9

27
0

文字

分享

9
27
0

突然畢業了,阿雷西博天文台將永久關閉QQ

科學大抖宅_96
・2020/11/24 ・4201字 ・閱讀時間約 8 分鐘 ・SR值 536 ・七年級

2020 年 11 月 19 日,美國國家科學基金會(National Science Foundation, NSF)宣布,史上最知名的望遠鏡之一——位於波多黎各(Puerto Rico)的阿雷西博天文台(Arecibo Observatory)即將永久關閉,震驚學界。

阿雷西博天文台乃隸屬於美國國家天文學和電離層中心(National Astronomy and Ionosphere Center, NAIC)的無線電望遠鏡,其最顯著的特徵包括直徑 305 公尺的球面反射器盤(spherical reflector dish),以及懸吊在盤面上方 137 公尺、重約 900 噸、由三座鋼筋混凝土高塔連結 18 條鋼纜所撐起的儀器平台。

俯瞰阿雷西博天文台。圖/Wikipedia

從 1963 年建成以來,阿雷西博天文台一直保持著世界最大單孔徑望遠鏡的紀錄,直到 2016 年為止。它是波多黎各主要的科學教育中心,也培育出許多天文學家和工程師,甚至出現在流行文化裡,如電影《接觸未來》(Contact)和 007 電影《黃金眼》(GoldenEye)。

007 電影《黃金眼》中出現阿雷西博天文台的片段

然而,就在 2020 年 8 月和 11 月,阿雷西博天文台的兩條鋼纜先後斷裂;考量到維修的困難與高風險,這座產出許多科學研究的標誌性天文望遠鏡,面臨被拆解的命運……在這感傷之際,讓我們一起追憶阿雷西博天文台的一生。

-----廣告,請繼續往下閱讀-----

冷戰的雷達需求促成天文台誕生

1945 年,因應二戰後的局勢,美國成立了空軍劍橋研究實驗室(Air Force Cambridge Research Laboratories)[1]。在冷戰背景下,其於 1949 年發明了利用電話數據機傳輸數位資料的技術(即早期網際網路傳輸所使用的方式)。1951 年,空軍劍橋研究實驗室的工程師首度發表文章,討論利用球面接收器接收電磁訊號的可能性;同時,美國國防部也因為遠程雷達和通訊的需求,對建造世界最大的天線來研究電離層很有興趣——這促成 1959 年空軍劍橋研究實驗室和康乃爾大學(Cornell University)簽署了成立阿雷西博天文台的合約。

天文台位於波多黎各北海岸的自治市阿雷西博;其設計和建造,由時任康乃爾大學教授的戈登(William Edwin Gordon,1918 – 2010)負責籌劃,於 1963 年落成。

望遠鏡的反射器盤建基於天然形成的滲穴之中,1974 年升級後由 38778 片穿孔鋁板製成;從遠處不同方位過來的電磁波會被盤面反射,分別聚焦於不同位置,懸吊於上空的接收器便會依據觀察目標移動到適當的接收點。

從不同方位過來的電磁波(綠色和紅色平行線條)會被反射器盤反射並聚焦於不同焦點,所以可以藉由接收器的移動來接收天空中不同方向來源的電磁波。圖/Physics today, Volume 66, Issue 11

一如當初的計畫,阿雷西博天文台的主要功用在研究地球的電離層、接收來自遙遠宇宙的無線電波訊號,以及使用雷達技術探索太陽系土星軌道之內的天體。幾十年來,阿雷西博天文台經歷數次升級,一直是天文學和大氣科學的研究重鎮:它擁有世界最大的電磁波接收區(也就是反射器盤);當其他無線電望遠鏡花費數小時才能收集到足夠的電磁波訊號,阿雷西博天文台只需要幾分鐘。

發現脈衝雙星,間接證實重力波

阿雷西博天文台開始運作之後,做出的科學貢獻多不勝數。例如,1964 年天文學家彼騰吉爾(Gordon H. Pettengill, 1926 –)的團隊藉由雷達脈衝發現水星的自轉週期為 59 天,有別於原先認為的 88 天;1968 年,洛夫萊斯(Richard V.E. Lovelace)利用阿雷西博天文台,提供了蟹狀星雲脈衝星(Crab Pulsar, PSR B0531+21,自轉週期 33 毫秒)存在的確切證據,也是第一顆被確認為跟超新星殘骸有關的中子星。

-----廣告,請繼續往下閱讀-----

1974 年,赫爾斯(Russell Alan Hulse, 1950 –)和泰勒(Joseph Hooton Taylor Jr., 1941 –)發現第一對脈衝雙星(脈衝星和中子星)系統;之後,其被用來作為廣義相對論的高精度測試——這一項發現成為廣義相對論中,重力波存在的間接證據,也是他們獲得 1993 年諾貝爾物理學獎的重要原因。

1990年,波蘭天文學家沃爾茲森(Aleksander Wolszczan, 1946–)從阿雷西博天文台發現了脈衝星PSR B1257+12,並於兩年後,發現有兩個行星(之後又找到第三個)繞行PSR B1257+12,這也是人類史上第一次發現太陽系外的行星。

除此之外,阿雷西博天文台也能拿來研究天體的地貌:1989 年 8 月,趁著小行星 4769 Castalia 經過,離地球的最近距離僅 4,029,840 公里(約地球到月球距離的 11 倍),科學家利用天文台雷達描繪出小行星 4769 Castalia 的 3D 樣貌;至今,阿雷西博天文台已經研究過數百個近地小行星(near-Earth asteroids, NEAs),除了可以分析它們撞擊地球的可能性,也能幫助我們理解太陽系的起源和演化。1994 年,阿雷西博天文台則被用來研究水星南北極隕石坑內可能存在的冰層。

阿雷西博天文台亦針對星系進行無線電波頻率的大範圍掃描,並於 2008 年發現星系阿普 220(Arp 220)中存在有機化合物分子。另外,在大氣物理學領域,它增進了我們對高層大氣,特別是電離層的認知與理解。

向宇宙發送訊息,等待外星文明回應

阿雷西博天文台的 305 公尺孔徑紀錄,雖然在 2016 年被中國的五百米口徑球面射電望遠鏡(Five-hundred-meter Aperture Spherical radio Telescope, FAST, 簡稱天眼)超越,但阿雷西博天文台的地位卻無法被取代——其中一個很大的原因是,天眼只有接收訊號的功能,沒有發射訊號的設計;而阿雷西博天文台不僅可以接收,也能發射訊號(所以具有雷達的功能)。

-----廣告,請繼續往下閱讀-----

最有名的例子,是 1974 年,天文學家德雷克(Frank Drake, 1930–)和其他研究者——包括天文學家兼科普作家薩根(Carl Sagan, 1934 – 1996),設計了知名的阿雷西博訊息(Arecibo Message),內容包含人類的 DNA 結構,和太陽系的介紹等等,以強力的電磁波從阿雷西博天文台發送向距離地球 25000 光年的球狀星團 M13。雖然無法期待在不久的將來能收到回覆,卻是人類主動接觸外星文明的重要嘗試。

反過來說,阿雷西博天文台接收到的無線電波,也能拿來分析是否包含外星智慧文明發出的電磁訊號。於是,在早期美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的搜尋地外智慧計畫、或者民間著名的 SETI@home 計畫[2],分析所用的數據,部分便來自阿雷西博天文台。

阿雷西博訊息。顏色為分類、方便閱讀之用,原始訊息不包括顏色。圖/Wikipedia

結構不穩,無可奈何的退役決定

儘管功績卓著,且有著不可替代性,阿雷西博天文台仍然面臨拆除的命運。雖然有在定期維護,但經費的短缺加上歲月的流逝和地震、颶風的侵襲,都增加了望遠鏡結構的不確定性。

首先是 2020 年 8 月 10 日,一根連結到儀器平台、安裝於 90 年代的輔助鋼纜從托座鬆開,破壞了反射器盤面邊緣的鋁板;工程師在檢查損壞狀況時,發現儀器平台的 12 根主要支撐鋼纜中,有一根鋼纜的組成鋼線存在少許損壞,但評估後認為對安全性不造成影響。怎知到了 11 月 7 日,該主要支撐鋼纜從中間斷裂,在靠近反射器盤面中心的區域撕開了大裂口——既然原本認為安全的鋼纜斷了,剩下的鋼纜是否真的安全無虞?又能支撐多久?沒有人知道。

-----廣告,請繼續往下閱讀-----

現在,任何時刻都可能有更多鋼纜斷裂或鬆脫,一旦最壞的狀況發生,整個儀器平台將掉落到望遠鏡盤面上,或者損害附近的建物;甚至,任何想要穩定或測試鋼纜的努力都可能加速剩下鋼纜的損壞。為此,美國國家科學基金會正在研擬計畫,在可控的狀況下拆除儀器平台——這是個艱難的決定,但一切以安全為優先。

事實上,出於經濟考量,美國國家科學基金會前些年都在為阿雷西博天文台的經費苦惱:在 2017 年,美國國家科學基金會和國家航空暨太空總署一年分別提供高達 800 萬和 360 萬美元的營運費用,所費不貲;到了 2018 年,才由中佛羅里達大學(University of Central Florida, UCF)承擔阿雷西博天文台的營運,並補足美國國家科學基金會逐年縮減的天文台經費。沒想到人算不如天算,阿雷西博天文台被迫永久關閉,這無疑是科學界的一大損失。

現在阿雷西博天文台的反射器盤面破了一個大洞。圖/University of Central Florida/Arecibo Observatory

研究暫停,無可取代的電波望遠鏡

阿雷西博天文台自 1963 年啟用以來,對天文學、大氣科學和行星科學貢獻良多;它是第一個發現系外行星的望遠鏡,也是搜尋地外文明的重要工具。它在科學教育面向深受好評,每年有十萬人到阿雷西博天文台參觀,包括許多學生;那兒不僅有天文學、高層大氣物理學的展覽,還有可以俯瞰巨大反射器盤面的觀景平台。

儘管年紀大了,但阿雷西博天文台持續升級,原本也預定在接下來數年安裝新儀器,像是將大幅提高望遠鏡靈敏度、價值 580 萬美元的天線――這一切都成為泡影。阿雷西博天文台退休後,許多研究都必須暫停,只有部分計畫得以找到替代設施,或是能夠留在天文台原址繼續進行。往後,我們只能在記錄中,緬懷這座極具歷史意義的無線電望遠鏡,令人唏噓。

-----廣告,請繼續往下閱讀-----

註解

[1] 空軍劍橋研究實驗室於 2011 年被整併,最終演化成現今美國空軍研究實驗室(Air Force Research Laboratory)的一部份。空軍研究實驗室致力於領導航太作戰科技的發明、發展和整合,計畫空軍的科學、科技方案並執行,以及為美國空中、外太空和網際空間的部隊提供作戰能力。

[2] SETI@home,是一個通過網際網路利用個人電腦處理天文數據的分布式計算項目;其試圖通過分析無線電望遠鏡收集到的無線電信號,搜尋地外智慧生物存在的跡象。

參考資料

  1. Alexandra Witze, Legendary Arecibo telescope will close forever — scientists are reeling, Nature, Nov. 19 (2020).  
  2. Alexandra Witze, Arecibo telescope wins reprieve from US government, Nature, Nov. 16 (2017) 
  3. Daniel Clery, Famed Arecibo telescope, on the brink of collapse, will be dismantled, Science, Nov. 19 (2020).
  4. Daniel Clery, Adrian Cho, Iconic Arecibo radio telescope saved by university consortium, Science, Feb. 22 (2018).
  5. Daniel Altschuler, Chris Salter, The Arecibo Observatory: Fifty astronomical years, Physics Today 66, 11, 43 (2013).
  6. Paul H. Carr, Early history of Arecibo Observatory, Physics Today 67, 6, 11 (2014).
  7. Telescope Description about Arecibo Observatory
  8. Air Force Research Laboratory – Wikipedia
  9. Arecibo Observatory – Wikipedia
文章難易度
所有討論 9
科學大抖宅_96
36 篇文章 ・ 1697 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
中央研究院化學研究所陳玉如博士,榮獲「2023 年第16屆台灣傑出女科學家獎
PanSci_96
・2023/03/06 ・5586字 ・閱讀時間約 11 分鐘

全台第一、更是唯一專為表揚女科學家卓越貢獻的「台灣傑出女科學家獎」已邁入第 16 年。2007 年台灣萊雅聯合吳健雄學術基金會共同發起設置「台灣傑出女科學家獎」,以樹立典範,啟發並推動更多女性投入科學領域,促使科學界多元參與及發展,此獎項多年來的方向與成果更接軌國際聯合國永續發展目標(SDGs)之性別平等目標。

有台灣「女性諾貝爾獎」之美名的台灣傑出女科學家獎,截至 2023 年,本獎項共表揚傑出獎及新秀獎共計 49 位優秀台灣女性科學家。參照全球傑出女科學家獎模式的主辦單位,台灣萊雅總裁師逸樺表示,希望透過表彰台灣傑出女科學家,社會大眾看見多位女性科學家不但在科學界擔任團隊領導者,對科學研究領域有傑出成就,更在推動友善人才制度進步和培育科研領域人才發展均深具貢獻。

2023 年第 16 屆「台灣傑出女科學家獎」由中央研究院化學研究所特聘研究員陳玉如博士獲得最高榮譽「傑出獎」[1]之殊榮。為支持優秀年輕女科學家而設立的「新秀獎」,則頒發給中央研究院天文及天文物理研究所研究員林俐暉博士臺灣大學電機工程學系電子工程學研究所副教授胡璧合博士。鼓勵具科學潛力之年輕博士班學生的「孟粹珠獎學金」,則由中央大學物理研究所博士班謝妮恩同學(目前任職於日本北海道大學低溫科學研究所博士後研究員)獲得。

第十六屆「台灣傑出女科學家獎」得主與主辦單位合影(由左至右):台灣萊雅陳家祥永續長、新秀獎得主林俐暉博士、傑出獎得主陳玉如博士、新秀獎得主胡璧合博士、孟粹珠獎學金得主謝妮恩博士、吳健雄學術基金會林明瑞執行長

「傑出獎」得主 中央研究院化學研究所陳玉如特聘研究員

  • 由美國與全球 13 個國家合作的「癌症登月計畫」,台灣隊由她領軍

在中研院化學所任職,專長儀器設計、質譜分析的陳玉如博士,因深受蛋白質體學的奧秘所吸引,跨領域由生物分子的分析,轉換跑道長期投入蛋白質體的探索,她的研究成果不僅創造領先國際之分析技術,在台灣建立世界級的蛋白質體研究技術,也提供生醫研究全新的研究路徑及轉譯經驗,進而獲得重大疾病關鍵突破。

陳玉如團隊開發了以質譜儀全面性定量細胞膜蛋白體的方法,可幫助科學家了解膜蛋白質如何造成疾病的機制,更進一步建立第一個癌症病人個人化的分析,開發疾病檢測或是藥物標靶蛋白質。以癌症為例,現在使用的癌症標識分子(biomarker)大多數是膜蛋白質。

-----廣告,請繼續往下閱讀-----

陳玉如博士首創全世界第一個「奈米探針質譜檢測技術」,發現癌症中血清蛋白多重結構變異作為新型癌症標誌物的實用性,成為首例以單一蛋白質多重異構物結合演算法作為新型癌症檢測技術,應用於早期癌症檢測,該技術於 2022 年獲得國家新創獎。

「我不抽菸,為什麼也會得肺癌?」這是許多亞洲國家肺癌患者共同的疑問。肺癌是全球癌症死亡的主因,即使藥物治療近年有長足的進展,存活率仍低,長期為我國癌症死亡的頭號殺手。肺癌傳統上被認為與吸菸畫上等號,但在東亞地區,不吸菸者患病的比率卻遠高於吸菸者。

為釐清不吸菸肺癌患者可能的致病機轉,2017 年,陳玉如博士主持推動與美國臨床蛋白基因體學腫瘤分析聯盟(CPTAC)合作的「台灣癌症登月計畫」,讓我國成為該計畫首度國際合作國家之一。

陳玉如認為,癌症研究的跨國分享非常重要,因為即使是同一種癌症,也會因為地域、人種及生活型態而有所差異,因此預防、檢測、治癌和預後方式可能不同。

陳博士發揮善於溝通、整合資源的人格特質,整合學術、政府資源及與醫院臨床合作,建立東亞第一個肺癌之蛋白基因體大數據,解析亞洲不吸菸肺癌患者的致病機制,開發新穎癌症精準醫療策略。該計畫利用深度蛋白質基因體技術和多體學數據整合分析,解析台灣不吸菸病人與西方不同的基因突變特徵、尋找內生性與外在環境致病機轉,並發現癌症早期出現的類晚期蛋白質分子特徵,為全世界第一個完整剖析東亞肺癌的研究。研究論文已發表於頂尖期刊《細胞》(Cell),並榮登當期封面,享譽國際。

-----廣告,請繼續往下閱讀-----

陳玉如博士曾任中研院化學所所長,也是有史以來第一位女所長;於 2019 年獲選全世界最大的國際性蛋白質體學術組織(HUPO)理事長,為該組織 20 年來最年輕,更是亞洲第一位女性理事長,為台灣爭取第 15 屆世界蛋白體組織會議及亞太蛋白體組織會議;2020 年受邀為分析化學領域排名第一國際期刊 Analytical Chemistry 的副主編至今,是台灣有史以來唯一獲此榮譽職位者。她也見證了各國代表在台灣宣示啟動癌症登月計畫之歷史時刻,協助台灣成為質譜學及蛋白質體學社群交流重鎮。

陳玉如博士的學術歷程及成就凸顯了唯有基礎數理研究的突破,方能以創新的分子視野揭露人類複雜疾病的成因與進展,開啟生醫學界及產業發展新穎癌症檢測的新策略。

  • 不設限、敢冒險,學習與溝通打通一關又一關

年少時喜愛作家三毛的陳玉如博士,從國中開始即養成寫日記的習慣,大學時期曾一度憧憬寫作的美好世界,成為科學家後,「寫作基因」帶給陳玉如博士敢於想像與冒險的念頭,讓她從設計質譜儀到分析 DNA,進而再挑戰以質譜儀開發更好的蛋白質體分析法,從摯愛的化學與跨領域到應用面、執行癌症醫學相關研究。

陳博士笑著說:「科學研究也是一種寫作,陳述一個完整的故事,讓人願意讀下去。」

除了如寫作敘事般建構規劃與想像,陳博士在研究上也發揮她善於溝通的特質,陳玉如博士表示,癌症研究是整合型的分析,需要蛋白體和基因分析技術、資訊分析、臨床醫學等各領域的專家跨領域合作,但要整合這麼多領域的領袖談何容易?陳玉如努力學習基因,並理解臨床醫師想問的問題及研究基因體學的科學家在做什麼,然後一起把基因和蛋白質的數據、以及臨床症狀整合、連貫起來,並不斷與不同領域的專家溝通,讓彼此互相了解,才打通一關又一關,取得研究成果。在學生眼中,積極熱情、樂於學習且執行力高的陳博士,是他們的精神領導,也是像媽媽和朋友的溫暖存在,永遠抱持正向開放的態度,鼓勵並協助他們堅持直至成功。

「新秀獎」得主 中央研究院天文及天文物理研究所林俐暉研究員

  • 用光學及電波望遠鏡觀測宇宙奧秘,她是入選台灣女科學家新秀獎的首位天文學者

林俐暉博士於中央研究院天文及天文物理研究所擔任研究員,研究著重在大尺度環境對於星系演化的影響,包括星系之間的交互作用以及星系團中星系的性質。利用多波段的天文觀測,有系統地探討星系與星系碰撞的頻率、星系交互作用期間對於恆星形成之效應,以及星系碰撞與大尺度環境的相關性。

而近年來,林俐暉博士結合地面最大電波望遠鏡 ALMA 以及光學史隆巡天計畫第四代的「艋舺」(MaNGA)觀測計畫,領導近三十位國際天文學家,進行 ALMaQUEST(ALMA-MaNGA QUEnching and STar formation)的國際合作計畫。林俐暉博士是第一位入選台灣女科學家新秀獎的天文學者。

-----廣告,請繼續往下閱讀-----
  • 「當你覺得別人都很厲害的時候更應該欣喜,表示自己還有進步的空間,這個世界可以更好!」正向態度讓她隨心選擇不設限

受雙親為物理學者的家庭環境薰陶,林俐暉博士雖自小接觸物理領域,但林博士的志向卻未因此設限。學生時期的她,除了是數理資優生,也喜歡古典文學,兼具理性與感性的她,一路從探索物理科學、宇宙星系到中國文學,累積了廣泛的興趣,豐富她的人生,也讓她對下一代的教育,延續原生家庭保持自由且開放的態度。此外,林博士分享印象很深刻的一句話:「當你覺得別人都很厲害的時候更應該欣喜,表示自己還有進步的空間,這個世界可以更好。」對林博士來說,有學習典範是科研路上一件很棒的事情。

近年來,林俐暉博士擔任台灣物理學會女性委員會的成員之一,為培育下一代女性科學家盡一份心力。她鼓勵有志從事科學的女性學子,除了培養足夠的熱情和興趣,更重要的是,永遠保持正向的態度。她特別感謝同事的支持,讓她投入家庭的同時,仍然可以從事研究工作。

林博士談到,期望將台灣萊雅致力推動多元共融、堅信多元化與包容性的企業精神也帶入學術界,有朝一日讓所有的女性研究員,都能無後顧之憂地投入科研工作。

「新秀獎」得主 臺灣大學電機工程學系電子工程學研究所胡璧合副教授

  • 讓人類的世界更加安全便利,她獲台積電張忠謀親自頒獎

「你在英雄電影裡看見的未來高科技,就是我們想做的事情!」胡璧合博士的研究領域為前瞻奈米電子元件及記憶體電路設計,透過元件及電路的共同最佳化,使下世代電子元件及記憶體電路表現高密度、低功耗及高能效等特性。

談到最難忘的學術成就,胡博士於交通大學智慧型記憶體及晶片系統實驗室擔任助理研究員期間,擔任國科會計畫主持人,研究鍺通道鰭式場效電晶體靜態隨機存取記憶體之讀取寫入輔助電路設計,於 2014 年獲得台灣半導體產業協會頒發博士後研究員半導體獎,並由台積電董事長張忠謀博士頒發,該獎項給予胡博士在學術研究旅程中莫大的鼓勵。

半導體產業是台灣的支柱與優勢產業,為國家經濟與安全的基石。胡博士於頂尖國際會議及重要國際期刊的發表,展現其團隊豐沛的研究能量,研究成果具學理創新及前瞻性。在產業發展部份,胡博士持續與台灣半導體科技公司執行產學合作計畫,透過加強學界與業界的接軌,在電子元件及記憶體領域持續研發創新,共同培育未來半導體產業高階人才。

-----廣告,請繼續往下閱讀-----
  • 她是科學家,也可以是三寶媽!

胡璧合博士出生於台灣彰化,父母皆從事傳統產業。她感謝母親與婆婆的大力支持,讓她可以在孩子幼年時當假日母親,平日則全心投入研究工作。胡博士分享:「我們一直在做調整,在孩子2歲後接回身邊,由先生負責孩子上學,再由我接送放學,在實驗室,把兩張椅子併在一起,小孩也可以睡午覺。」這是身為女科學家,努力在工作與家庭之間取得平衡的生活面貌。

累積在中央大學與台灣大學任教的經驗,胡博士發現,碩士畢業後,許多學生會選擇投入產業端工作,繼續攻讀博士的人則越來越少。即使支持學生未來發展的選擇,但多數碩士人才都投入業界的情況也形成隱憂:「台灣的半導體產業有良好的發展環境,但需要有人不斷做研究找出方向,才能往前帶動整個市場持續蓬勃發展。」

另一方面,胡博士觀察到女性在成績和研究表現上都非常好,鼓勵女學生應保持自信和平靜的心態,關注自身的狀態和成長。同時也鼓勵女性加入實驗室,相信女性細心的特質,可以帶動實驗室的工作氛圍越來越好。

孟粹珠獎學金:中央大學物理研究所博士班謝妮恩同學

  • 研究一氧化碳冰晶光脫附作用,她為天文學界提供嶄新視角

謝妮恩同學於大學三年級即進行星際冰晶在真空紫外光與 X 射線照射下的光脫附作用與光化學反應之專題研究,並在天文學相關議題研究上的表現卓越,於 2019 年獲得科技部博士生千里馬計畫與台西計畫的補助,前往西班牙馬德里皇家天文生物研究中心進行訪問研究。

期間,她師承 Dr. Muñoz Caro 進行二氧化碳紅外光譜之詳細探討,提供完整光譜數據庫與星際冰晶生成溫度歷史之參考,對於天文觀測中的分子結構標定是不可或缺的。2022 年,以第一作者身分發表論文,建立一個描述生長溫度對於一氧化碳冰晶光脫附作用影響的模型。此模型指出分子的真空紫外光吸收截面、能量傳遞深度、單層冰晶的光脫附貢獻量與有效表面積等參數須同時考慮,方能提供冰晶分子光脫附一個嶄新的視角。

謝妮恩博士展現優秀的團隊管理能力,協助指導多名碩士生和專題生,帶領團隊解決研究上的難題,並逐一完成論文。謝博士參與研討會的經驗豐富,除了台灣物理年會之外,也在國際研討會上多次獲選為口頭報告講者,曾於 2020 年第五屆亞洲分子光譜年會榮獲 LiHong Xu Award 之殊榮。優異的研究成果榮獲 2019 年吳健雄獎學金及 2021 年中技社科技獎學金(研究組),在學生眾多的理工領域獲得這份殊榮實屬不易,更是對於謝博士的一大肯定與鼓勵。

-----廣告,請繼續往下閱讀-----

關於台灣傑出女科學家獎

16 年來,本獎項共表揚傑出獎及新秀獎共計 49 位優秀台灣女性科學家,包括 2 位前、現任中研院副院長、多位中研院院士及大專院校教授及研究中心研究員等。

根據教育部的數據顯示,女性投考科學類組的比例持續成長,從 2007 年到 2021 年,大專院校科技類女學生占比上升了 5.5%。然而在男女受教權均等的台灣,女性投入科研領域成為科學家的比例,與全球女性科學家占比同樣只有不到三分之一,性別比例尚有很大的差距,因而仍需要持續推動鼓勵女性參與科學,盼透過「台灣傑出女科學家獎」鼓舞更多有志科學的女性投入科研,促進科學界多元發展,加速台灣科技精進。

了解更多台灣傑出女科學家獎

2023 年第十六屆台灣傑出女科學家獎得主簡介


[1] 依據遴選辦法規定,按公元單雙數年,交替輪選物質科學、數學、與資訊科學領域(公元單數年)或生命科學(公元雙數年)領域的傑出研究者。今年為公元單數年,本屆各類獎項得主皆從「物質科學、數學、與資訊科學」領域的女科學家中選出。

PanSci_96
1216 篇文章 ・ 2127 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

9
6

文字

分享

0
9
6
誰在海邊蓋天文台啊(惱)──世界第一座電波干涉儀
全國大學天文社聯盟
・2022/04/15 ・4114字 ・閱讀時間約 8 分鐘

  • 文/玄冥
    曾經做過 Radio Astronomy,現在叛逃去 Structure Formation 了,但也許有天會再回去。喜歡的動物是樹懶。

1946 年 2 月的某個清晨,澳洲東海岸的一群無線電科學家嚴陣以待,將電波接收器對向海的彼岸。如果是幾年前,他們會膽顫心驚地觀察日軍戰機的動向,但是今天不一樣,他們滿懷期待地等著日出。因為科學家們知道,他們正將原本用於國家間內鬥的利器 —— 電波干涉術(Radio Interferometry),用於人類探索太空的共同嚮往。

電波干涉術原先是二戰時用來提高電波觀測準確度的技術,如果說大家對電波干涉術不熟悉的話,那麼對人類拍攝的第一張黑洞影像應該記憶猶新(圖一)。這張黑洞影像的成像原理便是電波干涉術,拍攝這張照片的電波干涉儀則是遍佈全球的「事件視界望遠鏡(EHT)」(圖二)。

圖一:事件視界望遠鏡拍攝之 M87 星系中心的超大質量黑洞。圖/EHT
圖二:事件視界望遠鏡。圖/NRAO

大家聽到「電波干涉儀」時,腦海中浮出的想像,可能都是如圖二中的碟狀接收器。然而實際上,電波干涉儀最初的樣貌是非常簡單的(圖三),以下這篇文章會分別介紹電波和干涉術,再介紹兩者結合的原理,一步步帶大家了解電波干涉儀的原型機是如何被設計出來的。

圖三:在澳洲 Dover Heights 岸邊的電波干涉儀。圖/CSIRO

什麼是無線電波?

無線電波(Radio wave,簡稱電波)是一種電磁波,它充斥於我們現代生活的各個角落。例如手機產生的信號、衛星轉播,以及藍牙、WIFI 等等。電波與可見光是唯二能在地球大氣中自由穿行的電磁波波段,因此大多數地面望遠鏡都以觀測可見光跟電波為主。重要的是,相對於可見光波,電波波長更長(約 1 mm 以上),較容易穿過障礙物,讓它更便於觀測藏在宇宙塵埃後的物體(如原恆星)。然而,能穿透障礙物的代價是,在相同的望遠鏡口徑下,電波望遠鏡的「角解析度(Angular resolution)」比較低。

角解析度(或稱角分辨率)是探知物體細微移動或分辨兩個鄰近物體的能力,白話的說就是它能看得多「清楚」。角解析度正比於望遠鏡的直徑,但反比於所觀測的電磁波波長。做一個誇張的比喻,如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。有限的角解析度,是電波天文台在 1930 年代剛出現時所面臨的主要困境之一。這個問題一直到二戰時期才得到解方 —— 干涉技術。

-----廣告,請繼續往下閱讀-----
如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。圖/envato elements

光的干涉,相信大家在高中的物理實驗中都見過。在實驗中,我們將光源對準布幕,並將切有兩條平行狹縫的一塊紙板隔在光源與布幕之間。此時通過兩條狹縫的光,便會在布幕上產生黑白相間的干涉條紋。這些條紋,源自光通過不同狹縫抵達布幕所需的距離不同,因此不同狹縫發出的光波到達布幕時的震動方向會有所不同。如果兩道光波震動方向相反,會造成相消干涉而形成暗紋;若抵達布幕時震動方向相同,則造成相長干涉而形成亮紋。

利用動畫可能更好理解一些(見圖四、五)。從實驗設備的上方俯視,藍色的點代表光源,紅色的點則是紙板上的狹縫位置,圖片底端是布幕,白色與黑色的部分即為光波的亮紋和暗紋。從圖四我們發現,當狹縫間距越遠,布幕上亮紋就越細緻,而從圖五則可以看見,當光源橫向移動時,布幕上的亮紋及暗紋亦會大幅移動。結合這兩張圖可以看出,越細緻的亮紋對光源的移動就越敏感,電波作為一種波亦有相同的特性。

圖四(左)、圖五(右):雙狹縫干涉示意圖。

軍隊如何利用電波干涉偵測敵軍?

讓我們將焦點拉回二戰時期。當時的英國軍隊為了能預警敵機,通常會將電波接收器對準海平面,隨時觀察敵機的位置。圖六和圖七是電波接收器(紅點)跟敵機(藍點)以及海面(黑色區域)的相對位置圖,此時敵機發出的電波會從兩條不同路徑抵達電波接收器,其中較短的電波是從敵機直達接收器,而較長的則是經海面反射後抵達接收器,這兩條路徑的電波會互相干涉並形成明暗相間的條紋。

圖六(左)、圖七(右):海岸干涉儀示意圖。

這些干涉條紋如同雙狹縫干涉所產生的條紋一樣,對波源的移動非常敏感(圖六),因此可以非常準確的判斷出敵機的位置;而如圖七所示,當電波接收器與海平面之間的高度差愈大,干涉條紋愈細緻,這表示電波接收器的海拔高度正比於其角解析度。實際上,如果將電波接收器放在濱海的峭壁上,其影像的清晰度約為一台口徑為兩倍峭壁高度的電波接收器,這便是「電波干涉儀」最初的樣子——也就是圖三那一台在峭壁上的電波接收器。

-----廣告,請繼續往下閱讀-----

隨著二戰結束,許多軍事科技被轉為民用或科研用途,電波干涉儀也不例外。對於研究太陽黑子的天文學家們來說,電波干涉儀在這一年轉為民用更是生逢其時,因為隔年恰好迎來了百年內規模最大的太陽極大期。

太陽活動通常以 9~14 年為週期。在太陽活動最旺盛的時候,往往會伴隨著許多太陽黑子的出現、以及被磁場束縛住的日冕物質所迸發的強電波。然而過去受限於電波觀測的低角解析度,人們只知道電波的強度與太陽黑子數量呈正相關,卻並不知道電波具體源自太陽的何處。隨著電波干涉儀的出現,天文學家得以精確地觀測出電波強度的分佈,其範圍比太陽小、且位置與太陽黑子高度重疊,這為此後的太陽黑子研究以及電波通訊應用提供了不少幫助。(1)(2)(3)

使用電波干涉儀探索宇宙吧!

銀河系和太陽,是天空中兩個最亮的電波源,因此是天文學家最先望向的目標。但天文學家們也注意到,較弱的電波源其實散佈於天空各個角落。這些電波源在沒有干涉儀的時代,因低角解析度以及來自銀河系的電波干擾而遲遲無法精確定位,而這一情況在電波干涉儀出現後得到改善。

二戰後,澳洲海軍負責雷達設備的軍官 John Bolton 以及他的助手,在澳洲沿海各處搭建了電波干涉儀,以觀測來自天鵝座的電波。他們將該電波源的位置精確度,由先前透過一般電波望遠鏡量測的五度推進至七角分(約 1/10 度),也得知這個天體的大小在八角分以下。

-----廣告,請繼續往下閱讀-----
在美國新墨西哥州的無線電干涉儀:甚大天線陣Very Large Array。圖/Hajor, CC BY-SA 3.0

然而弔詭的是,如果量測到的電波源自於這八角分不到的天體,這個天體所蘊含的能量密度將遠超出任何已知的天體!更令人驚訝的是,該天體並沒有對應到任何可見光影像中的恆星,於是他們將這個只出現在電波影像的天體稱為天鵝座 A(4) 。隨後他們用電波干涉儀掃瞄了南方的天空,陸續發現了許多類似天鵝座 A 的天體。

在後續技術發展下,天文學家終於找出這些電波天體在可見光的真身 —— 電波星系(5)(圖八、九)。電波星系在可見光波段的影像如同一般星系,然而在電波望遠鏡下,時常能看見噴流從電波星系中心噴湧而出,噴流的痕跡可達星系本體的數倍。現在我們知道,噴流是在星系中心大質量黑洞進食(吸積)時所噴出的強烈電漿流,其中的帶電粒子在噴流磁場的加速下會發出強電波,從而被電波干涉儀接收。

圖八:由甚大天線陣列(VLA)拍攝之天鵝座A電波星系的電波影像。圖/Mhardcastle, VLA data
圖九:由歐洲南方天文台拍攝之人馬座 A 電波星系,結合可見光與電波的影像。圖/ESO

這些噴流能夠改變星系的氣體與能量分佈,因此對星系演化有著至關重要的影響,今日人們也在透過更先進的電波望遠鏡了解這些星系。

時過境遷,如今的電波干涉儀,已經能夠將遍布全球各地多個電波接收器收到的電波進行干涉,不再是依託於大海的孤立接收器;干涉儀技術的改良,立基於全世界探索宇宙深空的好奇與嚮往,而非國家間互相對抗的戰火。

-----廣告,請繼續往下閱讀-----

回首過往,人們在戰爭中其實並未忘記對宇宙的嚮往,因此當硝煙散去,人們便互相合作,將戰時的科技化作探索太空的利器,揭開宇宙奧秘、滿足人類的好奇。如今,我們擁有更強大的科技,希望人們能夠繼承這份嚮往,一同探索更多宇宙的未知。

延伸閱讀

  1. 毀滅與新生:超大質量黑洞觸發的恆星形成- PanSci 泛科學
  2. 黑洞甜甜圈之後:宇宙噴火槍3C 279 黑洞噴流影像現蹤跡!——《科學月刊》 – PanSci 泛科學
  3. 黑洞攝影怎麼拍?七個問答來解謎——《黑洞捕手》 – PanSci 泛科學
  4. 仰望宇宙的好據點,大國爭相來插旗:「白山」毛納基亞——《黑洞捕手》
  5. 太陽升起前,把握最後的永夜!與時間賽跑的組裝任務——《黑洞捕手》 – PanSci 泛科學
  6. 人類史上首張黑洞近照:這張動員全球、沖洗兩年的照片是怎麼來的? – PanSci 泛科學

參考資料

  1. Some Highlights of Interferometry in early Radio Astronomy, Woodruff T. Sullivan III (2016)
  2. Pawsey, J. L., Payne-Soott, R., & McCready, L. L. (1946). Radio-frequency energy from the SunNature157(3980), 158-159.
  3. McCready, L. L., Pawsey, J. L., & Payne-Scott, R. (1947). Solar radiation at radio frequencies and its relation to sunspotsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences190(1022), 357-375.
  4. Bolton, J. G., & Stanley, G. J. (1948). Variable source of radio frequency radiation in the constellation of Cygnus. Nature161(4087), 312-313.
  5. Bolton, J. G., Stanley, G. J., & Slee, O. B. (1949). Positions of three discrete sources of galactic radio-frequency radiation. In Classics in Radio Astronomy (pp. 239-241). Springer, Dordrecht.
全國大學天文社聯盟
7 篇文章 ・ 19 位粉絲