0

2
2

文字

分享

0
2
2

如果上帝就像鐘錶匠,當然我們也能?│《電腦簡史》 齒輪時代(十二)

張瑞棋_96
・2020/05/11 ・2777字 ・閱讀時間約 5 分鐘 ・SR值 492 ・五年級

人類發明機械生物,不僅展現齒輪工藝的成熟與演進,更是為後世的研究埋下伏筆。隨著時代推演,向來以神學為重的歐洲國家也底擋不住來勢洶洶的「科學革命」,科學家們運用各種研究方法,紛紛顛覆傳統概念,這種突破思維的精神,也開始在人們心中潛移默化,對於新奇的研究成果深信不疑,然而這種現象也使科學騙局隨之而來……

本文為系列文章,上一篇請見:從「鐘」的演化史看見絕妙的齒輪工藝世界│《電腦簡史》 齒輪時代(十一)

從神話幻想到機械玩偶問世

人類很早之前便有機械生物的遐想。例如希臘神話中,火神赫菲斯托斯 (Hephaestus) 打造一金一銀兩隻守門犬,還用青銅打造了會噴火的戰馬、公牛,以及巨人塔羅斯 (Talos) 。而在中國,《列子》這本書中也描述工匠偃師製作了一具木偶,在周穆王面前載歌載舞,宛如真人的故事。

巨人塔羅斯 (Talos) 是希臘神話中的青銅巨人,守護克里特島,可見在很早時期,人們早已擁有對機器人的構想。圖\wikipedia

這些神話與寓言原本純粹是天馬行空的幻想,但齒輪與動力機制發明以後,機械生物似乎就不再那麼遙不可及,而是可以追求的目標了。就像前面幾章介紹過的,從古希臘到阿拉伯世界,乃至中國,不斷有各式各樣機械玩偶,有些附屬於天文鐘內的報時裝置,也有像倒酒女侍這種自成一體的仿人機器。齒輪技術傳入歐洲後,除了用於製作機械鐘,也隨即用來打造自動機器。這些自動機器的藍圖或許是在翻譯書籍裡發現,也或許是十字軍東征與收復失土運動帶回來的見聞,甚至是掠奪回來的成品,總之,在重力機械鐘出現之前,歐洲已經有不少精巧的自動機器了。

-----廣告,請繼續往下閱讀-----

十三世紀末,法國的阿圖瓦伯爵,羅貝爾二世 (Robert II, Count of Artois) 就請人在他的宮廷花園中,建造了好幾具自動機器,包括會動的鳥、猴子、獅子,以及自動噴泉與管風琴。歐洲的鐘樓到後來也開始加入機械玩偶,就像加扎里的城堡天文鐘那樣,這些玩偶會在正點時出來奏樂報時。 1495 年,全能天才達文西也設計了一具真人大小的盔甲武士,能夠原地坐下、站起身來、舉手,以及開啟面罩。

說實話,這些機械玩偶只會做出動動四肢、張張嘴巴這種簡單的動作,看起來相當笨拙,與神話故事中的想像還有相當大的差距。不過隨著製造工藝進步,機械玩偶使用更小、更多的零件,逐漸能做出更複雜、更細微的動作。加上改以發條做為動力來源,不用再固定於原地,可以四處走動,機械玩偶終於比較像一個活生生的獨立個體。

美國的史密森尼學會 (Smithsonian Institution) 收藏了一台現存最早的發條機器人,是 1560 年製於西班牙或德國南部。這具機械僧侶高約三十八公分,會繞著正方形路線走動。行走時搖頭晃腦,嘴巴一張一合彷彿唸唸有詞,同時左手持十字架與玫瑰念珠上下擺動,右手一邊拍打胸部,完全就是僧侶祝禱的模樣。

欺騙世人眼睛的「擬真」機器鴨

機械玩偶不斷進化,做得越來越像真的生物。1738 年,不到三十歲的法國發明家沃康松 (Jacques de Vaucanson)所發明的機械玩偶,竟然讓巴黎民眾願意花相當於普通勞工一星期的收入,買票入場參觀,

-----廣告,請繼續往下閱讀-----

其實裡面只有展示三具機械玩偶,分別是吹笛人、鼓手與機器鴨。吹笛人雙手拿著橫笛,會吹十二首曲子;鼓手的左手拿三孔笛吹奏,右手同時打鼓。它們的大小與裝扮都和真人一樣,外觀上完全看不出機械零件,而且所用的都是真正的樂器,配合空氣幫浦吹奏,看起來就像是真人在演奏。

在吹笛人與鼓手之間的機器鴨看起來貌不驚人,其實最為神奇。它用了四百多個零件,不但如鴨子般拍拍翅膀、發出呱呱的叫聲,還會伸長脖子吞食你餵它的飼料,重點是,過一會兒它竟然會排出綠色的便便。

機器鴨表演完後,沃康松還會打開外殼,向嘖嘖稱奇的觀眾解釋運作原理。裡面的元件皆可對應到真鴨的體內器官,就連位置也都一樣。沃康松指著這些元件一一解釋:食物經由食道進入特製的化學處理器(相當於胃),分解後再經過彎彎曲曲的橡膠管(相當於腸子),最後從管子末端(相當於肛門)排出來。

機器鴨模擬真實鴨子內部臟器的位置,並聲稱具有消化功能,精緻縝密的設計,使當時人們全然相信其真實性。圖\wikipedia

沃康松是真的具有這些生物學知識,他不但上過解剖學的課,還從外科醫生好友處獲得實務經驗。他正是因此更加堅信生物器官猶如機器,只要搞清楚每個器官的功能,就能用機械裝置模擬它們的運作。真實生物能做的,機械生物也都能做到,機器鴨就是一個證明

-----廣告,請繼續往下閱讀-----

不過,沃康松誇大了機器鴨的能耐,所謂消化與排泄的功能,其實是用造假的手法完成的。那些糞便是用染色的麵包屑捏成小塊後,預先藏於鴨子的肚裡,並不是來自吞下的食物,也就是說,這隻機械鴨實際上並不會消化食物。這個祕密直到一百年後才被揭穿,但在此之前,民眾卻普遍相信這隻機器鴨真的有消化食物的能力。

為什麼大家都如此深信不疑?上個世紀末,歐洲到處都還可見到像是女巫審判的迷信現象,為什麼到了十八世紀,民眾就對科學與科技抱持如此樂觀的態度?轉變並非一朝一夕,這一切,始自於十六世紀中葉開始的「科學革命」。

從相信科學到相信機器文明

1543 年,哥白尼在臨終前出版的《天體運行論》中提出日心說,主張天體並不是繞著地球轉,而是繞著太陽轉,包括地球也是。這個理論不但顛覆一般人的認知,更是違背基督教傳統教義,從此開啟了科學革命。後來許多人追隨哥白尼的腳步,相信科學實證,而不是宗教教義。包括克卜勒於 1609 年與 1619 年發表行星三大運動定律,用簡單的數學公式就能描述行星如何運行;同時伽利略也自 1609 年起不斷改良望遠鏡,發現許多原本肉眼看不見的星球,打破教會的說法。

哥白尼的「日心說」違背教會所提出的「地心說」,為日後埋下了科學革命的種子。圖\wikipedia

雖然他們生前仍難以與教會抗衡,但隨著更多科學家投入研究,各項證據顯示科學,而不是神學,才是理解宇宙奧秘的方法。從十七世紀下半葉開始,歐洲各國在皇室的支持下,紛紛成立科學研究機構,從此科學浪潮再也不是教會所能阻擋了。當牛頓於 1687 年宣布萬有引力定律時,已經不用擔心教會的看法。隨著越來越多科學預測成真,科學也逐漸在人們心目中建立起權威性。

-----廣告,請繼續往下閱讀-----

除了宇宙現象,人類也逐步揭開大自然的神秘面紗。例如虎克於 1664 年用顯微鏡發現「細胞」,揭露萬物還有更小的構造;波以耳也約莫在此時率先使用科學的實驗方法,開創化學這門學科。隨著各種科學定理陸續發現,科學革命累積了豐碩的成果,為十八世紀中葉開始的工業革命奠定基礎。蒸汽機、紡織機與煉鋼技術大幅改變生產方式,原有依賴大量人力的工作都可以由機器取代,人們的生活起了翻天覆地的改變。

對於當時目睹科技快速進展的民眾而言,機器似乎無所不能,那麼,一隻會進食排便的機器鴨又哪需要懷疑呢?就在這種對科學與科技懷抱著無比信心的社會氛圍中,一場更大膽的騙局隨之登場……。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1078 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
撒哈拉沙漠以南的非洲:同樣受伊斯蘭世界的影響,還有哪些地方應該被視為科學革命史的一部分?——《被蒙蔽的視野》
時報出版_96
・2023/06/13 ・2843字 ・閱讀時間約 5 分鐘

廷布克圖無疑是近現代西非科學進步最重要的地點之一,卻也絕非獨一無二。非洲還有其他一些城市,特別是與更廣泛的貿易和宗教世界密切關聯的那些城市,都在這段期間經歷了相似的科學知識擴張。

除了廷布克圖以外的那些地方

博爾諾蘇丹國(Sultanate of Borno)是位於當今現代奈及利亞境內的伊斯蘭王國,根據一份晚近記載,該國大清真寺(Great Mosque,譯註:亦稱「星期五聚禮」或「主麻日」清真寺)的學者研讀「好幾部科學著述」。

同樣地,在後來成為奈及利亞的另一個伊斯蘭王國,卡諾蘇丹國(Sultanate of Kano),則是從穆斯林世界各地延攬學者前來宮廷教學。在十五世紀初,一位學者從麥地那遠道前來,並隨身帶來了大批阿拉伯手抄本,其中有許多都涉及科學科目,好比天文學和數學。就像在廷布克圖,十五世紀卡諾的非洲學者,同樣閱讀種種阿拉伯文概述,摘譯自古希臘文本以及諸如海什木等影響深遠的穆斯林科學思想家的著述。

如同我們在其他地方所見,在卡諾宮廷工作的天文學家,也協助編制年曆。

一位名叫阿卜杜拉.本.穆罕默德(Abdullah bin Muhammad)的學者,甚至還寫了一部手抄本來詳述傳統伊斯蘭占星術星曆,內容談到月球如何在一年期間運行穿越不同星座。除此之外,本.穆罕默德也描述了「行星的運行」以及它們所具有的種種不同占星學意義。最重要的是,這部手抄本是以豪薩文(Hausa)寫成的,使用這種語文的豪薩族裔群體,就是卡諾人口當中的多數族群。除了阿拉伯文星體名稱之外,本.穆罕默德甚至還註記了各個恆星和行星的豪薩文名稱。好比水星就以「瑪格塔卡德」(Magatakard)被列於其中,其豪薩原文的意思是「抄寫員」,至於太陽則稱為「薩爾基」(Sarki),意思是「王」。這同樣是個重要的提示,告訴我們非洲的前伊斯蘭天文學傳統的存在,而且當新的阿拉伯手抄本在十五和十六世紀傳入,這項傳統也隨之改頭換面。

-----廣告,請繼續往下閱讀-----
以民族語言區分,豪薩人(黃色區域)約在今日奈及利亞和尼日的境內。圖/wikipedia

神奇的魔幻方陣

新的科學思想在西非持續發展到了十八世紀早期。

一七三二年,一位在卡齊納(Katsina,同樣位於現今奈及利亞)工作的數學家寫了一部手抄本,標題是《論字母表之魔幻用途》(A Treatise on the Magical Use of the Letters of the Alphabet)。那位作者名叫穆罕默德.伊本.穆罕默德(Muhammad ibn Muhammad),曾東遊近一千三百公里外的博爾諾蘇丹國求學,師事泰斗穆斯林學者,學習天文學、占星學和數學。就像我們在本章接觸過的非洲科學思想家,他也在當時剛完成一趟麥加朝聖。

儘管書名晦澀難解,伊本.穆罕默德的手抄本,實際上就是一部數學作品,書中詳述了我們所稱「魔幻方陣」(magic squares)背後的基本原理,這是你有可能在學校裡遇到的那種材料。

最簡單的魔幻方陣是個 3×3 網格,裡面填上從 1 到 9 的數字,把數字填進正確位置,你就可以讓所有的行、列和對角累加和全都為相等數值。還有,儘管數字有多種排列方式,卻始終只有一個「魔幻數字」(magic number),可以讓所有數字的累加和全都相等。(就3×3網格而言,那個數字是15。)一旦你掌握了這一點,接著你就可以開始提出比較複雜的數學問題——例如,像 9×9 這般較大的方陣,或者甚至是個 n×n 任意大型方陣的「魔幻數字」為何?你還可以開始計算出,就不同大小的方陣,各有多少種不同的排列方案,還有求解的最佳運算法為何。

-----廣告,請繼續往下閱讀-----
三階(3×3)的魔幻方陣(幻方)。方振中每行、每列以及每一條主對角線的和均為 15。

魔幻方陣在中世紀伊斯蘭數學界有廣泛討論,而且伊本.穆罕默德也幾乎肯定是閱讀在卡齊納販售的阿拉伯手抄本時學過那種方陣。他顯然是著了迷,騰出他的手抄本多頁篇幅來介紹它們,並提出了一套公式,來建構種種不同尺寸的方陣。他還證明,就一個 3×3 方陣,只需旋轉與鏡射就能找出所有不同的解。

避邪、占卜、真主的秘密 魔幻方陣的宗教意義

然而,在伊本.穆罕默德看來,除了對數學的興趣之外,魔幻方陣也同樣是他宗教義務的一部分。魔幻方陣被視為阿拉的禮贈,「字母受真主守護,」他寫道。事實上,這種魔幻方陣在當時看來是十分特別,因此伊本.穆罕默德還建議數學家「暗中工作……你不該隨便傳揚真主的祕密」,這也點出了許多人心中認定與魔幻方陣連帶有關的神祕特性。

就像許多科學思想家,不論他們在非洲、亞洲或歐洲,伊本.穆罕默德也認為魔幻方陣具有護身符的作用,能防護抵禦不祥之兆;這就是為什麼他的手抄本標題提到數學的「魔幻用途」。魔幻方陣也被廣泛使用來嘗試預測未來。伊本.穆罕默德想必也在早現代時期的卡齊納提供他的這些服務,解析「讀數」,一般就是把特定數字代換成單詞或字母。甚至還有些人把魔幻方陣縫上他們的衣物來避邪。

科學革命的一部分:漠南非洲和歐洲科學革命驚人的相似之處

長久以來,撒哈拉以南非洲地區(編按:一般稱為漠南非洲)總是被排除在科學革命的歷史之外。然而一旦我們開始探索那片地區的豐富科學文化,實際上我們也就能看出,在同期該地區,該地區與歐洲的情況存有眾多雷同之處。就像在歐洲,非洲人也藉由阿拉伯文譯本和以阿拉伯文寫成的概述,認識了亞里士多德和托勒密等古希臘和羅馬的科學思想家。就如同歐洲的情況,非洲人也取法較晚近伊斯蘭天文學家與數學家的著述,好比海什木,得知對這些古代思想家的相關批評。而且就如同歐洲的情況,非洲的科學革命,並沒有完全排除較古老的觀點:天文學、占星學和占卜術,彼此往往仍難區分。因此,與其把非洲視為與科學革命互不相干,我們應該把它看成共通歷史的一個部分——在這段歷史中,沿絲路貿易和朝聖的蓬勃發展,促使十五和十六世紀期間的科學出現變革。

-----廣告,請繼續往下閱讀-----

在廷布克圖和卡諾,就像在撒馬爾罕和伊斯坦堡,伊斯蘭學者也得到了非洲富人的贊助與扶持,因為他們能體認天文學和數學的宗教價值。「這門科學的一項用途就是能得知禮拜時間,」桑海帝國一位宮廷天文學家這樣表示。在此同時,天文學家也幫助引導商隊跨越撒哈拉,進一步為那處地區的貿易成長做出貢獻。他們旅行跨越浩瀚沙漠「彷彿那是在海上,由嚮導憑恃星辰操控前行」,一位作者這樣解釋。

非洲位於絲路最西端,到了十五和十六世紀期間,它終於也經歷了自己的科學革命。現在我們沿著絲路東行,揭示雷同的商業、宗教和知識交流,是如何協助在中國和印度引發了一場科學革命。

——本文摘自《被蒙蔽的視野:科學全球發展史的真貌》,2023 年 5 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 38 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。