0

0
1

文字

分享

0
0
1

不只是嶄新的天文儀器,更讓觀測不再受人眼所限:一張畫認識第谷與他的天文台

活躍星系核_96
・2020/09/04 ・3314字 ・閱讀時間約 6 分鐘 ・SR值 522 ・七年級

-----廣告,請繼續往下閱讀-----

  • 文/仰望天空的智人│目前為高三自學生,在升上高三的那個暑假,毅然決然走上自學的道路。希望在有限的青春,不要只是僅追求紙上的對錯,而是時時刻刻的詢問世界,「為什麼?」。

上物理課教到克卜勒(Johannes Kepler)的三大定律時,老師特別也介紹了對克卜勒的定律有很大貢獻的 第谷.布拉赫(Tycho Brahe)。

第谷是一位丹麥的貴族,鼻子因為決鬥而失去了一部分,擁有當時資料最多、最精準的天文台。他的助手約翰尼斯.克卜勒(Johannes Kepler)之後會靠著這些資料,成功地發現橢圓行星軌道。可惜第谷去世的早,無緣見證到克卜勒的曠世巨著《新天文學》的出版。

課堂投影片上,老師放了一張畫作,其中第谷用右手指著牆上的小洞。我心中很快地列出了某些想像,認為第谷是一位腦袋內建「量角器」、每天有閒情逸致仰望天空的貴族。

圖/wikimedia

等到我有了機會研究更多有關第谷的資料時,才赫然發現,當初看到的畫作,就已經揭露了第谷在烏蘭尼堡(Uraniborg)的多種精密觀星儀器。

-----廣告,請繼續往下閱讀-----

一幅畫帶你認識第谷如何觀星

介紹第谷時,無法忽視這張雕刻畫,裡面有著他一生的研究心血。它出自於第谷在西元 1598 年出版《Astronomiae Instauratae Mechanica》(中譯:新天文學儀器)中的雕刻畫,畫裡清楚地繪畫出第谷的儀器,並隱含了他的觀星技術。

回到稍早的西元 1597 年,第谷因為和新繼位的丹麥國王克里斯蒂安四世(Christian IV)長期的爭執無法解決,最終被迫離開了哥本哈根。第谷帶著儀器,暫時借住到貴族朋友海因里希.蘭卓(Heinrich Rantzau) 的城堡。

在流亡的這一年中,他完成了此書,希望藉此讓國王了解他的貢獻以及放棄他的損失。但丹麥國王並不領情,最後第谷將此書獻給了神聖羅馬帝國魯道夫二世(Rudolf II),並很快地獲得了賞識,第谷因此得以設立新的天文台,進而邀請克卜勒加入。後來沿用多個世紀、精準的「魯道夫星表」(Tabulae Rudolphinae)也是由此為開端建立的。

第谷如何獲得魯道夫二世的青睞?他的書中又提到了哪些觀星的技術呢?我們可以從雕刻畫裡的內容談起。

-----廣告,請繼續往下閱讀-----

畫中透露了第谷擁有三種主要的觀星儀器分別為:四分儀(Quadrant)、六分儀(Sextant)、渾天儀(Armillary)。每一種儀器都有各自特殊的用處。

四分儀:建立天體的絕對座標

四分儀,顧名思義,儀器角度為全圓周的四分之一,即 90 度。90度是地平線到天頂的範圍,方便直接從地平線開始量測是所有天體量測的基準。第谷以四分儀建立精準的天體座標。

展示在大英博物館中的四分儀。The Canterbury Astrolabe Quadrant. British Museum, London.圖/wiki commons

在畫作中,佔據最大版面的壁畫四分儀(Mural Quadrant),就是第谷在烏蘭尼堡的主力觀察儀器,長期固定面對著子午線,進行天體座標的測量與修正,半徑 1.94 公尺的龐大身軀上刻滿了細緻的刻度。需要三個人協作,一人看緯度,一人看時間,一人指揮,才能夠完成觀測。此儀器精度可達 10 角秒,遠遠超越人類的裸眼極限。

除了定點觀測外,第谷也設計了另一個室外四分儀,用來觀察太陽相對繞行的位置。此儀器擁有和壁畫四分儀一樣半徑(1.94公尺)的方形設計,它能旋轉到任意方位。特別的是第谷選用鐵材來製作方形四分儀,堪稱所有儀器中的傑作,堅固、輕巧、可移動、同時又兼具驚人的 10 角秒精準度。

-----廣告,請繼續往下閱讀-----

六分儀:量測天體間的角度差

常使用於測繪與航海的六分儀。圖/Max Pixel

六分儀,儀器角度為全圓周的六分之一,即 60 度。特別的是它並不是測量物體水平或垂直角度,而是測量物體在天空中的角度差。可以再透過幾何運算與其他測量資訊,來獲得相對天體座標

第谷設計六分儀時,利用 60 度結構與等腰三角形的特性,簡化了許多繁複的幾何運算,並透過經年累月的重複量測,讓這身長 1.55 公尺的龐大儀器精度仍可達 24 角秒。

渾天儀:協助進行座標轉換

渾天儀的模型展示。圖/Balaji CC BY-SA 3.0  File:Armillary sphere.JPG

渾天儀,為一個大型的活動圓形儀器,內部由多個圓環組成天球外框,能夠同時決定黃道面、天球赤道面、子午線以及天極。主要會有兩個環一個代表黃道,一個代表天球赤道,也象徵著自轉和公轉,再加上其他輔助環代表行星、垂直面等等。

在當時因為沒有電腦,因此有兩者的微調需要經過複雜的幾何運算,為了簡化問題,才有了這類型的儀器。渾天儀較為類似輔助儀器,方便占星學家做座標轉換,不像是四分儀或六分儀為直接觀測儀器。

-----廣告,請繼續往下閱讀-----

第谷在此儀器上的創新在於,當時的天文學家都是以黃道面當作他們的天體基準面;但第谷認為,從天極得到的緯度要轉換到天球赤道坐標系相當不便,於是他將基準面設定為天球赤道面。如此可以透過模擬地球自轉來簡化觀測儀器的操作,直接同時量測出天體的赤經與赤緯,也因為這樣的設計,讓後人認為第谷是發明望遠鏡赤道儀的天文學家。

渾天儀全部圓環皆以鐵材製作,龐大沉重的結構能夠在天極軸上精準又平衡地旋轉,在當時的製作工藝是相當大的挑戰,第谷設計了獨一無二的軸承,解決了天極軸旋轉的問題。因此,此觀星巨獸直徑達 1.55 公尺,但觀測精度卻可達 1 角分。

天文儀器的改良:刻度小還要再更小

第谷嘗試了多種特殊創新的刻度劃分,包括設計了游標卡尺的前身「Nonius」,但他最終選擇了「橫向刻度」(Transversal Scale)作為每個儀器的標準刻度劃分。

除了圓周刻度劃分外,第谷在圓周兩側的刻度間交錯畫上斜線,並刻上橫向刻度,他巧妙的運用截線定理,讓刻度劃分並不再侷限於圓周上,更能夠藉由儀器的圓周寬度來增加刻度劃分。

-----廣告,請繼續往下閱讀-----

舉例來說,第谷的壁畫四分儀,半徑 194 公分,一度的圓周長約有 3.4 公分,劃分成六格,每格長約 0.5 公分,代表 10 角分。0.5 公分的圓周已經無法再劃分到更小,橫向刻度就能夠派上用場了,第谷將四分儀的圓周寬度設計約 13 公分,因此兩側 10 分角刻度間隔的對角線約為 13 公分,再細分 10 格,使得刻度來到 1 角分。

此時每角分間隔 1.3 公分,此間隔足夠讓第谷再劃分 6 格,使得刻度來到 10 角秒,每 10 秒角間隔 0.2 公分,裸眼可以輕鬆識別此間隔,達到裸眼 10 角秒的觀測精度。

排除觀測者造成的誤差

從累積多年觀測經驗中,第谷體悟到:如果觀察者無法精準的觀測星體,再精準的儀器也是徒勞。

當時人們靠著「針孔」來對準目標物,他很快地發現,觀察者無法每次都用單眼將目標物的中心對準在孔洞裡,因此造成了 8 角分的誤差,這對於擁有精度 1 角分儀器的第谷來說,實在是太過荒謬了。

因此他發明了「無視差瞄準器」(Parallax-free Sight),讓觀察者用雙眼通過兩側隙縫,觀察目標物通過前方的圓柱孔,當物體都在左右眼的隙縫裡,這就是完美對準。

無視差瞄準器

不只是嶄新的天文儀器,讓觀測不再受人眼所限

普遍人類裸眼最多只能看到 1 角分,第谷當時最好的四分儀就已經能夠看到 10 角秒的精度了,持續領先當時眾多天文學家 100 年,直到 1660 年代開始發展天文望遠鏡。

-----廣告,請繼續往下閱讀-----

第谷是一位相信客觀中立的科學家,嘗試用他超精密的觀星儀器,來探索困擾當時天文學家的誤差。他深信著精準資料給予的結果,而建立了介於地心與日心之間的「第谷模型」,讓克卜勒在這基礎上,更進一步建立了完整的行星軌跡模型。他並且推論,如果地球繞行太陽的話,應該能夠觀察到星星的視差,殊不知星星與地球的距離超乎了當時人類的想像,視差小於 1 角秒,這超過人類肉眼的極限。

但一切都無妨,在第谷之後的 200 年,人類首次測量到天鵝座 61, 313.6 毫角秒的視差。距離地球 10 光年,星星不再是天空中遙不可及的光點,人類會繼續一步一步的了解天空的每個角落。

圖/wikimedia

參考資料

  1. Chapman,A.,1989,Tycho Brahe – Instrument designer, observer and mechanician,J. Br. Astron. Assoc,99(2),70-77
  2. Tycho Brahe,1598, Astronomiae Instauratae Mechanica
文章難易度
活躍星系核_96
752 篇文章 ・ 121 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

4
4

文字

分享

0
4
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

0
0

文字

分享

2
0
0
【成語科學】以管窺天:視野狹隘才看得清楚!「窺管」是怎麼幫助古人觀測星空的?
張之傑_96
・2023/09/29 ・1018字 ・閱讀時間約 2 分鐘

這個成語出自《莊子》秋水篇。戰國時,公孫龍自認學問、口才高人一等,可是聽到莊子的言論卻大惑不解。他的一位朋友說,是他眼界狹小,有如用管子看天,只能看到天空的一小部分,以為天空就這麼小。

後來「以管窺天」演變成一個成語,比喻見識淺薄狹窄。談到這裡,讓我們造兩個句吧。

沒讀幾本書,就說自己了解明史,猶如以管窺天,所知太有限了。

這篇討論新冠肺炎的論文,只是以管窺天,並沒看到問題的全貌。

成語「以管窺天」,常和「以蠡測海」並用。蠡,指用葫蘆做的瓢。用瓢測量海水,能測得完嗎?以蠡測海,也是比喻見識淺薄狹窄。

成語「以蠡測海」,純粹是個比喻,沒什麼科學意義。成語「以管窺天」則不然,原來用來窺天的「管」,是古人的天文觀測儀器啊!

-----廣告,請繼續往下閱讀-----

古時沒有望遠鏡,只能用肉眼觀看星空。用肉眼觀測大範圍的天象尚能應付,觀測細微的天象就不敷需要了,所以古人想出一個辦法,用竹管的管孔來縮小觀測範圍,這種觀測天象的管子,特稱「窺管」。

窺管。圖/Wikimedia

窺管能「窺」出什麼呢?首先,能夠消除側光的影響,一些較暗的星,看起來就變亮了。小朋友可以做個實驗,用手握出個孔洞,湊近一隻眼睛,望向遠處目標,是不是看得更清楚了。

窺管除了可以增加亮度,還可以觀測星星的經度和緯度,這就得談談古代的天文觀測儀器渾儀。大約西元前 1 世紀,古人發明了渾儀。渾儀由 1 至 3 重的金屬環構成,外重是固定的,內重可以轉動,窺管嵌於其中。後來環數加多,構造變得複雜,但基本原理是一樣的。

自古以來,天文學家就假想「天」是個球體——天球,做為觀察星空的依據。假想中的天球,是以地球為中心、向外擴充的無限大球面。地球的南北極,向外擴充,就成為天球南北極;地球的赤道,向外擴充,就成為天球赤道。地球有經緯度,天球也有經緯度,稱為赤經、赤緯。

-----廣告,請繼續往下閱讀-----
北京古觀象台的渾儀。圖/Wikimedia

根據《隋書.天文志》,當時渾儀上的窺管,長 8 尺,有直徑 1 寸的圓孔。觀測時,轉動內層的環,將窺管導向某一星星,經過微調,根據環上的刻度,就可以定出這顆星星在天球上的座標,也就是它的經緯度。

所有討論 2
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

11
2

文字

分享

0
11
2
宇宙到底是什麼樣子?——宇宙觀的發展史(上篇)| 20 世紀前
賴昭正_96
・2023/04/19 ・6261字 ・閱讀時間約 13 分鐘

  • 文/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

根本沒有理由假設世界有一個開始。認為事物必須有開始的想法實際上是由於我們思想的貧乏。
—— Bertrand Russell(1950 年諾貝爾文學獎)

「天上的星星千萬顆,世上的妞兒比星多,啊,傻孩子,想一想,為什麼失眠只為⋯⋯」(註一)不!世上的妞兒不會比星多,為什麼失眠也不是只為「她一個」,而是遐想著天空這麼多的星星是哪裡來的?為什麼不停地對著我咪咪地微笑?⋯⋯沉靜晴朗的夜晚,仰望著天空,有多少人不會為閃耀的星空沈思著迷呢?因此相信人類很早就在思考這個問題:在中國有盤古開天闢地,其身形化為日月星辰、山川河流,逝世時將精靈魂魄變成了人類之傳說。

而古希臘人(公元前 750-650 年) 則認為起初世界處於一種虛無混沌狀態,突然從光中誕生了蓋亞(Gaia,地球母親)以及其「他」具有人性的諸神,在沒有男性幫助的情況下,蓋亞生下了烏拉諾斯(Ouranos,天空),後者使她受精,生出了第一批泰坦(Titan)。泰坦後代普羅米修斯(Prometheus) 用泥塑人,雅典娜(Athena)為泥人注入了生命,宙斯(Zeus) 創造出一個擁有驚人美貌、財富、欺騙心、和撒謊舌頭的女人潘多拉(Pandora),給了她一個盒子,令永遠不要打開,但好奇心最後戰勝了,她終於打開盒子釋放出各種邪惡、瘟疫、悲傷、不幸、和在盒子底部的希望——現今打開「潘多拉盒子」的來源。

1881年,英國畫家勞倫斯.阿爾瑪-塔德瑪爵士(Sir Lawrence Alma-Tadema)的《矛盾的潘朵拉》。圖/Wikipedia

除了神話和傳說外,宗教在宇宙觀的發展上也佔了重要的地位。西方的宗教如基督教主要認為宇宙是一個由超自然力量之神創造出來的,人死後會上永生天堂。而東方的宗教如佛教則認為宇宙是無始無終的,沒有起點或終點,因此無所謂宇宙的起源與創造,人會以不同的面貌和形式,不斷生死輪迴。歐洲宗教在十六世紀前一直認為人與地球在這宇宙中佔了一個特殊的中心地位,因此深深影響了基於證據、推理、和辯論的宇宙觀發展。

中國古代的天文學

中國古代的宇宙觀有蓋天說、宣夜說、渾天說三學派,蓋天說認為「天圓地方」,天覆蓋著地,但由於地是方的,故而有四個角是無法覆蓋的,因此這四個角上有八根柱子支撐著整個天空。宣夜說則認為「日月眾星,自然浮生於虛空之中,其行其止,皆須氣焉」,即整個天體漂浮於氣體之中。渾天說雖然也認為「天圓地方」,但天是一個圓球,而不是蓋天說中的半圓,地球在天之中,類似於雞蛋黃在雞蛋內部一樣。東漢張衡(78-139 年)將「渾天說」發展成為一套系統的理論,並透過其所製作的「渾天儀」來加以演示,使渾天說成了中國宇宙結構的權威理論。渾天說的基本觀點認為日月星辰都佈於一個「天球」之上,不停地運轉著。

-----廣告,請繼續往下閱讀-----
清代的渾天儀。圖/Wikipedia

中國帝王自稱為「天子」,因此天文觀測的目的是為了帝王預測天下的禍福,用以指導治國理政、風水地理、農業民生、中醫人文的;天命如果有所改變,就會通過天象昭示天下。因此雖然中國是世界上最早發明曆法的國家之一,也為我們留下了許多寶貴的觀測資料,如記錄了 1054 年 7 月 4 日金牛座超新星的爆發,但古代的天文是皇權統治的一種工具而已,因此中國的天文學難以在民間發展,也不可能出現以科學為目的的天文研究。

地球中心模型

反觀西方世界,天文學在古典希臘則早已經是數學的一個分支。柏拉圖(Plato,公元前 427-347 年)鼓勵年輕的數學家蛇床子(Eudoxus of Cnidus,公元前 410-347 年)發展天文學體系,於公元前 380 年左右提出第一個以地球為中心的宇宙模型,認為一系列包含恆星、太陽、和月亮的宇宙球體都圍繞地球旋轉。

亞里士多德(Aristotle,公元前 384-322 年)識這些宇宙球體為物理實體,裡面充滿了導致球體移動之神聖和永恆的「以太」(ether)。他將這些球體分為陸地(terrestrial) 和天界 (celestial) 兩個領域。陸地領域包括地球、月球、及它們之間的月下區域,以變化和不完美為其標誌。天界是月球上方的領域,在這裡秩序井然,完美無缺。恆星固定在一個天球上,該天球每 24 小時圍繞地球旋轉一次。

最裡面的球體是地球的「陸地」,最外面的球體是「以太」構成的,包含「天界」。圖/Wikipedia

這個模型在接下來的幾個世紀裡得到了進一步的發展:希臘裔埃及天文學家、數學家、和地理學家托勒密(Claudius Ptolemy, 85-165)仔細研究以前所有天文學家的工作,了解到用肉眼觀察夜空中物體的方法後,透過他出色的數學技能開發出自己的天體運動模型,於公元 150 年出版了一本現在稱為《Almagest》(最偉大)的書籍來闡述其論點。

-----廣告,請繼續往下閱讀-----

他認為地球是一個靜止的球體,位於一個大得多的天球的中心;這個天球攜帶著恆星、行星、太陽、和月亮以完全均勻的速度圍繞地球旋轉,從而導致它們每天的升起和落下。完美的運動應該是圓周運動,因此托勒密認為這些表面上不規則的天體運動實際上是由規則的、均勻的圓周運動組合成的:運動的中心不但偏離了地球,而且還沿著主要圓形軌道上的點依較小的「本輪」圓圈(epicenter)移動。托勒密在該書目錄後留言謂:

我知道我天生必死,轉瞬即逝; 但當我隨心所欲地描繪天體的曲折軌跡時,我的腳不再接觸大地,而是站在宙斯面前,盡情享受神的美味。

此後的 1500 年,托勒密書中的表常被用來預測天體在夜空中的位置;而其以地球為中心的宇宙觀也幾乎統領了以後 2000 年的天文物理發展!

太陽中心模型

1543 年,波蘭哥白尼(Nicolas Copernicus,1473-1543)在德國紐倫堡出版《De revolutionibus orbium coelestium》 (論天體運轉,註二) 一書,提出日心系統,謂地球不在宇宙中心之特別位置,而是與其他行星一起在圍繞太陽的圓形軌道上運動。不幸的是它表面上不規則的天體運動之複雜並不亞於托勒密地心系統;還有,如果地球在動,為什麼星星總是在同一個地方出現——除非它們離地球很遠(註三)?因此該書出版後從未獲得廣泛支持。儘管如此,在日心系統裡,行星繞日具有地心系統所沒有的周期性

哥白尼的宇宙觀,中心為太陽。圖/Wikipedia

十七世紀初,在新發明之望遠鏡的幫助下,意大利天文、數學、哲學家伽利略(Galileo Galilei,1564-1642)發現了圍繞木星運行的衛星,終於對地球位於宇宙中心的觀念造成致命的打擊:如果衛星可以繞另一顆行星運行,為什麼行星不能繞太陽運行?伽利略因之慢慢地深相地球繞日說,但被羅馬教會禁止「堅持或捍衛」哥白尼理論。晚年於 1630 年出版《Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano》(關於兩大世界體系——托勒密和哥白尼——的對話), 在最後一章裡用潮汐現象來證明地球是在動,不是靜止地在宇宙中心(註四)。

-----廣告,請繼續往下閱讀-----

大約就在那個時候,德國數學、天文學家開普勒(Johannes Kepler 1571-1630)「盜取」導師丹麥天文學家布拉赫(Tycho Brahe,1546-1601)的豐富實驗資料構建了日心的定量模型,在 1618 年至 1621 年期間出版(立刻成為天主教會禁書的)《Epitome Astronomiae Copernicanae》(哥白尼天文學概要),提出描述行星體如何繞太陽運行的(開普勒)三定律:(1)行星以太陽為焦點在橢圓軌道上運動,(2)無論它在其軌道上的哪個位置,行星在相同的時間內覆蓋相同的空間區域,及(3)行星的軌道周期與其軌道的大小(半長軸)成正比。

開普勒終於解開行星之謎:行星以橢圓形——不是完美的圓形——圍繞太陽運轉。開普勒第三定律謂:行星與太陽的距離與其繞太陽公轉所需的時間存在精確的數學關係。這條定律激發了牛頓(Isaac Newton,1643-1727)的靈感,證明橢圓運動可以用引力與距離的平方反比定律來解釋。

平方反比定律

人類事實上好像很早就注意到了所有物質都互相作用,例如亞里士多德認為物體由於其內在的引力(沉重)而趨向一個點,伽利略則注意到物體被「拉」向地球中心。英國博學士胡克(Robert Hooke,1635-1703)在 1670 年的格雷沙姆演講 (Gresham lecture) 中謂萬有引力適用於「所有天體」,並添加了萬有引力隨距離減小的原理,及在沒有任何這種動力的情況下,物體會直線運動。到 1679 年,胡克認為萬有引力具有「距離平方反比」依賴性(註五),並在給牛頓的一封信中傳達了這一點:「我(胡克)的假設是引力總是與距中心距離成雙倍比例。」

牛頓因為害怕其他科學家和數學家竊取了他的想法,喜歡把他的工作隱藏起來、不發表;因此直到 44 歲才在英國天文學家哈雷(Edmond Halley)說服下,寫了一篇關於他的新物理學及應用在天文學的完整論述;一年多後(1687 年),發表了後來成為物理經典的《Philosophiae Naturalis Principia Mathematica》(自然哲學數學原理)或簡稱為《Principia》(原理)。

-----廣告,請繼續往下閱讀-----

儘管牛頓在《原理》中承認胡克曾經提出太陽系中的平方反比定律,但胡克仍然對牛頓聲稱「發明」了這一定律感到不滿。胡克是一位才華橫溢、但是又駝背又矮的科學家:發現彈性定律(胡克定律)、發現有機體基本單位的「細胞」、發明顯微鏡(使他成為細胞理論的早期支持者)。 當胡克要求牛頓承認他已經預料到後者在陽光中顏色的一些研究結果時,牛頓寫了一封諷刺的拒絕信,影射了胡克的小身材謂:「如果我看得更遠,那是因為站在巨人的肩膀上」(事實上,牛頓的許多創見都不是站在巨人之肩膀上的——被譽為是有史以來最偉大的物理學家,不是沒有道理的)。

胡克透過顯微鏡觀察、繪製的細胞壁。圖/Wikipedia

自然哲學數學原理

牛頓在《自然哲學數學原理》裡用同一個定律解釋了一系列以前不相關的現象:太陽-行星運動、行星-衛星運動、軌道物體、拋射體、鐘擺、地球附近的自由落體、彗星的偏心軌道、潮汐變化、以及地球軸的進動等等,具體地證明了「萬有引力」定律:「⋯⋯所有物質吸引所有其它物質的力與它們質量的乘積成正比,與它們之間距離的平方成反比」。這項工作使牛頓成為科學研究的國際領導者,「自然哲學數學原理」被公認為有史以來最偉大的科學著作。

但除了受過幾何學訓練的數學家外,《原理》事實上是一本非常難以理解的書,更糟的是:裡面充滿了矛盾和不一致,而且還點綴著一些令人毛骨悚然的錯誤(一些錯誤是計算和演示中的徹底錯誤,其它則是邏輯上的空白:沒有證明、只是猜測)。在牛頓時代,很少有人能讀懂它,而今天幾乎沒有人嘗試過。牛頓任教之劍橋大學的學生曾這樣諷刺:「有一個人寫了一本他和任何人都無法理解的書」。

《原理》在那個時代還有一個很大的邏輯問題:那時的物理學家認為世界是一部大機械,作用是必須透過物質撞擊或擠壓物質的接觸來達成的;從遠處發出穿過虛空的無形作用力量是魔法、神秘的、非科學的!為了阻止不可避免的批評和挑釁,牛頓先下手為強,在《原理》一書謂:

-----廣告,請繼續往下閱讀-----

「我已經用重力解釋了天空和海洋的現象,但我還沒有為重力提出一個原因。 ⋯⋯我還不能推斷⋯⋯這些重力特性的原因。我不需要假設,因為任何不是從現像中推導出來的東西都必須被稱為假設;而假設——無論是形而上學的、還是物理的、基於神秘特性的、或機械的⎯在實驗哲學中都沒有地位⋯⋯。在本哲學中,特定的命題是從現像中推斷出來的,然後通過歸納來概括。」

所以重力不是機械的、不是神秘的、不是假設;牛頓用數學及結果證明了這一點:「重力確實存在,並根據我們制定的定律起了作用,足以解釋天體和海洋的所有運動」,因此即使它的本質不能被理解,但我們不能否認它。牛頓認為這就「夠了」。

牛頓的著作《原理》被其任教之劍橋大學的學生諷刺為一本「任何人都無法理解的書」。圖/Wikipedia

靜態的宇宙

當牛頓抬頭仰望月亮、太陽、和行星以外的天空時,他沒有發現任何物體的運動,因此宇宙應該是靜止的。而如果萬有引力可以用在所有的天體上,科學家再沒有任何理由認為人類很特別,我們所處在的地方在宇宙中佔了一個很獨特的地位。這在現代物理宇宙學中被稱為「宇宙學原理(Cosmology principle)」的概念,認為這些力會在整個宇宙中均勻地作用,因此從足夠大的尺度上觀察時,宇宙中物質的空間分佈應該是均勻的、沒有方向性的。同樣地,我們現在所處在的時刻也沒理由是個很特殊的時刻。顯然地,宇宙永遠就是那樣地存在,它沒有開始,也不會有終結—因為如果有開始,那顯然就應有創造者,這不是太宗教了嗎?

牛頓的引力理論實際上需要一個持續的奇蹟來防止太陽和恆星被拉到一起。在 1666 年至 1668 年之間之手稿《De Gravitatione》 (引力)中,牛頓闡述對空間和宇宙的看法:一種「無限而永恆」的神力與空間共存,它「向各個方向無限延伸」。牛頓設想了一個無限大的宇宙,上帝在其中將星星放置在正確的距離上,因此它們的吸引力抵消了,就像平衡針在它們的點上一樣精確。所以宇宙可以保持靜態,不會崩潰到無任何一點(無限大的宇宙沒有中心點)。

有限的宇宙

但是此一充滿著星球的無限宇宙在羅輯上是有幾個很嚴重的問題。例如雖然兩物體間的作用力與距離的平方成反比(收斂系列),但作用的星球數卻是與距離的平方成正比,正好抵消了前者的效應;因此,

-----廣告,請繼續往下閱讀-----

(1)宇宙中的任何一點均應感受到無限大、往四面八方外拉的重力,所以物體不可能存在的!

(2)宇宙中的任何一點均應看到無限多的星光,所以夜晚的天空不應是黑暗的(註六)。

在你心中宇宙長什麼樣子呢? 圖/Pixabay

事實上亞里士多德早就回答了這個問題:物質宇宙在空間上一定是有限的,因為如果恆星延伸到無限遠,它們就無法在 24 小時內繞地球旋轉一圈。1610 年,開普勒也提出既然夜晚的天空是黑暗的,所以宇宙中的恆星數量必須是有限的!這有限宇宙的觀點一直到二十世紀初期還是被歐洲宗教及大部分科學家所接受(註三),造成了愛因斯坦犯下他一生最大的錯誤(詳見愛因斯坦的最大錯誤——宇宙論常數)。

如何解決牛頓之無限宇宙論與宗教之有限宇宙論間的衝突呢?請待下回分解吧。

註解

  • 註一:高山(作曲沈炳光之夫人黄任芳?):《牧童情歌》。
  • 註二:該書非常複雜難懂,科學歷史學家稱它為一本沒有人讀的書。
  • 註三:Giodano Bruno(1548-1600),意大利哲學家、天文學家、數學家、和神秘學家;因為堅持非正統的想法——包括宇宙是無邊緣的,恆星是離地球很遠的太陽、有它們自己在上面可能存在生命的行星,而付出被羅馬天主教酷刑,在火刑柱上燒死的代價——為一有名的宗教迫害案件例。
  • 註四:晚年被羅馬天主教強迫收回(在審判庭上寫了悔過書),因此不像註三的 Bruno,只被軟禁在家到逝世。說來有點可笑,伽利略之「證明」地球在動的理論完全是錯誤的:例如潮汐每天應該出現兩次,但他的證明只出現一次而已。但伽利略發現相對論原理,正確地解釋了為什麼我們沒感覺地球在動。
  • 註五:引力與距離的平方反比定律最早由布利亞爾杜斯(Ismael Bullialdus)於 1645 年提出;但他不但不接受開普勒的第二和第三定律,也認為太陽的力量在近日點是排斥的。
  • 註六:為紀念十九世紀的德國天文學家歐博耳(Heinrich Olbers, 1758-1840) 在這方面的深入研究,現在被稱為「歐博耳悖論(Olbers paradox)」 。
賴昭正_96
42 篇文章 ・ 50 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。