0

1
0

文字

分享

0
1
0

博雷爾誕辰|科學史上的今天:1/7

張瑞棋_96
・2015/01/07 ・822字 ・閱讀時間約 1 分鐘 ・SR值 486 ・五年級

法國數學家埃米爾・博雷爾在機率、拓樸學、博弈理論等領域都有許多貢獻,許多專有名詞還以他為名。不過他最膾炙人口的作品卻是他在 1913 年的文章中提出的譬喻:

「想像有一百萬隻猴子每天打字十個小時,也幾乎不可能打出全世界藏書最豐富的圖書館裡所有的書。不過相較之下,違反統計學法則──那怕只有一下子──比這更不可能。」

埃米爾.博雷爾。圖/wikipedia

這個比喻後來由英國物理學家艾丁頓爵士 (Sir Arthur Stanley Eddington) 在 1928 年重新詮釋:「一整個軍隊的猴子在打字機上亂敲是有可能寫出大英博物館裡所有的書,這件事比一個瓶子中的所有氣體分子同時跑到瓶子另一邊還有可能發生。」變得廣為人知。經過不斷引述後,目前較常見的版本將字句改成「無限多隻猴子」或是「一隻猴子無限期地一直打字」,「圖書館裡的書」也變成「莎士比亞的作品」,總之,這個源自博雷爾的譬喻現在就叫「無限猴子定理」 (Infinite monkey theorem)。

博雷爾的原意是要強調有些物理事件雖然就統計上來說,發生的機率並非等於零。但當它小到微乎其微,在足夠長的時間尺度內都還沒機會實現,我們就可以當它不可能發生。就像艾丁頓所指出的,瓶子裡的空氣分子不可能全部跑到同一邊。

不過,當無限猴子定理廣為流傳之後,就變成「一個定理,各自表述」,已不再拘泥於原創者的本意。有人反而用來指稱任何事都可能發生,有人則從中找到各種諷刺意味,因此它也常在許多文章與小說中出現,例如科幻經典《銀河便車指南》。還有人從中獲得靈感,設計相關實驗,2014 年就有人設計了由數以萬計的網路玩家模擬猴子隨機按鍵的闖關遊戲。

-----廣告,請繼續往下閱讀-----

博雷爾的思想實驗中,猴子難以隨機打出有意義的字句,不過他的思想實驗本身倒是衍生出各種出乎他意料的不同意義來了。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1091 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
只要有無限的時間,猴子也能打出莎士比亞?什麼是「無限猴子定理」?
F 編_96
・2025/01/05 ・2391字 ・閱讀時間約 4 分鐘

F 編按:本文編譯自 Live Science

想像有一群猴子,各自拿著打字機或電腦鍵盤,隨機敲擊鍵盤上的字符。若猴子數量無窮大、時間也無限長,牠們最終能否打出《哈姆雷特》或《羅密歐與茱麗葉》所有文本?這個乍聽荒謬的問題,正是「無限猴子定理」(Infinite Monkey Theorem)所探討的核心。無限猴子定理誕生於 20 世紀初,至今已被視為一則展示機率和隨機性的幽默譬喻。它強調的是:在「無限」的前提下,哪怕事件本身概率微乎其微,也終有可能實現。但若將「無限」抽離,狀況就大幅改觀。

無限猴子定理的起源:是數學巧思還是玩笑話?

只要給猴子一台打字機,和無限的時間,就有可能打出莎士比亞嗎?圖/unsplash

無限猴子定理最早可追溯至法國數學家埃米爾·博雷爾(Émile Borel)在 1913 年的著作。他假設若有無限多隻猴子,分別隨機敲擊打字機上字母的鍵盤,那麼理論上能產生所有已經寫下或尚未誕生的文本——從簡單的「banana」字串到複雜的《哈姆雷特》、《馬克白》等莎劇。此「定理」之所以著名,在於它鮮明地說明了在「無限」長度的時間/試驗數中,任何不可能事件皆可能變得「可能」,甚至機率可達 100%。

然而,博雷爾在提出時,也暗示這只是一個數學論證,用來說明「幾近不可能事件」和「無窮大」的辯證關係。後人紛紛加以演繹,結合機率論與字母組合概念,強調這種理論上的結果不意味實際世界能夠成真;它比較像是一場「思想實驗」,或令人莞爾的理論示範。

實猴子 vs. 理論猴子:有限生命與不可預測行為

「若給一隻猴子足夠時間,牠能打出莎士比亞全集。」這句話聽起來驚世駭俗,但真正挑戰並不在於「敲出哪個字」。關鍵是,如果缺乏「無限時間」,任何一隻猴子在有限壽命裡,幾乎無法輸出任何可讀句子。澳洲悉尼科技大學數學家史蒂芬·伍德科克(Stephen Woodcock)便在相關研究中,做了現實條件下的機率估算:

-----廣告,請繼續往下閱讀-----
  • 以黑猩猩當模擬對象,因牠們與人類關係相近,體型與智力也更易想像。
  • 設定:黑猩猩可用一台打字機,每秒都敲一次鍵。
  • 理論上,若要輸出一個八字母詞彙(如 “banana”),黑猩猩在 30 年內碰巧完成的機率僅約 5%。
  • 更別提複雜的句子,機率下降至 10-20 以下,幾乎趨近於零。

伍德科克的研究認為,即便地球所有黑猩猩都在不斷敲擊鍵盤,倘若只給定數十億年的宇宙壽命,仍難以看到「完整抄出莎士比亞某部劇作」的奇蹟。只有在真正意義上的「無限猴子、無限時間」裡,才可說這件事「必然」成真。

為何「無限」只是理論

「無限猴子定理」的核心基礎在「無限」。然而,現實宇宙是有限的:從已知的膨脹速度、暗能量演化、最終熱寂(Heat Death)的走向來看,科學家推估宇宙壽命遠遠達不到真正的「無限」。無論如何,宇宙總有盡頭——能供養猴子族群繁衍與敲字的條件更是隨著時間劇烈下降。因此,哪怕猴子數量再龐大,實際上都無法達成理論中的「無限次嘗試」。

「無限猴子定理」只能是理論,是因為現實不存在「無限」的情況。圖/unsplash

在數學上,小概率事件若能重複嘗試足夠多次,便能「接近確定會發生」。不過,現實環境提供的試驗次數並非真正無窮。因此,本理論更像是用來解釋「僅憑隨機過程,最終可產生任何結構」的純粹數學概念,並不是真正能期待在有生之年或宇宙壽命中目睹它發生。

歷史上的「猴子打字機實驗」

為了更生動地理解此定理,英國藝術團隊曾在 2002 年做過一項實地實驗:他們在動物園裡放置一台電腦鍵盤,並讓 6 隻黑冠長尾獼猴(Celebes crested macaques)在上面亂敲四週。結果最終只得到五頁幾乎全是 S 的亂碼。更具諷刺的是,這群獼猴還對鍵盤進行了「實體攻擊」,甚至拉屎在上面。可見理論上的「緩慢敲擊,終能輸出經典」到了現實環境,不僅在機率上趨近於零,更在人性(以及「猴性」)互動、實驗干擾等層面上無法持續執行。

-----廣告,請繼續往下閱讀-----

這場實驗的參與者──藝術家 Geoff Cox 等人表示,結果「顯然科學上是失敗的」,但他們本來就不打算證明什麼數學命題,而是做一個行為藝術,藉此反思「動物行為本質」與「機率論」之間的斷層。在這些原本就不安於室的獼猴面前,所謂的「靜靜打字機敲鍵」更像是人類一廂情願的想像。

值得一提的是,無限猴子定理在科學與哲學層面引申出更多思考。例如量子力學背後有一定程度的「隨機」或「機率」原理,一個足夠大的時間尺度裡,看似小概率事件也可能成真;然而,我們目前所在的宇宙實際是有限之地,其法則與條件亦不斷演變。有些科學家於是把此定理視為「多世界詮釋」的類比:即在多重宇宙或平行時空中,也許某個平行宇宙里真的有個「猴子」寫下莎士比亞——但這終究超越當前能檢驗的範疇。

理想與現實的交叉

無限猴子定理雖然只是個引人發笑的比喻,卻也提醒我們「大」與「無限」之間的落差有多巨大。

正如著名科學家所言:「無限是個美好的概念,卻永遠跳脫我們的現實。」或許,下次再聽到有人提「無限猴子也能打出天才之作」,不妨微笑回應:在那個純理論的世界裡,莎士比亞的確有再版,但在我們的宇宙之內,能等到的,恐怕只是字母“S”不断刷屏,以及一堆被猴子糞便污損的鍵盤罷了。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
賭博與愛情公式:用數學擬定你的擇偶策略——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/06 ・2486字 ・閱讀時間約 5 分鐘

理解期望值,有助於分析賭場裡的大部分賭局,以及美國中西部和英國的嘉年華會中,常有人玩、但一般人比較不熟悉的賭法:骰子擲好運(chuck-a-luck)。

招攬人來玩「骰子擲好運」的說詞極具說服力:你從 1 到 6 挑一個號碼,莊家一次擲三顆骰子,如果三個骰子都擲出你挑的號碼,莊家付你 3 美元。要是三個骰子裡出現兩個你挑的號碼,莊家付你 2 美元。

假如三個骰子裡只出現一個你挑的號碼,莊家付你 1 美元。如果你挑的號碼一個也沒有出現,那你要付莊家 1 美元。賽局用三個不同的骰子,你有三次機會贏,而且,有時候你還不只贏 1 美元,最多也不過輸 1 美元。

我們可以套用名主持人瓊安.李維絲(Joan Rivers)的名言(按:她的名言是:「我們能聊一聊嗎?」),問一句:「我們能算一算嗎?」(如果你寧願不算,可以跳過這一節。)不管你選哪個號碼,贏的機率顯然都一樣。不過,為了讓計算更明確易懂,假設你永遠都選 4。骰子是獨立的,三個骰子都出現 4 點的機率是 1/6×1/6×1/6=1/216,你約有 1/216 的機率會贏得 3 美元。

-----廣告,請繼續往下閱讀-----

僅有兩個骰子出現 4 點的機率,會難算一點。但你可以使用第 1 章提到的二項機率分布,我會在這裡再導一遍。三個骰子中出現兩個 4,有三種彼此互斥的情況:X44、4X4 或 44X,其中 X 代表任何非 4 的點數。而第一種的機率是 5/6×1/6×1/6=5/216,第二種和第三種的結果也是這樣。三者相加,可得出三個骰子裡出現兩個 4 點的機率為 15/216,你有這樣的機率會贏得 2 美元。

圖/envato

同樣的,要算出三個骰子裡只出現一個 4 點的機率,也是要將事件分解成三種互斥的情況。得出 4XX 的機率為 1/6×5/6×5/6=25/216,得到 X4X 和 XX4 的機率亦同,三者相加,得出 75/216。這是三個骰子裡僅出現一個 4 點的機率,因此也是你贏得 1 美元的機率。

要計算擲三個骰子都沒有出現 4 點的機率,我們只要算出剩下的機率是多少即可。算法是用 1(或是100%)減去(1/216 +15/216 + 75/216),得出的答案是 125/216。所以,平均而言,你每玩 216 次骰子擲好運,就有 125 次要輸 1 美元。

這樣一來,就可以算出你贏的期望值($3×1/216)+($2×15/216)+($1×75/216)+(–$1×125/216)=$(–17/216)=–$0.08。平均來說,你每玩一次這個看起來很有吸引力的賭局,大概就要輸掉 8 美分。

-----廣告,請繼續往下閱讀-----

尋找愛情,有公式?

面對愛情,有人從感性出發,有人以理性去愛。兩種單獨運作時顯然效果都不太好,但加起來⋯⋯也不是很妙。不過,如果善用兩者,成功的機率可能還是大一些。回想舊愛,憑感性去愛的人很可能悲嘆錯失的良緣,並認為自己以後再也不會這麼愛一個人了。而用比較冷靜的態度去愛的人,很可能會對以下的機率結果感興趣。

在我們的模型中,假設女主角——就叫她香桃吧(按:在希臘神話中,香桃木﹝Myrtle﹞是愛神阿芙蘿黛蒂﹝Aphrodite﹞的代表植物,象徵愛與美)有理由相信,在她的「約會生涯」中,會遇到 N 個可能成為配偶的人。對某些女性來說,N 可能等於 2;對另一些人來說,N 也許是 200。香桃思考的問題是:到了什麼時候我就應該接受X先生,不管在他之後可能有某些追求者比他「更好」?我們也假設她是一次遇見一個人,有能力判斷她遇到的人是否適合她,以及,一旦她拒絕了某個人之後,此人就永遠出局。

為了便於說明,假設香桃到目前為止已經見過 6 位男士,她對這些人的排序如下:3—5—1—6—2—4。這是指,在她約過會的這 6 人中,她對見到的第一人的喜歡程度排第 3 名,對第二人的喜歡程度排第 5 名,最喜歡第三個人,以此類推。如果她見了第七個人,她對此人的喜歡程度超過其他人,但第三人仍穩居寶座,那她的更新排序就會變成 4—6—1—7—3—5—2。每見過一個人,她就更新追求者的相對排序。她在想,到底要用什麼樣的規則擇偶,才能讓她最有機會從預估的 N 位追求者中,選出最好的。

圖/envato

要得出最好的策略,要善用條件機率(我們會在下一章介紹條件機率)和一點微積分,但策略本身講起來很簡單。如果有某個人比過去的對象都好,且讓我們把此人稱為真命天子。如果香桃打算和 N 個人碰面,她大概需要拒絕前面的 37%,之後真命天子出現時(如果有的話),就接受。

-----廣告,請繼續往下閱讀-----

舉例來說,假設香桃不是太有魅力,她很可能只會遇見 4 個合格的追求者。我們進一步假設,這 4 個人與她相見的順序,是 24 種可能性中的任何一種(24=4×3×2×1)。

由於 N=4,37% 策略在這個例子中不夠清楚(無法對應到整數),而 37% 介於 25% 與 50% 之間,因此有兩套對應的最佳策略如下:

(A)拒絕第一個對象(4×25%=1),接受後來最佳的對象。

(B)拒絕前兩名追求者(4×50%=2),接受後來最好的求愛者。

如果採取A策略,香桃會在 24 種可能性中的 11 種,選到最好的追求者。採取 B 策略的話,會在 24 種可能性中的 10 種裡擇偶成功。

以下列出所有序列,如同前述,1 代表香桃最偏好的追求者,2 代表她的次佳選擇,以此類推。因此,3—2—1—4 代表她先遇見第三選擇,再來遇見第二選擇,第三次遇到最佳選擇,最後則遇到下下之選。序列後面標示的 A 或 B,代表在這些情況下,採取 A 策略或 B 策略能讓她選到真命天子。

-----廣告,請繼續往下閱讀-----

1234;1243;1324;1342;1423;1432;2134(A);2143(A);2314(A, B);2341(A, B);2413(A, B);2431(A, B);3124(A);3142(A);3214(B);3241(B);3412(A, B);3421;4123(A);4132(A);4213(B);4231(B);4312(B);4321

如果香桃很有魅力,預期可以遇見 25 位追求者,那她的策略是要拒絕前 9 位追求者(25 的 37% 約為 9),接受之後出現的最好對象。我們也可以用類似的表來驗證,但是這個表會變得很龐雜,因此,最好的策略就是接受通用證明。(不用多說,如果要找伴的人是男士而非女士,同樣的分析也成立。)如果 N 的數值很大,那麼,香桃遵循這套 37% 法則擇偶的成功率也約略是 37%。接下來的部分就比較難了:要如何和真命天子相伴相守。話說回來,這個 37% 法則數學模型也衍生出許多版本,其中加上了更合理的戀愛限制條件。

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。