達到目的。

除了以上兩種方法外,科學家還在繼續提出看起來不可思議,但或許未來地球就靠它們拯救的方式。

-----廣告,請繼續往下閱讀-----

以下分別為這26次小行星撞擊地球事件的時間、能量與地點列表:

2000/08/25 1-10 kilotons 北太平洋NORTH PACIFIC OCEAN
2001/04/23 1-10 kilotons 北太平洋NORTH PACIFIC OCEAN
2002/03/09 1-10 kilotons 北太平洋NORTH PACIFIC OCEAN
2006/08/09 1-10 kilotons 印度洋INDIAN OCEAN
2006/09/02 1-10 kilotons 印度洋INDIAN OCEAN
2006/10/02 1-10 kilotons 阿拉伯海ARABIAN SEA
2006/12/09 10-20 kilotons 埃及EGYPT
2007/09/22 1-10 kilotons 印度洋INDIAN OCEAN
2007/12/26 1-10 kilotons 南太平洋SOUTH PACIFIC OCEAN
2008/10/07 1-10 kilotons 蘇丹SUDAN
2009/10/08 >20 kilotons 印尼南蘇拉威西省SOUTH SULAWESI, INDONESIA
2010/09/03 10-20 kilotons 南太平洋SOUTH PACIFIC OCEAN
2010/12/25 1-10 kilotons 塔斯漫海TASMAN SEA(澳紐之間,屬南太平洋的一部分)
2012/04/22 1-10 kilotons 美國加州CALIFORNIA, USA
2013/02/15 >20 kilotons,可能達600 kilotons 俄羅斯車里雅賓斯CHELYABINSK, OBLAST, RUSSIA
2013/04/21 1-10 kilotons 阿根廷聖地亞哥-德爾埃斯特羅省SANTIAGO DEL ESTERO, ARGENTINA
2013/04/30 10-20 kilotons 北大西洋NORTH ATLANTIC OCEAN

資料來源:2014.04.22, KLC

轉載自網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1247 篇文章 ・ 2380 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

6
1

文字

分享

0
6
1
謎樣的「超快自旋小行星」——什麼原因讓它自旋這麼快而不崩解?
科技大觀園_96
・2021/12/23 ・2604字 ・閱讀時間約 5 分鐘

超快自旋小行星的自旋週期小於兩小時。圖/沈佩泠繪

科學家相信,一顆小行星的內部可能是由一堆大大小小的碎片組成,這些碎片靠著彼此的重力聚集成一顆小行星,這就是所謂的「瓦礫堆模型」。瓦礫堆小行星無法自旋太快,如果自旋速度超過一個極限,整顆小行星就會遭受強大的離心力而崩解。瓦礫堆模型可以解釋為什麼小行星有一個自旋週期 2 小時的極限,因為超過這個極限,小行星就會瓦解。 

圖中的黑點是一般小行星,圖中虛線是 2 小時的自旋週期,藍色圓點是超快自旋小行星,它們的自旋週期比一般小行星快,短於 2 小時。圖/章展誥提供

「凡事都有例外」,這句話在小行星的自旋週期上也適用。2002 年,科學家發現一顆特別的小行星,它的長度大約 700 公尺,自旋週期只有半小時!這種小行星被稱為「超快自旋小行星」。這個例外讓天文學家感到困惑,是什麼原因讓它自旋這麼快而不崩解?瓦礫堆模型不適用了嗎?還有其他更多的超快自旋小行星嗎?這些問題就成了章展誥的研究主題。

如何量測小行星的自旋週期?

小行星本身不發光,只會反射太陽光。假設小行星的形狀是長橢圓形,當太陽照射到面積最大那一側,小行星看起來最亮;當太陽照射面積最小那一側,小行星看起來最暗。從小行星的亮度變化就可以知道它的自旋週期。 

從小行星的亮度變化可以推算出它的自旋週期。圖/沈佩泠繪

章展誥於 2011 年取得中央大學天文所博士學位,當時是跟隨高仲明教授研究銀河系結構。畢業後他先留在原團隊做博士後研究,後來轉跟隨葉永烜教授,與美國加州理工學院合作研究小行星的旋轉與結構模型,自此與超快自旋小行星結緣。

-----廣告,請繼續往下閱讀-----

為了尋找其他的超快自旋小行星,章展誥利用加州理工學院帕洛馬瞬變工廠(Palomar Transient Factory)的 1.2 公尺廣視野望遠鏡,進行大量小行星自旋週期的測量。2014 年春季,他發現一顆疑似超快自旋小行星,這顆小行星的亮度相當暗,無法確定它是不是真的轉得很快,就像聽音樂時,音量很低,很難聽清楚是哪一首歌;這時如果你有一對大象般巨大的耳朵,就可以把旋律聽得清楚。音樂和光一樣都是一種訊號,章展誥需要大口徑的望遠鏡,進一步確認這顆小行星是不是真的轉得很快。 

加州理工學院帕洛馬瞬變工廠的執行地——帕洛馬天文台。圖/Wikipedia

當時他正在加州理工學院訪問,便與加州理工學院的合作者使用他們的 5 公尺口徑望遠鏡進行自旋週期確認,結果顯示它確實是一顆超快自旋小行星。這顆超快自旋小行星的發現,證實了 2002 年發現的第一顆超快自旋小行星並不孤單,超快自旋小行星是一個族群。 

提到那次經驗,章展誥心中除了喜悅還有震撼,原來美國一流名校是這樣做研究的!取得 5 公尺望遠鏡的使用時間就像是走到對街買杯奶茶一樣容易,資源如此豐富,做研究自然得心應手。

除了轉得快,與其他小行星有什麼不同?

因為超快自旋小行星的相關研究成果,在 2017 年 4 月舉行的「小行星、彗星、流星國際研討會」(Asteroids, Comets, Meteors 2017, ACM 2017)上,國際天文學會(IAU)宣布將編號 10679 的小行星命名為 Chankaochang——章展誥小行星。到 2020 年 3 月為止,已知的超快自旋小行星一共有 26 顆,其中的 23 顆是章展誥的團隊發現的。除了尋找更多超快自旋小行星,章展誥還進一步研究它們的組成和分佈,比較它們與其他小行星有什麼異同。

-----廣告,請繼續往下閱讀-----

小行星距離我們那麼遠,天文學家要如何研究小行星的組成呢?假設建築工地裡有三種建材,分別是磚頭、水泥和大理石,如果它們放在手碰不到的距離,要如何分辨?你一定知道從顏色就可以分辨它們的材質,紅色是磚頭,灰色是水泥,白色是大理石。實際上天文學家也用類似的方法,他們用小行星的顏色來分辨它們的組成。章展誥的研究發現,這些超快自旋小行星的組成與一般的小行星並沒有不同。

小行星主要分佈在火星與木星的軌道之間,這些小行星分佈的區域稱為小行星帶。超快自旋小行星在小行星帶的分佈位置有什麼特別的地方嗎?它們比較靠近火星或木星?章展誥發現超快自旋小行星分佈的位置並不特別,與其他小行星分佈的位置很相似。

超快自旋小行星除了自旋得超快,它們的組成與分佈跟其他小行星並沒有什麼不同。至於為什麼它們可以轉得超快而不裂解,目前仍是未解之謎,期待未來章展誥能夠解開謎團,告訴我們答案。 

章展誥目前是中央大學天文所的助理研究學者。圖/章展誥提供

從星團到小行星 章展誥繞著天文轉

章展誥大學是念中央大學物理系,修過普通天文學後,覺得天文容易上手,後來進入天文所蔡文祥教授的研究室做暑期學生,開始他的天文研究之路。當時的時空背景,大多數的大學生畢業後都會選擇念碩士班,章展誥覺得天文比較親近,所以選擇報考天文所。考上中央大學天文所,繼續跟隨蔡文祥教授研究球狀星團。

-----廣告,請繼續往下閱讀-----

碩士班畢業後,章展誥到成功大學物理系許瑞榮教授實驗室協助研究紅色精靈,紅色精靈是一種高空閃電現象,他參與的團隊很幸運地拍到紅色精靈,這是臺灣首次記錄這種特殊、罕見的現象。

離開成大後,章展誥曾經到科技業工作,後來覺得不同部門之間,對解決問題方式存在很大的差異,因此在一年後離開企業界,回到中央大學擔任高仲明教授的研究助理,工作是用大量的天文數據和影像建構虛擬天文台。處理大數據的經驗,讓他可以幫助學弟解決研究上的問題,這讓章展誥興起攻讀博士的念頭。於是在 2006 年,他進入中央大學天文所博士班就讀,研究銀河系;博士後一直到現在,則聚焦在小行星。

從球狀星團、紅色精靈、虛擬天文台、銀河系到小行星,章展誥跨足天文、太空多個研究領域,至於未來,且讓我們拭目以待!

-----廣告,請繼續往下閱讀-----
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。