0

0
0

文字

分享

0
0
0

德雷克生日│ 科學史上的今天:5/28

張瑞棋_96
・2015/05/28 ・1091字 ・閱讀時間約 2 分鐘 ・SR值 514 ・六年級

在夜空下仰望繁星若塵,除了讚嘆宇宙之浩瀚,不免也會猜想某個遙遠的星系是否也存在著其他智慧生物吧?

美國天文學家德雷克自八歲起即如此幻想著。他大學念天文學,畢業後在軍艦上當了一陣子通訊官;結合這兩項學經歷,他進入哈佛大學研究所攻讀無線電天文學,終究成為以科學方法尋找外星文明的第一人。

1960 年,德雷克將直徑 26 米的無線電望遠鏡對準 12 光年外位於鯨魚座的天倉五,與 10.5 光年外位於波江座的天苑四,搜尋是否有值得注意的特殊訊號;這成了「搜尋地外文明(SETI)」計劃的濫觴。第二年德雷克召開首屆 SETI 研討會,會中提出了著名的「德雷克公式」,用以估算我們有機會以電波接觸到的外星文明數量:

\( N=R_* \times f_p\times n_e \times f_l \times f_i \times f_c \times L\)

  • \( R_* \):銀河系平均每年誕生新恆星的數量(NASA 估計 7 個)
  • \( f_p \):擁有行星之恆星的比例(幾乎等於 1)
  • \( n_e \):每個恆星擁有允許生命的行星數量(難以估計,從億分之一到 1/10 都可能)
  • \( f_l \):其中真的孕育出生命的比例(難以估計,但有天文學家估計 0.13 以上)
  • \( f_i \):其中發展出文明的比例(難以估計,從億分之一到 1 都可能)
  • \( f_c \):其中發展出發射電波至外太空的比例(一般估計 10%~20%)
  • L:這樣的科技文明平均存續時間(難以估計,從千年到億年都可能)

雖然這樣得出來的答案範圍太廣,從幾乎沒有到數百萬個都有可能,難以達成共識,但德雷克公式至少為原本天馬行空的胡亂猜測提供一個系統化的討論基礎。

-----廣告,請繼續往下閱讀-----

德雷克本人的估算當然是極為樂觀的,他一生至今也都將全部心力奉獻於此。1972 年發射的太空船先鋒十號上放了一塊由他與卡爾·薩根共同設計的鍍金鋁板,上面刻劃了氫原子能階、地球位置與一男一女圖像。希望若有穿梭星際的外星人捕獲它,能因而知道我們的存在。次年發射的先鋒十一號也裝了一塊同樣的鍍金鋁板,往宇宙另一個方向飛去。1974 年,德雷克透過阿雷西博望遠鏡(Arecibo Observatory)向古老的 M13 星團發射無線電波,希望該處數十萬顆恆星之中有智慧文明能接收到,並成功解讀用二進位編碼的訊息。

德雷克代表人類撰寫的銘版有如瓶中信尚在無垠的太空中漂流;阿雷西博訊息距離目的地也還有二萬五千年要走。我們現在能做的只有持續傾聽來自外太空的微弱訊號,希望能從中發現外星文明的話語。如果你認同德雷克的信念,你也可以到 SETI 的網站下載程式,用你的電腦一起幫忙尋找外星文明……。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 946 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

7
0

文字

分享

1
7
0
人類在宇宙中是否孤寂?——宇宙中是否可能有其他文明?
Castaly Fan (范欽淨)_96
・2023/04/12 ・4993字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

1990 年,NASA 的航海家 1 號完成任務時,在 64 億公里外回首拍攝一張照片。地球,好似一粒漂浮在深空中的塵埃。該照片被命名為《蒼藍小點》(Pale Blue Dot),天文學家卡爾・薩根(Carl Sagan)隨後寫下了這段經典的語錄:

「凝視著這個淡藍小點:就是這裡。這就是家園。這就是我們。在這個小點上,每一個你愛的人,每一個你認識的人,每一個你曾聽聞的人,每一個人類、都曾經生活於此。我們一切的快樂和掙扎,萬千種引人自豪的宗教信仰、思想體系、經濟法則,每一位獵人與騎兵,每一位英雄與懦夫,每一個文明的締造者與摧毀者,每一位君王與農夫,每一對陷入愛河的年輕伴侶,每一位為人父母者、充滿希望的孩子們、發明家與探險者,每一位靈魂導師,每一位貪腐政客,每一個所謂的「超級巨星」,每一個所謂的「偉大領袖」,每一位歷史上的聖人以及罪人⋯⋯我們的一切一切,全部存在於——這顆懸浮在一束陽光中的渺小塵埃上。」

著名地球照片《蒼藍小點》。 圖/wikimedia

在浩瀚的宇宙中,地球確實是一粒渺小沙塵,也是我們唯一確定有智慧生命居住的世界。那麼,在茫茫太空中、銀河系的彼端、抑或是更遙遠之處,是否還有其他生命、乃至於文明正在活躍著?在這偌大而寂寥的宇宙中,人類又是否是孤獨的存在?

地球是否特別?平庸與殊異的爭辯

《蒼藍小點》這張影像意味著:地球不過是宇宙空間億萬顆星體中的一粒微塵,在近幾十年來,實驗觀測更指出宇宙比我們想像中來得更大、且正在持續擴張中。從演化論的視角來看,人類並非特別,我們所擁有的聰慧恰恰就是有機化學中基因序列的一種結果。

這些證據指向了一個事實——地球並不特別,只不過是一顆普通的行星。這樣一種看法在哲學上面被稱作「平庸原理」(mediocrity principle)。

-----廣告,請繼續往下閱讀-----

然而,對此有不少科學家抱持反對意見,而這一系列說法被稱之為「地球殊異假說」(Rare Earth hypothesis)。他們認為,地球的形成、板塊運動、大氣、海洋、乃至於生命的誕生、演化——這些都並非輕而易舉就能產生的。英國天文學家霍伊爾(Fred Hoyle)爵士曾如此形容:

「生命自發形成的機率,宛若一陣龍捲風掃過垃圾場、從中隨機拼湊出一架波音 747 那樣渺茫。」

確實,一系列有機分子纏繞結合成蛋白質、再組成基因序列、構成原始細胞這一段程序,這機率是非常微小的。而科學家們同時也提出了地球恰恰位在「適居帶」(habitable zone),這些條件決定了生命是否得以形成並且演化:

  1. 星系適居帶:恆星系統若接近星系中心,由於超大質量黑洞影響,會導致輻射、宇宙射線、以及星體撞擊的干擾,從而難以形成生命;若過於遠離核心,則會使重元素(例如:鐵、碘)難以形成,這些重元素是組成複雜生命分子的條件。太陽系位在銀河系第三旋臂上,恰好座落在適居帶。
  2. 太陽系適居帶:對於一個恆星系統而言,行星與恆星的距離將主宰生命誕生的條件。比如:水星、金星溫度過高,便不適合生命形成;火星、木星外側的行星距離太陽偏遠,則不會有液態水的存在;而地球位處金星、火星之間,不僅溫度適宜、有液態水存在,更有足夠大氣層可以擋避隕石與輻射,使得碳循環得以建立,恰好符合生命形成的條件。
  3. 行星適居帶:與前者類似,行星必須在恆星的一定範圍內,才能有良好的溫度環境、使得液態水可以存留。
太陽系在銀河系中的位置。圖/Wikipedia

超級適居行星的發現

所謂的「超級適居行星」(superhabitable planet),顧名思義,就是指位居在適居帶的行星。請注意,不少人常常將其誤解為「超級地球」(super-Earth),但這兩者是不一樣的。

首先,超級地球的判斷依據僅僅是質量,而非適居帶等條件,亦即比地球大出許多的岩質行星、但通常遠比天王星或海王星小。

-----廣告,請繼續往下閱讀-----

而另一個相關的數據稱為地球相似指數(Earth Similarity Index, ESI),指的是一行星的大小、質量、溫度等條件與地球的相似程度。以地球的 ESI=1 為標竿,目前所發現 ESI 最高的行星為位在 1,075 光年外的 KOI-4878.01,其 ESI 值高達 0.98,但存在性還在評估中。

不過,ESI 值高並不代表行星中有生命(畢竟有可能遠離行星適居帶)。真正意味著有可能會有生命存在的,便是「超級適居行星」。目前,葛利斯 370b、葛利斯 581c、葛利斯 581d、葛利斯 581g、葛利斯 832c、克卜勒 22b、克卜勒 62e、克卜勒 62f、克卜勒 69c、克卜勒 186f 和克卜勒 442b 等等,皆是超級適居行星的代表。為了探究這些星球是否有生命存在,最具表性的行動莫過於「搜尋地外文明計畫」(SETI)。

地球數以萬億計的物種中,人類算得上是最具高等智慧的生物。但假設——遙遠的某顆行星上也有「智慧生命」的存在,那麼,對方是否有可能比我們先進?他們能透過量子力學的應用而發明電子產品嗎?他們能掌握陽光、電磁等能源嗎?他們是否有完善的醫療、教育、經濟、社會結構?又或者,他們是否已然可以達成人類難以觸及的瞬時旅行?

在探討這個問題之前,先讓我們回到「人類」身上。人類是因為達成了哪些「成就」,而擁有了智慧呢?

-----廣告,請繼續往下閱讀-----

費米悖論:我們為何從未接觸過外星智慧?

或許宇宙深處已然有著科技程度比我們先進數百萬年的高等文明,那些 III 型文明或許早已可以駕馭光速飛行、甚至能掌握時空動力學跳脫距離限制到訪地球。根據「德雷克公式」(Drake equation),銀河系中可能與我們接觸的先進文明數量大約可以表示為:

其中,等號右側從左至右依序為:銀河系恆星形成速率、恆星系統有行星的可能性、位於適居帶行星的平均數目、行星上發展出生命的可能性、生命演化成為智慧文明的可能性、智慧文明得以進行通訊的可能性、以及該智慧生命的預期壽命。根據估算,可能與人類通訊的智慧文明在銀河系中最少一千、最多則高達一億個。

我們總是如此預估:在擁有 137 億年歷史的廣袤宇宙中,與地球類似的星體非常多,先進地外文明的存在性相對而言也非常高,而德瑞克公式更意味著本銀河系中便可能有成千上萬個智慧文明存在。於是,一個矛盾產生了:

既然宇宙的尺度與年齡意味著高等文明應當存在,那麼——為何這個敘述迄今沒有得到充分的科學證據支持?

更簡潔的說法,便是:

-----廣告,請繼續往下閱讀-----

宇宙中高等文明存在的可能性極高,然而為什麼這些智慧生命至今尚未與我們接觸過?

這便是著名的「費米悖論」(Fermi paradox)。關於這項提問,也出現了各種不同的說法或解答。

第一種答案認為,目前其實並沒有外星文明存在,因為:

  • 生命誕生的條件是極其稀罕的,有可能進化失敗、又或許尚未崛起(地球殊異假說)。
  • 自我摧滅:智慧生命在能完成恆星際旅行之前,便可能因為核戰爭、生化戰爭、或是資源枯竭等災難而自我毀滅了。

第二種則認為,外星文明其實存在,卻因為:

  • 尺度限制:受限於空間限制,使得智慧生命不容易前來;此外,也有可能是外星生命已經接獲人類的訊號,只是訊號尚未返回地球。
  • 技術因素:外星文明未必比地球文明進步;又或是,人類找尋外星生命的方法有誤,也有可能外星技術現象與自然現象過於雷同而難以區辨。
  • 刻意緘默「動物園假說」(zoo hypothesis)意味著外星智慧有可能已經收到人類訊息,但為了觀察人類舉動而不願回答;或者,科幻作家劉慈欣提出的「黑暗森林法則」認為,在尚未分別對方意圖之時、為保有宇宙資源等利益,刻意隱匿行蹤,必要時可能摧毀對方文明;又或者,基於技術奇點(technological singularity),與人類差別太遠從而無法有效答覆。
  • 已然接觸:外星智慧已然與人類接觸,但可能因為維度差異、或者隱匿行蹤,致使人類尚未發覺。例如文章中所提及的「馮紐曼探測器」(von Neumann probe)預示著:智慧文明可能透過奈米乃至於原子尺度的探測針、散播並且監控著地球人的舉動。

對於地外文明的探索與展望

對於探索地外文明,人類的野心從未止息。1972 年,無人探測器先鋒號裝載了一塊鍍金鋁板,其中囊括一些有關人類科技的基本訊息,例如——人類的身材面貌、氫原子躍遷圖示(用以表示長度與時間單位)、太陽系位置、以及地球的所在地等等。這塊「先鋒號鍍金鋁板」(Pioneer plaque)雖然不是第一個離開太陽系的人造物件(第一個離開太陽系的是航海家一號),但卻是第一個攜帶了人類文明訊息離開太陽系的人造物件。

-----廣告,請繼續往下閱讀-----
先鋒號鍍金鋁板上面所鐫刻的訊息。圖/Planetary

如同先前提及的,SETI 或許是最具代表性的團體。1974 年,SETI 透過無線電訊息發送了知名的「阿雷西波訊息」(Arecibo message)至遠在 25,000 光年外的 M13 球狀星團。這串訊息陣列包含了:二進位數字、DNA 序列、核苷酸、雙股螺旋、人類平均身高與人口、行星系統、以及望遠鏡結構。假設 M13 星團的外星文明接收到訊息,那麼根據傳播速度推算,人類接收到回覆大約是五萬年之後的事了。

阿雷西波號所發射的無線電波信息,其中攜帶了人類相關的基本資訊。圖/PHL

1977 年,有鑒於先鋒號刻板基礎,以薩根為主的 NASA 委員會將地球上的 55 種語言、各種大自然的聲音、不同年代的音樂,以及有關於科學、人體構造、生態、建築物、交通建設、書信文物等 116 張影像,一併收錄至一張唱片裡,其中還包括時任總統卡特(Jimmy Carter)的書面信息,再透過航海家探測器發射至太空。這張「航海家金唱片」(Voyager Golden Record)預計 4 萬年後才會到達距離太陽系 1.7 光年的地方。

航海家金唱片及其所攜帶的信息。圖/NASA

雖說上述訊息目前為止都尚未得到回覆,當然,就宇宙尺度而言恐怕要等到數萬年後才會有所答覆。不過,值得一提的是,近年來天文學家透過克卜勒望遠鏡觀測到 KIC 8462852(又稱 Tabby 星、博雅吉安星)的光度有異常變化。

關於這個變化,有人認為可能是新形成的恆星塵埃造成的,但是科學家在觀測後尚未發現相關跡象;有人認為是星體碰撞下的殘骸導致的,然而克卜勒望遠鏡觀測到此情況的機會亦非常低;也有人認為是彗星群受到重力影響而朝往該恆星方向運動,不過這說法無法解釋為何光度會顯著下降。

-----廣告,請繼續往下閱讀-----

這光度異常不規律的起伏至今仍是謎團,而所有證據彷彿指向了另一個極端的可能性——人工巨型結構(即「戴森球」)。假設該恆星系統有高等文明存在,便得以透過「戴森雲」這類結構控制恆星能量。乍聽之下似乎無比驚人,然而,目前唯有這個說法可以合理解釋光度的異常變化,因此,科學家並不否定 KIC 8462852 存在先進外星文明。

作者註:目前 KIC 8462852 的光度變化,科學界基本上已經排除戴森球的可能性

我們期待這些有關外星智慧的謎團能夠解開,也期許人類文明能在短時間內擺脫戰亂、資源枯竭等危機,從而在本世紀末順利躍升成為第 I 型文明。最後,讓我們引用 1977 年收錄在航海家金唱片中、吉米・卡特前總統的一段語錄作為總結:

「這個禮物來自於有點遙遠的世界,夾帶著屬於我們的聲音、我們的科學、我們的圖像、我們的音樂、我們的思想、以及我們的感觸。我們嘗試永存現有的時光,好讓來日得以共生於你們所處的時光中。我們期望有朝一日,能夠共同解決彼此所面臨的難題,並且聯合組成一個星系文明。這張唱片象徵著我們的希望、我們的決心、以及我們的善意——在這浩瀚且壯麗的宇宙中。」

參考文獻

  • 加來道雄,《穿梭超時空》,台北:商周出版,2013
  • 加來道雄,《平行宇宙》,台北:商周出版,2015
  • 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  • 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
所有討論 1
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及文學創作。

9

27
0

文字

分享

9
27
0
突然畢業了,阿雷西博天文台將永久關閉QQ
科學大抖宅_96
・2020/11/24 ・4201字 ・閱讀時間約 8 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

2020 年 11 月 19 日,美國國家科學基金會(National Science Foundation, NSF)宣布,史上最知名的望遠鏡之一——位於波多黎各(Puerto Rico)的阿雷西博天文台(Arecibo Observatory)即將永久關閉,震驚學界。

阿雷西博天文台乃隸屬於美國國家天文學和電離層中心(National Astronomy and Ionosphere Center, NAIC)的無線電望遠鏡,其最顯著的特徵包括直徑 305 公尺的球面反射器盤(spherical reflector dish),以及懸吊在盤面上方 137 公尺、重約 900 噸、由三座鋼筋混凝土高塔連結 18 條鋼纜所撐起的儀器平台。

俯瞰阿雷西博天文台。圖/Wikipedia

從 1963 年建成以來,阿雷西博天文台一直保持著世界最大單孔徑望遠鏡的紀錄,直到 2016 年為止。它是波多黎各主要的科學教育中心,也培育出許多天文學家和工程師,甚至出現在流行文化裡,如電影《接觸未來》(Contact)和 007 電影《黃金眼》(GoldenEye)。

007 電影《黃金眼》中出現阿雷西博天文台的片段

然而,就在 2020 年 8 月和 11 月,阿雷西博天文台的兩條鋼纜先後斷裂;考量到維修的困難與高風險,這座產出許多科學研究的標誌性天文望遠鏡,面臨被拆解的命運……在這感傷之際,讓我們一起追憶阿雷西博天文台的一生。

-----廣告,請繼續往下閱讀-----

冷戰的雷達需求促成天文台誕生

1945 年,因應二戰後的局勢,美國成立了空軍劍橋研究實驗室(Air Force Cambridge Research Laboratories)[1]。在冷戰背景下,其於 1949 年發明了利用電話數據機傳輸數位資料的技術(即早期網際網路傳輸所使用的方式)。1951 年,空軍劍橋研究實驗室的工程師首度發表文章,討論利用球面接收器接收電磁訊號的可能性;同時,美國國防部也因為遠程雷達和通訊的需求,對建造世界最大的天線來研究電離層很有興趣——這促成 1959 年空軍劍橋研究實驗室和康乃爾大學(Cornell University)簽署了成立阿雷西博天文台的合約。

天文台位於波多黎各北海岸的自治市阿雷西博;其設計和建造,由時任康乃爾大學教授的戈登(William Edwin Gordon,1918 – 2010)負責籌劃,於 1963 年落成。

望遠鏡的反射器盤建基於天然形成的滲穴之中,1974 年升級後由 38778 片穿孔鋁板製成;從遠處不同方位過來的電磁波會被盤面反射,分別聚焦於不同位置,懸吊於上空的接收器便會依據觀察目標移動到適當的接收點。

從不同方位過來的電磁波(綠色和紅色平行線條)會被反射器盤反射並聚焦於不同焦點,所以可以藉由接收器的移動來接收天空中不同方向來源的電磁波。圖/Physics today, Volume 66, Issue 11

一如當初的計畫,阿雷西博天文台的主要功用在研究地球的電離層、接收來自遙遠宇宙的無線電波訊號,以及使用雷達技術探索太陽系土星軌道之內的天體。幾十年來,阿雷西博天文台經歷數次升級,一直是天文學和大氣科學的研究重鎮:它擁有世界最大的電磁波接收區(也就是反射器盤);當其他無線電望遠鏡花費數小時才能收集到足夠的電磁波訊號,阿雷西博天文台只需要幾分鐘。

發現脈衝雙星,間接證實重力波

阿雷西博天文台開始運作之後,做出的科學貢獻多不勝數。例如,1964 年天文學家彼騰吉爾(Gordon H. Pettengill, 1926 –)的團隊藉由雷達脈衝發現水星的自轉週期為 59 天,有別於原先認為的 88 天;1968 年,洛夫萊斯(Richard V.E. Lovelace)利用阿雷西博天文台,提供了蟹狀星雲脈衝星(Crab Pulsar, PSR B0531+21,自轉週期 33 毫秒)存在的確切證據,也是第一顆被確認為跟超新星殘骸有關的中子星。

-----廣告,請繼續往下閱讀-----

1974 年,赫爾斯(Russell Alan Hulse, 1950 –)和泰勒(Joseph Hooton Taylor Jr., 1941 –)發現第一對脈衝雙星(脈衝星和中子星)系統;之後,其被用來作為廣義相對論的高精度測試——這一項發現成為廣義相對論中,重力波存在的間接證據,也是他們獲得 1993 年諾貝爾物理學獎的重要原因。

1990年,波蘭天文學家沃爾茲森(Aleksander Wolszczan, 1946–)從阿雷西博天文台發現了脈衝星PSR B1257+12,並於兩年後,發現有兩個行星(之後又找到第三個)繞行PSR B1257+12,這也是人類史上第一次發現太陽系外的行星。

除此之外,阿雷西博天文台也能拿來研究天體的地貌:1989 年 8 月,趁著小行星 4769 Castalia 經過,離地球的最近距離僅 4,029,840 公里(約地球到月球距離的 11 倍),科學家利用天文台雷達描繪出小行星 4769 Castalia 的 3D 樣貌;至今,阿雷西博天文台已經研究過數百個近地小行星(near-Earth asteroids, NEAs),除了可以分析它們撞擊地球的可能性,也能幫助我們理解太陽系的起源和演化。1994 年,阿雷西博天文台則被用來研究水星南北極隕石坑內可能存在的冰層。

阿雷西博天文台亦針對星系進行無線電波頻率的大範圍掃描,並於 2008 年發現星系阿普 220(Arp 220)中存在有機化合物分子。另外,在大氣物理學領域,它增進了我們對高層大氣,特別是電離層的認知與理解。

向宇宙發送訊息,等待外星文明回應

阿雷西博天文台的 305 公尺孔徑紀錄,雖然在 2016 年被中國的五百米口徑球面射電望遠鏡(Five-hundred-meter Aperture Spherical radio Telescope, FAST, 簡稱天眼)超越,但阿雷西博天文台的地位卻無法被取代——其中一個很大的原因是,天眼只有接收訊號的功能,沒有發射訊號的設計;而阿雷西博天文台不僅可以接收,也能發射訊號(所以具有雷達的功能)。

-----廣告,請繼續往下閱讀-----

最有名的例子,是 1974 年,天文學家德雷克(Frank Drake, 1930–)和其他研究者——包括天文學家兼科普作家薩根(Carl Sagan, 1934 – 1996),設計了知名的阿雷西博訊息(Arecibo Message),內容包含人類的 DNA 結構,和太陽系的介紹等等,以強力的電磁波從阿雷西博天文台發送向距離地球 25000 光年的球狀星團 M13。雖然無法期待在不久的將來能收到回覆,卻是人類主動接觸外星文明的重要嘗試。

反過來說,阿雷西博天文台接收到的無線電波,也能拿來分析是否包含外星智慧文明發出的電磁訊號。於是,在早期美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的搜尋地外智慧計畫、或者民間著名的 SETI@home 計畫[2],分析所用的數據,部分便來自阿雷西博天文台。

阿雷西博訊息。顏色為分類、方便閱讀之用,原始訊息不包括顏色。圖/Wikipedia

結構不穩,無可奈何的退役決定

儘管功績卓著,且有著不可替代性,阿雷西博天文台仍然面臨拆除的命運。雖然有在定期維護,但經費的短缺加上歲月的流逝和地震、颶風的侵襲,都增加了望遠鏡結構的不確定性。

首先是 2020 年 8 月 10 日,一根連結到儀器平台、安裝於 90 年代的輔助鋼纜從托座鬆開,破壞了反射器盤面邊緣的鋁板;工程師在檢查損壞狀況時,發現儀器平台的 12 根主要支撐鋼纜中,有一根鋼纜的組成鋼線存在少許損壞,但評估後認為對安全性不造成影響。怎知到了 11 月 7 日,該主要支撐鋼纜從中間斷裂,在靠近反射器盤面中心的區域撕開了大裂口——既然原本認為安全的鋼纜斷了,剩下的鋼纜是否真的安全無虞?又能支撐多久?沒有人知道。

-----廣告,請繼續往下閱讀-----

現在,任何時刻都可能有更多鋼纜斷裂或鬆脫,一旦最壞的狀況發生,整個儀器平台將掉落到望遠鏡盤面上,或者損害附近的建物;甚至,任何想要穩定或測試鋼纜的努力都可能加速剩下鋼纜的損壞。為此,美國國家科學基金會正在研擬計畫,在可控的狀況下拆除儀器平台——這是個艱難的決定,但一切以安全為優先。

事實上,出於經濟考量,美國國家科學基金會前些年都在為阿雷西博天文台的經費苦惱:在 2017 年,美國國家科學基金會和國家航空暨太空總署一年分別提供高達 800 萬和 360 萬美元的營運費用,所費不貲;到了 2018 年,才由中佛羅里達大學(University of Central Florida, UCF)承擔阿雷西博天文台的營運,並補足美國國家科學基金會逐年縮減的天文台經費。沒想到人算不如天算,阿雷西博天文台被迫永久關閉,這無疑是科學界的一大損失。

現在阿雷西博天文台的反射器盤面破了一個大洞。圖/University of Central Florida/Arecibo Observatory

研究暫停,無可取代的電波望遠鏡

阿雷西博天文台自 1963 年啟用以來,對天文學、大氣科學和行星科學貢獻良多;它是第一個發現系外行星的望遠鏡,也是搜尋地外文明的重要工具。它在科學教育面向深受好評,每年有十萬人到阿雷西博天文台參觀,包括許多學生;那兒不僅有天文學、高層大氣物理學的展覽,還有可以俯瞰巨大反射器盤面的觀景平台。

儘管年紀大了,但阿雷西博天文台持續升級,原本也預定在接下來數年安裝新儀器,像是將大幅提高望遠鏡靈敏度、價值 580 萬美元的天線――這一切都成為泡影。阿雷西博天文台退休後,許多研究都必須暫停,只有部分計畫得以找到替代設施,或是能夠留在天文台原址繼續進行。往後,我們只能在記錄中,緬懷這座極具歷史意義的無線電望遠鏡,令人唏噓。

-----廣告,請繼續往下閱讀-----

註解

[1] 空軍劍橋研究實驗室於 2011 年被整併,最終演化成現今美國空軍研究實驗室(Air Force Research Laboratory)的一部份。空軍研究實驗室致力於領導航太作戰科技的發明、發展和整合,計畫空軍的科學、科技方案並執行,以及為美國空中、外太空和網際空間的部隊提供作戰能力。

[2] SETI@home,是一個通過網際網路利用個人電腦處理天文數據的分布式計算項目;其試圖通過分析無線電望遠鏡收集到的無線電信號,搜尋地外智慧生物存在的跡象。

參考資料

  1. Alexandra Witze, Legendary Arecibo telescope will close forever — scientists are reeling, Nature, Nov. 19 (2020).  
  2. Alexandra Witze, Arecibo telescope wins reprieve from US government, Nature, Nov. 16 (2017) 
  3. Daniel Clery, Famed Arecibo telescope, on the brink of collapse, will be dismantled, Science, Nov. 19 (2020).
  4. Daniel Clery, Adrian Cho, Iconic Arecibo radio telescope saved by university consortium, Science, Feb. 22 (2018).
  5. Daniel Altschuler, Chris Salter, The Arecibo Observatory: Fifty astronomical years, Physics Today 66, 11, 43 (2013).
  6. Paul H. Carr, Early history of Arecibo Observatory, Physics Today 67, 6, 11 (2014).
  7. Telescope Description about Arecibo Observatory
  8. Air Force Research Laboratory – Wikipedia
  9. Arecibo Observatory – Wikipedia
所有討論 9
科學大抖宅_96
36 篇文章 ・ 1711 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/