0

3
2

文字

分享

0
3
2

黑洞攝影怎麼拍?七個問答來解謎——《黑洞捕手》

天下文化_96
・2020/04/22 ・2225字 ・閱讀時間約 4 分鐘 ・SR值 537 ・八年級

  • 作者/陳明堂

在加入《黑洞捕手》這場宇宙大冒險之前,你可能會對黑洞攝影這個主題有許多疑問。這個篇章,可以滿足你的好奇。

Q1. 為什麼這次黑洞照片曝光,各界這麼轟動?黑洞不是早就被證實了嗎?我還看過很多照片呢!

很多人模擬出黑洞的照片和動畫,讓許多人認為「黑洞的存在不是理所當然嗎?」。

「星際效應」電影中對黑洞的模擬圖像。圖/Paramount Pictures。

然而,雖然有許多間接證據(比如重力波)讓科學家普遍認為黑洞存在,但直到 2019 年的 4 月 10 日,才出現了第一個證實黑洞存在的視覺證據。

Q2. 如果說,黑洞會把光吸進去,那黑洞照片中怎麼會有光環?

黑洞照片中的一圈光環,並不是黑洞,而是黑洞周遭物質發出的電波。

M87 黑洞影像。 Photo credit: EHT Collaboration

黑洞是質量極大的天體,光線靠近黑洞就會被吸進去,也因此黑洞本身不發出任何的光線。不過,我們觀測的是黑洞鄰近的區域,四周的氣體因為受黑洞吸引,繞著黑洞打轉;氣體愈靠近黑洞,運動速度加快。氣體之間互相撞擊、摩擦,會產生高熱放出能量。

這些釋放出來的能量,一部分會被黑洞吸收,但也有一部分得以逃脫黑洞的引力。跑出來的能量中包含有電波的成分,天文學家可以觀測到逃逸出來的電波,得知黑洞的形狀結構。

Q3. 這麼多黑洞,要選哪一個來觀察?

宇宙裡到處都有黑洞。但是那些從地球上看到的黑洞目標,必須夠大,而且不能離我們太遠。南天的人馬座 A*,以及北天的 M87* 是現在可觀察的兩個目標。

Q4. 為什麼新聞都說,你們建造了「地球一樣大」的望遠鏡?

如果要觀察愈遠的事物,就需要愈大孔徑的望遠鏡。我們這次拍攝到的黑洞 M87,距離地球 5,500 萬光年,根據推算,需要直徑 8,000 公里的望遠鏡,才能看清楚這個黑洞的模樣。

口徑 8,000 公里的望遠鏡!怎麼可能建造呢!

格陵蘭望遠鏡。圖/wikimedia

其實,不用真的蓋這麼大的望遠鏡。科學家使用「特長基線干涉技術」,讓世界各地的望遠鏡同時觀測黑洞,並把各自觀測的數據加以整理,就可以達到跟建造「地球一樣大」的望遠鏡相同效果了。

Q5. 為什麼望遠鏡可以看到很遠的東西?

人眼想要看清楚一樣事物,有兩個必要條件:光要夠強、光進入眼睛的角度要大。

比方說,你眼前有一個甜甜圈,就很容易看清楚甜甜圈的模樣。如果把燈關了,就會看不到。這就是光的必要。再來,把甜甜圈移得離你愈來愈遠,你會發現它愈來愈小,小到變成一個點,再也無法辨識中間的洞洞了。

甜甜圈兩端反射出來的光進入眼睛時,彼此的夾角稱為「視角」。當某個事物太遠,就會導致視角太小,人眼就無法辨識該物體。望遠鏡靠著凹凸透鏡的組合,達到放大、聚光功能,來加強上述兩個條件,讓人眼可以辨識遠方的物體。

Q6. 為什麼需要這麼多種望遠鏡來觀察宇宙?

宇宙中物質會放出各式各樣的電磁波,例如可見光(人眼可見的紅橙黃綠藍靛紫)、紫外線、紅外線、X 光……。

各式各樣的望遠鏡。圖/天下文化提供

宇宙中的電磁波很容易被地球的大氣層吸收、散射;再加上人類眼睛非常局限,能看見的只有波段很窄的可見光。所以,人類若是只靠著可見光來判斷宇宙長什麼模樣,就太瞎子摸象了。有兩個做法可以改善上述情況。

  • 第一,不要只靠可見光望遠鏡,多採用不同類型望遠鏡來獲取宇宙各種類型的訊號。
  • 第二,想辦法讓把望遠鏡發射到大氣層之外,避免大氣層干擾,以接收更清楚的訊號。

先來討論第一個方法。除了最常見的可見光望遠鏡之外,還有多種不同波段的望遠鏡可以觀察宇宙(如右圖)。科學家發現,工作波段介於紅外線與微波之間的「次毫米波望遠鏡」,最擅長觀測星際氣體、恆星演化,是黑洞觀測的最佳利器,也是這次黑洞攝影的最大功臣。

只是,毫米波、次毫米波這類的波,很容易被大氣中的水氣吸收,所以這樣的望遠鏡,就必須建造在乾燥與高海拔的地方。像是智利北部的阿爾瑪陣列,就是蓋在海拔 5,000 公尺高的阿塔卡瑪沙漠中。

第二點,就是想辦法發射望遠鏡到外太空,這樣就可以避免大氣層干擾。像是哈伯望遠鏡就是在太空中工作的望遠鏡。

Q7. 事件視界望遠鏡是什麼?

EHT(Event Horizon Telescope) 是「事件視界望遠鏡」,指的是一個國際天文計畫,目的在獲得史上第一張黑洞照片。「事件視界」指的就是黑洞的邊界。

EHT 望遠鏡分布圖。圖/天下文化提供

2012 年,來自世界的天文學家開會並成立「事件視界望遠鏡」計畫,號召全球的電波望遠鏡,連線拍攝黑洞照片。

截至 2020 年 3 月,加入EHT 的望遠鏡共有 11 座。台灣參與其中 4 座的製作、運轉。(圖中有台灣圖示者)但是 2019 年 4 月曝光的黑洞照片, 是根據 2017 年底的觀測數據洗出來的照片。當時,只有 8 座望遠鏡加入 EHT 並參與拍攝。

這些分散在各地的望遠鏡,合作之後就等於超大口徑的望遠鏡。圖中望遠鏡之間的白色弧線,代表的是基線。基線愈多,代表可觀測的資料量就愈大,拍攝出來的照片就會愈清晰。

——本書摘自 2020 年 4 月選書《黑洞捕手:台灣參與史上第一張黑洞照片的故事》,2020 年 3 月,天下文化

文章難易度
天下文化_96
132 篇文章 ・ 615 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
原住民祖先見過明亮的南方之星?傳說是真的,而且超過一萬年!
寒波_96
・2023/11/08 ・2777字 ・閱讀時間約 5 分鐘

有些故事代代相傳之下,經歷非常漫長的時光。過去很久以後,五百年、三千年或一萬年,都已經是「很久很久以前」,難以判斷到底多久。2023 年發表的一項研究認為,澳洲南方的塔斯馬尼亞島,有個故事似乎能追溯到超過一萬年前。

塔斯馬尼亞的祖傳故事

大英帝國的調查隊抵達塔斯馬尼亞初期,估計島上約六千到八千位居民;原住民們統稱為「palawa」,不過又能分成多個有所區別的族群。英國人在公元 1803 年建立第一個殖民地,然後,不意外地起爭議。

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

殖民者與原住民的衝突加劇後,1823 到 1832 年間導致約兩百位殖民者及九百位原住民身亡。有些英國人希望能和平解決問題,最終勸誘加上強迫,1829 到 1835 年間將島上的原住民,都成功遷移到位於塔斯馬尼亞和澳洲之間,巴斯海峽的弗林德斯島(Flinders)。

英國人認為這是一次「友善」的轉移任務。以當時狀況而言,確實算是相對和平的收場,但是慘遭強制搬遷的原住民依然損失慘重,人口以外,他們脫離原本的家園「Lutruwita」,文化、語言幾乎喪失殆盡。

遷徙計畫中,英國人魯賓遜先生(George Augustus Robinson)可謂關鍵角色。他走訪塔斯馬尼亞各地,說服原住民搬家,也對當地風俗文化非常好奇,留下大量紀錄。

這些 1830 年代的紀錄,就像塔斯馬尼亞傳統文化的切片。後來有些原住民重返塔斯馬尼亞,試圖擺脫殖民時,英國殖民者當初搜集原汁原味的資料,也成為重建傳統的材料之一。

魯賓遜等人搜集的紀錄來自多位原住民的說法,其中一個故事相當費解,至少當年魯賓遜無法理解,新問世的論文總算揭開奧秘。

情節湊不上,是因為發生在太久之前

祖先的遷徙故事,提到他們來自一片大陸;後來大陸被海水淹沒,當時岸邊附近有冰山漂浮。那時望向南方的天空,可以見到一顆很亮的星。

塔斯馬尼亞與澳洲之間的地形。兩地之間原本存在陸橋,海水上升後形成巴斯海峽。圖/參考資料1

塔斯馬尼亞原住民一代一代仰望星空,也建立一些自己的天文學知識,被魯賓遜忠實收錄。那顆南方大星星卻令人費解,因為星空中根本沒有符合描述的那顆星。最可能的對象是老人星(Canopus),也稱為船底座α(α Carinae)。

星空中最亮的是天狼星,第二就是老人星,顯然它非常顯眼,可是位置明顯有差。是原住民唬爛,還是魯賓遜唬爛,或是魯賓遜紀錄錯誤呢?新的分析指出,他們都是正確的,因為一萬兩千年前的星空,老人星確實處於故事中的那個位置。

首先,故事提到祖先前來的道路被大海淹沒,冰山在岸邊漂浮。對照現代科學知識,能輕易推論這講的是冰河時期結束,海平面上升,淹沒澳洲與塔斯馬尼亞之間的陸橋,形成巴斯海峽,讓塔斯馬尼亞成為一個四面環海的島。

接著是星空為什麼不同?從地球表面仰望夜空,星星的分布位置會由於「歲差」緩慢改變。回溯調整成一萬多年前的星空,老人星的確就在那兒。

地表很多位置都能見到南方明亮的老人星,不同民族、文化各有自己的想像。台灣人即使沒有親眼注意過,也肯定知道老人星,因為這就是福祿壽中的「壽星」,形象化叫作南極仙翁。

有趣的是,中文名字叫老人星,英文名字 Canopus 則來自特洛伊戰爭傳說中的一位年輕人,他是航海家,後來不幸在埃及被毒蛇咬死……所以中國想像這顆星是老人,歐洲卻想像是年輕小夥。

回溯塔斯馬尼亞 1831 年 8 月 1 日,凌晨 5 點時的星空。圖/參考資料1

難以理解的時候,先忠實紀錄

考慮到魯賓遜紀錄的日期是 1830 年代,更加深故事的真實感,因為當時英國人還不知道「冰河時期結束導致海面上升」。阿加西(Louis Agassiz)首度宣稱冰川歷史的想法要等到 1837 年,更多年後取得較多支持,十九世紀後期才廣為人知。

魯賓遜等歐洲人對聽到的故事內容難以理解,他們或許會聯想到聖經的大洪水,但是完全想像不到冰河時期。所以這些內容,大概更能免於印象或偏好影響,反映忠實的紀錄。

據此推敲,塔斯馬尼亞祖傳故事講的是:「大約 1.2 萬年前海水上升之際,明亮的老人星在那個位置」。如果推論正確,這便是傳承 1.2 萬年的口述歷史,堪稱全人類罕見的文化遺產。

有人或許會好奇,一些研究認為早在四萬年前,已經有人穿過澳洲,抵達塔斯馬尼亞。可是島上原住民的祖先故事,卻是一萬多年前?

我想可能是因為,記憶對於愈久遠的事情常常會愈壓縮,把更早發生的事情疊加到比較近期,印象很深的事件中。或許原住民的祖先很早就過去,但是海水上升淹沒陸橋令人印象太過深刻,就變成故事的素材。

另一件啟示是,世界上不知道的事情太多了,當你不太理解聽到什麼的時候,不要試著腦補,就照聽到的忠實紀錄下來!

延伸閱讀

參考資料

  1. Hamacher, D., Nunn, P., Gantevoort, M., Taylor, R., Lehman, G., Law, K. H. A., & Miles, M. (2023). The archaeology of orality: Dating Tasmanian Aboriginal oral traditions to the Late Pleistocene. Journal of Archaeological Science, 105819.
  2. Rising seas and a great southern star: Aboriginal oral traditions stretch back more than 12,000 years
  3. GEORGE AUGUSTUS ROBINSON
  4. 老人星名字來源神話人物 Canopus 維基百科

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 927 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

2
1

文字

分享

1
2
1
諦聽宇宙深處的低吟,宇宙低頻重力波訊號代表的意義——《科學月刊》
科學月刊_96
・2023/11/01 ・3782字 ・閱讀時間約 7 分鐘

  • 作者/陳哲佑
    • 任職於日本理化學研究所,專長為黑洞物理、宇宙學、重力理論等。
    • 熱愛旅行、排球與珍珠奶茶
  • Take Home Message
    • 今(2023)年 6 月,北美奈赫茲重力波天文臺(NANOGrav)團隊觀察到宇宙中的低頻重力波。
    • NANOGrav 團隊利用數個脈衝星組成「脈衝星陣列」(PTA),測量各脈衝星訊號到達的時間,計算不同訊號的到達時間是否存在著相關性。
    • PTA 得到的重力波訊號相當持續,沒有明確的波源。科學家推測此訊號可能來自多個超大質量雙黑洞系統互繞而產生的疊加背景。

2015 年 9 月,位於美國的雷射干涉儀重力波天文臺(Laser Interferometer Gravitational-Wave Observatory, LIGO)成功偵測來自雙黑洞碰撞的重力波訊號(請見延伸閱讀 1)。

這個發現不僅再次驗證愛因斯坦(Albert Einstein)「廣義相對論」的成功,更引領人類進入嶄新的重力波天文學時代。到了現在,我們不僅能使用各種電磁波波段進行觀測,還多了重力波這個強而有力的工具能夠窺探我們身處的宇宙,甚至還有同時結合兩者的多信使天文學(multi-messenger astronomy)註1,皆能帶給人類許多單純電磁波波段觀測無法觸及的資訊(請見延伸閱讀 2)。

如同不同波段的電磁波觀測結果為我們捎來不同的訊息,重力波也有不同的頻譜,且頻譜與產生重力波的波源性質有非常密切的關係。以雙黑洞碰撞為例,系統中黑洞的質量與碰撞過程中發出的重力波頻率大致上成反比,因此當系統中黑洞的質量愈大,它產生的重力波頻率就愈低。

目前地球上的三個重力波天文臺:LIGO、處女座重力波團隊(The Virgo Collaboration, Virgo),以及神岡重力波探測器(Kamioka Gravitational wave detector, KAGRA, or Large-scale Cryogenic Gravitational wave Telescope, LCGT)都受限於干涉儀的長度,只對頻率範圍 10~1000 赫茲(Hz)的重力波有足夠的靈敏度,此範圍的重力波對應到的波源即是一般恆星質量大小的雙黑洞系統。

然而,來自超大質量黑洞互繞所發出的重力波頻率幾乎是奈赫茲(Nano Hertz,即 10-9 Hz)級別,如果想要探測到此重力波,就需要一個「星系」規模的重力波探測器。雖然這聽起來彷彿天方夜譚,但就在今年 6 月,北美奈赫茲重力波天文臺(North American Nanohertz Observatory for Gravitational Waves, NANOGrav)的團隊利用「脈衝星計時陣列」(pulsar timing array, PTA)成功地觀測到這些低頻重力波存在的證據。

以不同方式觀察不同頻率的重力波

與電磁波相似,重力波也有不同的頻率。不同頻率的重力波會對應到不同性質的波源,且需要不同的方式觀測。圖/科學月刊 資料來源/Barack, et al. 2018

NANOGrav 如何觀測低頻重力波?

讀者聽過脈衝星(pulsar)嗎?它是一種高速旋轉且高度磁化的中子星(neutron star)註2,會從磁極放出電磁波。隨著脈衝星的旋轉,它的電磁波會以非常規律的時間間隔掃過地球,因而被身處於地球上的我們偵測到,就像是海邊的燈塔所發出的光,會規律地掃過地平面一般。由於脈衝星的旋轉模式相當穩定,掃過地球的脈衝就如同宇宙中天然的時鐘,因此在天文學上有相當多的應用——甚至可以用來觀測重力波。

利用脈衝星觀測重力波的第一步,首先要記錄各個脈衝星的電磁脈衝到達地球的時間(time of arrival),並且將這些訊號與脈衝星電磁脈衝的理論模型做比對。

如果訊號和理論模型相符,那麼兩者相減後所得到的訊號差(residual)只會剩下一堆雜訊;相反的,如果宇宙中存在著重力波,並且扭曲了該脈衝星和地球之間的時空,那麼兩訊號相減之後就不會只有雜訊,而會出現時空擾動的蹤跡。

利用數個脈衝星組成的脈衝星計時陣列,可用來尋找宇宙中低頻的重力波訊號。圖/Tonia Klein, NANOGrav 

然而以觀測的角度來看,即便我們從來自單一脈衝星的訊號中發現訊號差出現偏離雜訊的跡象,也不能直接推論這些跡象一定是來自重力波。畢竟科學家對脈衝星的內部機制和脈衝傳遞的過程也並未完全了解,這些未知的機制都可能會使單一脈衝星的訊號差偏離雜訊。

因此為了要判斷重力波是否存在,就必須進行更進一步的觀測:利用數個脈衝星組成脈衝星陣列,測量每個脈衝星訊號到達的時間,並且計算這些不同脈衝星訊號的到達時間是否存在某種相關性。

舉例來說,如果脈衝星和地球之間沒有重力波造成的時空擾動,那麼即便每顆脈衝星的訊號差都出現偏離雜訊的跡象,彼此之間的訊號也會完全獨立且不相干;反之,如果脈衝星和地球之間有重力波經過,這些重力波便會扭曲時空,不僅會改變這些脈衝訊號的到達時間,且不同脈衝星訊號到達的時間變化也會具有某種特定的相關性。

根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。

科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。

NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。

他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。

除了 NANOGrav,其他團隊例如歐洲的脈衝星計時陣列(European Pulsar Timing Array, EPTA)、澳洲的帕克斯脈衝星計時陣列(Parkes Pulsar Timing Array, PPTA)、印度的脈衝星定時陣列(Indian Pulsar Timing Array, InPTA),以及中國的脈衝星計時陣列(Chinese Pulsar Timing Array, CPTA)等,皆得到相符的結果。

NANOGrav 觀測結果帶來的意義

與先前 LIGO 觀測到的瞬時重力波訊號不同,目前利用 PTA 得到的重力波訊號是相當持續的,而且並沒有較明確的單一波源,反而像是由來自四面八方數個波源組成的隨機背景訊號。

打個比方,LIGO 收到的重力波訊號像是我們站在海邊,迎面而來一波一波分明的海浪,每一波海浪分別對應到不同黑洞碰撞事件所發出的重力波;而 PTA 的訊號則是位於大海正中央,感受到隨機且不規則的海面起伏。

目前對這些奈赫茲級別的重力波訊號最合理也最自然的解釋,是來自多個超大質量雙黑洞系統互繞而產生的疊加背景。若真是如此,那這項發現將對天文學產生重大的意義。

過去科學界對於如此巨大的雙黑洞系統能否在可觀測宇宙(observable universe)的時間內互繞仍普遍存疑,如果PTA觀測到的重力波真的來自超大質量雙黑洞互繞,那代表這類系統不僅存在,它們的出現還比過去我們預期的更為頻繁,且產生的訊號也更強。

NANOGrav 的觀測結果

橫軸為脈衝星陣列中,兩脈衝星位置之間的夾角;縱軸為訊號之間的相關性;藍色數據點為 NANOGrav 15 年的觀測結果;黑色虛線為 HD 曲線。可看出數據點的分布與 HD 曲線相當吻合。圖/科學月刊 資料來源/Agazie et al. 2023

不過除了雙黑洞系統,也有其他「相對新奇」的物理機制也可能產生這樣的重力波背景,包含早期宇宙的相變、暗物質,以及其他非標準模型的物理等。若要從觀測的角度去區分這些成因,最重要的關鍵在於,能否從隨機背景中找到特定的波源方向。

如果是雙黑洞系統造成的重力波,勢必會有來自某些方向的訊號比較強;反之,如果是早期宇宙產生的重力波,那麼這些重力波將會隨著宇宙的膨脹瀰漫在整個宇宙中,因此它們勢必是相當均向的。

為了找到波源方向,提升訊號的靈敏度成為了當務之急。而若要提升 PTA 的靈敏度,最主要的方式有兩種——其一是將更多的脈衝星加入陣列;其二則是延長觀測的時間。

目前,不同的 PTA 團隊已經組成國際脈衝星計時陣列(International PTA)互相分享彼此的脈衝星觀測資料。隨著觀測技術的進步,解密這些奈赫茲級別的神祕重力波將指日可待。

註解

  1. 相較於過往只能以可見光觀測宇宙,多信使天文學能利用多種探測訊號,如電磁波、微中子、重力波、宇宙射線等工具探索宇宙現象,獲得更多不同資訊及宇宙更細微的面貌。
  2. 質量較重的恆星在演化到末期、發生超新星爆炸(supernova)後,就有可能成為中子星。

延伸閱讀

  1. 林俊鈺(2016)。發現重力波!,科學月刊556,248–249。
  2. 金升光(2017)。重力波獨白落幕 多角觀測閃亮登場,科學月刊576,892–893。
  3. NANOgrav. (Jun 28 2023). Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony. NANOgrav.
  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 1
科學月刊_96
248 篇文章 ・ 3153 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

0
0

文字

分享

1
0
0
【成語科學】以管窺天:視野狹隘才看得清楚!「窺管」是怎麼幫助古人觀測星空的?
張之傑_96
・2023/09/29 ・1018字 ・閱讀時間約 2 分鐘

這個成語出自《莊子》秋水篇。戰國時,公孫龍自認學問、口才高人一等,可是聽到莊子的言論卻大惑不解。他的一位朋友說,是他眼界狹小,有如用管子看天,只能看到天空的一小部分,以為天空就這麼小。

後來「以管窺天」演變成一個成語,比喻見識淺薄狹窄。談到這裡,讓我們造兩個句吧。

沒讀幾本書,就說自己了解明史,猶如以管窺天,所知太有限了。

這篇討論新冠肺炎的論文,只是以管窺天,並沒看到問題的全貌。

成語「以管窺天」,常和「以蠡測海」並用。蠡,指用葫蘆做的瓢。用瓢測量海水,能測得完嗎?以蠡測海,也是比喻見識淺薄狹窄。

成語「以蠡測海」,純粹是個比喻,沒什麼科學意義。成語「以管窺天」則不然,原來用來窺天的「管」,是古人的天文觀測儀器啊!

古時沒有望遠鏡,只能用肉眼觀看星空。用肉眼觀測大範圍的天象尚能應付,觀測細微的天象就不敷需要了,所以古人想出一個辦法,用竹管的管孔來縮小觀測範圍,這種觀測天象的管子,特稱「窺管」。

窺管。圖/Wikimedia

窺管能「窺」出什麼呢?首先,能夠消除側光的影響,一些較暗的星,看起來就變亮了。小朋友可以做個實驗,用手握出個孔洞,湊近一隻眼睛,望向遠處目標,是不是看得更清楚了。

窺管除了可以增加亮度,還可以觀測星星的經度和緯度,這就得談談古代的天文觀測儀器渾儀。大約西元前 1 世紀,古人發明了渾儀。渾儀由 1 至 3 重的金屬環構成,外重是固定的,內重可以轉動,窺管嵌於其中。後來環數加多,構造變得複雜,但基本原理是一樣的。

自古以來,天文學家就假想「天」是個球體——天球,做為觀察星空的依據。假想中的天球,是以地球為中心、向外擴充的無限大球面。地球的南北極,向外擴充,就成為天球南北極;地球的赤道,向外擴充,就成為天球赤道。地球有經緯度,天球也有經緯度,稱為赤經、赤緯。

北京古觀象台的渾儀。圖/Wikimedia

根據《隋書.天文志》,當時渾儀上的窺管,長 8 尺,有直徑 1 寸的圓孔。觀測時,轉動內層的環,將窺管導向某一星星,經過微調,根據環上的刻度,就可以定出這顆星星在天球上的座標,也就是它的經緯度。

所有討論 1
張之傑_96
103 篇文章 ・ 221 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。