0

0
0

文字

分享

0
0
0

人類史上首張黑洞近照:這張動員全球、沖洗兩年的照片是怎麼來的?

活躍星系核_96
・2019/04/19 ・3652字 ・閱讀時間約 7 分鐘 ・SR值 535 ・七年級
  • 文 / 卜宏毅│加拿大圓周理論物理研究所博士後研究員,事件視界望遠鏡核心成員

事件視界望遠鏡(Event Horizon Telescope)在今年 2019 年 4 月 10 日公布了人類史上的第一張黑洞照片。這張照片距離我們約五千五百萬光年,為 M87 星系中心的超大質量黑洞 (約有六十五億個太陽質量);於 2017 年 4 月 5 號到 11 號之間的四個晚上,由七個遍佈全球(夏威夷,美洲,歐洲)的電波望遠鏡共同觀測所得到。M87星系有個明顯的噴流,這次黑洞的影像正是這個噴流的「源頭」。

credit: EHT Collaboration (figure 3 of paper I), and NASA, NRAO, and J. Biretta.

經過近兩年的資料處理,資料分析,理論分析等漫長過程,目前成員約兩百多人的EHT團隊在四月十日除了公布影像外也發表了六篇論文,分別討論了:

  • Paper I  :Overview 簡介
  • Paper II :Array 望遠鏡陣列
  • Paper III:Data數據
  • Paper IV:Image影像處理
  • Paper V :Theory理論
  • Paper VI:Feature extraction影像特徵分析

這張黑洞近照雖然廣義相對論預測的結果相符,但也有許多對天文學家來說的意料之外(請期待下一篇文章)。

EHT拍攝到的M87黑洞,是人類史上第一張黑洞影像。圖/photo credit: EHT Collaboration

為什麼要看黑洞影像?

黑洞是一種時空結構,也是一種奇怪的天體。根據理論預測黑洞的緻密、輻射、噴流特性等,天文學家慢慢接受黑洞真實存在於宇宙之中。但是,人們但從未看過黑洞的近照。

這次黑洞影像的意義除了驗證黑洞是否存在、我們對黑洞的認識是否正確,也驗證廣義相對論在強重力場下的正確性。這次對 M87星系中心黑洞的近照,提供了 M87星系中心黑洞質量估計,以及黑洞附近噴流產生的物理細節。

黑洞近照為什麼像是甜甜圈?

黑洞本身不發光,天文學家所觀測到來自黑洞的輻射是來自於黑洞周圍包圍住黑洞的物質,這些物質在不同的頻率因為不同的機制發出輻射。根據廣義相對論,光線在黑洞附近會被彎曲,部分光線會被黑洞吃掉(如下圖),因而形成狀似是甜甜圈內部的陰影區,稱為黑洞剪影(black hole shadow)。這個甜甜圈的內部陰影正是黑洞──時空中的一個洞──的具體表現!

愛因斯坦的廣義相對論預測了黑洞剪影的形狀與特性,而黑洞附近的發光物質的空間分佈、能量分佈、與運動特性則提供各種不同的發光背景,烘托出這些黑洞的剪影。關於黑洞剪影的介紹可以參考之前的文章「下一站:黑洞」。旋轉的黑洞也會對剪影造成影響,可以參考之前的文章「為什麼星際效應裡的黑洞長那樣?」。這些都是在理論分析黑洞「近照」時需要考慮的課題(有興趣的讀者可參考paper V)。

非旋轉黑洞附近的光線軌跡。圖片中央的黑洞能“吃掉”(補捉)周圍的光線,形成剪影。被捕捉的光線用黑色表示。有興趣的讀者可以使用免費教育軟體Odyssey_Edu模擬光線在黑洞附近軌跡。(credit:卜宏毅)
黑洞影像中剪影區域的示意圖。EHT 團隊根據廣義相對論,磁流體力學,以及之前對 M87 星系的了解模擬了超過六萬張的黑洞影像資料庫並加以分析。這些影像分別對應了不同的黑洞旋轉速度,觀測角度,可能的氣體溫度分佈,氣體環繞方式,以及氣體環繞黑洞的不同「時刻」。儘管對一些細節物理的不確定,觀測到的剪影與我們對 M87黑洞以及其周圍的環境大致符合(有興趣的讀者可參考paper V,尤其是其中的 figure 6 呈現了如何將理論黑洞影像與觀測數據比較的範例影片)。由剪影的大小,也獨立推論出 M87星系中心的黑洞約有六十五億個太陽質量(有興趣的讀者可參考paper VI)。(credit:EHT Collaboration)

為什麼是M87?為什麼選M87

天體在天空中的張角由大小與距離決定。根據所有已知黑洞的大小與距離,M87星系中心的超大質量黑洞在天空中的張角是第二大的,大約有 40 個微角秒(micro arcsecond; 1角秒=1/3600角度)的黑洞(約是一個硬幣放在月球上時的張角)。

排行第一的是位在我們銀河系中心的黑洞,約有 50 個微角秒。但在地球上觀測銀河系中心時, 會受到銀河系盤面星系介質造成的散射影響。EHT 團隊目前還在分析對銀河系中心黑洞的觀測資料。

為何用電波觀測黑洞剪影?

選定要觀測的黑洞目標後,根據天體的輻射特性,我們要挑選適當的觀測頻率才能不被黑洞周圍的發光物質擋住而看見黑洞的剪影(如下圖解)。M87附近的 EHT的主要觀測頻率是在電波(radio)波段,頻率 230GHz (波長 1.3mm)。

望遠鏡的解析度大致可用觀測的波長 λ,除以望遠鏡的大小 d,來估計。當觀測頻率與波長決定之後,我們可以利用上述:λ/d~40微角秒的要求,估計出大約需要六千公里以上的望遠鏡大小,才能達到足夠的角解析度(angular resolution)來看到在M87星系中央的黑洞剪影。

模擬被發光物質包圍的黑洞用不同的觀測頻率時所觀測到的影像。在適當的觀測頻率下(下方圖)可以看到黑洞剪影。此範例是一個極端的情況:快速旋轉的黑洞且其旋轉軸垂直於觀察者,造成剪影明顯的不對稱。(credit:卜宏毅)

為什麼照片看起來是模糊的?

EHT利用電波望遠鏡甚大陣列干涉儀(VLBI; Very Long Baseline Interferometry)技術觀測黑洞影像,而非是用光學望遠鏡,因此黑洞的照片其實不是「拍到的」,而是利用以下簡介的電波干涉儀原理「分析得出的」。影像的顏色不具意義(人眼無法看見電波),僅影像的相對亮暗對應了電磁波輻射能量的大小。因此黑洞的照片並非像是如同手機拍照般“拍到的”。

要怎麼打造一個六千公里以上的超大望遠鏡呢?答案是利用很多的望遠鏡一起合作觀測。下圖是 2017 年參與觀測 M87 的望遠鏡(因為 M87位於北半天球,南極望遠鏡 South Pole Telescope 無法觀測 M87)。這些望遠鏡的連線稱為基線(baseline)。2017 四月的觀測很幸運的幾乎每個望遠鏡在觀測的時候都遇到了好天氣,這些望遠鏡能同時觀測到 M87 的月份也決定觀測時間的選擇。

2017年 EHT觀測的望遠鏡成員。其中為在南極的 SPT因為地理位置的關係未能參與M87的觀測。甚大陣列干涉儀所指的「甚大」 指的是望遠鏡與望遠鏡的距離相當遠,未能有硬體設備直接連接。(credit: EHT Collaboration; figure 1 of paper I)

當地球自轉時,這些基線的兩端畫出的軌跡,電波天文學家習慣畫在下方稱為 uv-plane 的平面上(將基線的距離以觀測波長表示)。我們不妨把下圖中望遠鏡的軌跡(稱作uv-coverage)「大致」想像成是一個虛擬的超大望遠鏡的局部組成。

因此,基線越長,則這個虛擬望遠鏡的就越大,越能看見細微的結構,而 uv-coverage 填的越滿,則這個虛擬望遠鏡就越完整(這些觀測的細節數學上與傅立葉轉換有密切的關係,電波望遠鏡利用干涉儀原理觀測,得到的訊號稱為 visibility,其與影像之間的關係符合傅立葉轉換)。例如,下圖中如果 uv-coverage 能把 25μas 的圈圈填滿,則這個虛擬望遠鏡就足以解析天空中約25個微角秒的結構,也就可以「模糊看見」大小約 40微角秒的 M87 黑洞的剪影了!

望遠鏡與望遠鏡間形成的基線,因為地球的自轉改變與觀測目標的相對位置,形成一個如地球大的虛擬的望遠鏡。不同時刻的基線分佈貢獻了這個虛擬望遠鏡的不同部分。圖為畫在uv-plane上的基線軌跡,稱為uv-coverage。(credit: EHT Collaboration; figure 2 of paper I)

一個甚大陣列干涉儀(VLBI)的觀測好壞,大致就是由在 uv-plane 上的這些軌跡的分佈與密度(uv-coverage)決定。

下圖的範例中,給出了一個模擬的黑洞剪影影像(左上方圖),用兩組不同的 uv-coverage 所觀測的結果。若望遠鏡的基線能因為地球自選而填滿藍色(或紅色),則能得到右上方(或右下方)的分析影像。

甚大陣列干涉儀(VLBI)觀測結果取決於uv-coverage。如果左上方是M87黑洞剪影的影像,uv-coverage填滿藍色區域還不足以解析出黑洞影像。若uv-coverage可填滿紅色區域,則能大致解析出黑洞的影像。真實觀測的uv-coverage介於兩者之間(見前圖)。(credit: 卜宏毅)

在這個範例中,填滿藍色的情況不足以解析出黑洞剪影。上圖 M87 觀測的 uv-coverage,雖比藍色圈圈大但無法完全填滿紅色圈圈,觀測的品質剛好介於這兩種情況中間:這意味著在有限的望遠鏡數量、望遠鏡分佈、以及觀測時間下,我們僅能組成「部分」的虛擬望遠鏡,並在對觀測數據分析成影像時,對欠缺的資訊進行人為的假設。

EHT 的影像分析團隊也由不同的四個獨立小組構成,交叉驗證大家所得到的影像結果大致一致,最後公布的照片是由所有小組的影像綜合而成。(有興趣的讀者可參考 paper IV)


下面的影片(可選中文字幕)總結了以上的說明。在下一篇文章中,我們會來看看黑洞影像的「意料之內」與「意料之外」!

 

  • Credits: Animation: Chris Jones; Screenplay: Smithsonian Astrophysical Observatory ;Narration: Alex Hanson; Funded by: National Science Foundation.
  • 本文原刊載於作者網誌,原標題 人類史上首張黑洞近照:懶人包I
  • 編按:部分文字刊登後又經過重新調整。(2019/4/23)

文章難易度
活躍星系核_96
759 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
156 篇文章 ・ 376 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策