0

9
3

文字

分享

0
9
3

搞懂「通用圖靈機」的終站——它的誕生與意義 │《電腦簡史》數位時代(十三)

張瑞棋_96
・2020/12/21 ・4490字 ・閱讀時間約 9 分鐘 ・SR值 560 ・八年級

本文為系列文章,上一篇請見:搞懂「通用圖靈機」的第一站——康托爾的「無限樂園」 │《電腦簡史》數位時代(十二)

數學體系的的聖杯是否存在?——圖靈機的源頭

上一篇提到的無限這個原本大家都敬而遠之的怪物,還是被康托爾用集合論馴服了,集合論儼然成為建構數學體系的利器。然而過沒多久,英國哲學家與數學家羅素 (Bertrand Russell) 卻在 1901 年提出一個後來以他為名的「羅素悖論」(註一),指出集合論的矛盾之處,史稱「第三次數學危機」。

儘管幾位數學家著手修補,參考歐氏幾何有五大公設,也為集合論制定一些公設,將「樸素集合論」改造為沒有矛盾的「公設化集合論」,安然度過危機。但是數學體系接二連三出現裂縫,表示其中必有缺陷。大數學家希爾伯特 (David Hilbert) 因此呼籲重新審視所謂不證自明的公設或定理,從根基開始,重新打造完美無瑕的數學體系。

大數學家希爾伯特 (David Hilbert) 攝於 1912 年。圖:Wikipedia

1928 年,希爾伯特在國際數學家大會上拋出三大提問:

一、數學是否完備?所謂完備是指每則陳述(例如畢氏定理)都可以被證明為真或為假。

-----廣告,請繼續往下閱讀-----

二、數學是否一致?也就是同一則陳述不會有既被證明為真、又被證明為假的矛盾情況。

三、數學是否可以判定?意思是任何陳述都有一套明確的程序可以用來判定其真假。(例如希爾伯特列舉的 23 個懸而未決的數學問題,是否終究會找出證明的方法?)

基於數學以往幾次克服危機的歷史經驗,希爾伯特相信這三個提問的答案都是肯定的;1930 年他發表退休演說時,就以「我們必須知道,我們將會知道!」做為結語。這並不是希爾伯特一廂情願,事實上學界也都普遍相信完備且一致的數學體系指日可待。

哥德爾不完備定理敲碎美夢

不料第二年,大家的美夢就被一篇論文狠狠敲碎。才25歲的奧地利數學家哥德爾 (Kurt Gödel) 提出「哥德爾不完備定理」,證明任何一個基於算術公設的系統如果有一致性,就不是完備的,也就是其中一定有無法證明真偽的陳述(註二)。而且「哥德爾第二不完備定理」還指出:這個系統的一致性根本無法在系統內部獲得證明。

-----廣告,請繼續往下閱讀-----
哥德爾 (Kurt Gödel) 攝於 1925 年。圖:Wikipedia

哥德爾正式宣判完備且一致的數學體系並不存在,追求聖杯只是徒勞,大家可以散矣。整個學界感到震驚與失落,正如馮紐曼的喟嘆:「一切都結束了!」。

如今希爾伯特的前兩個問題顯然答案都是否定的,而既然存在無法證明真偽的陳述,那麼第三個問題當然也就沒意義了。但能否退而求其次,把第三個問題改為:可否透過一套明確的程序判定某個陳述能不能被證明真假?也就是說,我們至少可以把這種無法證明真假的異類挑出來吧?

正是這個判定問題,讓圖靈跨入計算機的領域。

延續摯愛未竟之業——圖靈奮發向前的動力

圖靈於 1912 年在倫敦出生,到了中學就長得高大壯碩,還是長跑健將。不過他卻不是陽光男孩,相反地,他個性內向,在學校沒有多少朋友,其中最知心的是大他一個年級的莫康 (Christopher Morcom)。莫康因為感染肺結核,身體嬴弱削瘦,但他課業名列前茅,與圖靈一樣對數學、科學有極高的興趣,兩人常一起討論而成為莫逆之交。

-----廣告,請繼續往下閱讀-----
圖靈攝於 16 歲。圖:Wikipedia

圖靈對莫康愛慕不已,也因此才察覺自己的同性戀傾向。無奈莫康在畢業前一年不敵病魔而過世,用情至深的圖靈深受打擊,卻也因此更加專注於學業。他在寫給莫康母親的信上說:

「……我知道自己必須在學業上投注相同的心力,彷彿他仍然在世,因為他會希望我這麼做。」

圖靈如此努力的背後還有個重要動力。莫康原本已經獲得劍橋大學的獎學金,圖靈想替他實現未能完成的人生,以進入劍橋大學為目標,而最後圖靈也如願於 1931 年入學就讀。

1935年春季,圖靈在數學教授紐曼 (Max Newman) 的課堂上,聽到教授介紹希爾伯特的三大問題。紐曼提及修正後的「判定性問題」時,不知有心或無意,用的詞是「機械式程序」(mechanical process),而不是「明確的程序」。

-----廣告,請繼續往下閱讀-----

機械式程序聽起來就是多了一層含意,暗示著一種不需人為介入的自動程序。而這層含意在圖靈心中埋下了種子,然後在初夏某一天的下午,圖靈慢跑完,躺在草地上休息時,想到了如何透過自動機器解決判定性問題。

圖靈機構造與運作原理

圖靈無意打造一台真正的機器,因為他要處理的是抽象的原則性問題,重點在於思辨過程,而不是加減乘除。因此圖靈只須設想這台自動機器如何運作,無需考慮它如何製造。事實上這台後來以他為名的「圖靈機」極為簡化,硬體組成只有一個可以左右移動的讀寫頭,以及一條無限長的紙帶。與其說它是計算機,反倒比較像是台打字機。

這條紙帶上面劃分成一個一個方格,每個方格只能打印一個符號。讀寫頭能掃描辨識符號、打印符號,或抹拭符號;它還能左右移動,但每次最多只能移動一格。讀寫頭的動作取決於它正下方那個方格內的符號,以及機器目前的狀態。這兩個參數也會決定讀寫頭每次做完動作後,機器狀態是否要改變。

這些影響讀寫頭與機器狀態的規則可以整理成一張「行為表」,例如下面這張:

-----廣告,請繼續往下閱讀-----

按照這張行為表,像下面圖中的紙條,原本3 個 “1” 和 2 個 “1” 彼此隔開,經過圖靈機後,就會變成 5 個 “1” 連在一起。我們可以當作這是 3+2=5 的計算,那麼配備這張行為表的圖靈機就是一台簡易加法器,可以任意加總兩個數目。

圖靈機構造再簡單不過,但只要在行為表中制定適當的規則,再複雜的計算,它都可以勝任。圖靈把可以透過有限的規則,讓圖靈機進行計算並以小數的形式印出來的數,定義為「可計算數」

可計算數不一定是有限小數,像 1/3 = 0.3333……也算,反正紙帶無限長,或者你也可以決定小數點後幾位就停下來。因此像 √2、π 這種無理數也都是可計算數,因為它們可以用具有規律的無限級數表示(例如萊布尼茲所發現的 π/4 = 1 – 1/3 + 1/5 – 1/7 + 1/9 – 1/11 + ……),就能透過有限的規則,讓圖靈機計算。

描述數與通用圖靈機

不過圖靈機只能從紙帶上讀取資料,所以行為表得用一行符號來表達,才能印在紙帶上讓圖靈機掃描。例如上面那張行為表可能就會變成一行指令:

-----廣告,請繼續往下閱讀-----

10RNN;11RN2;20R13;21RNN;30LN4;31RNN;40NNN;41N0N

接著我們把指令中的英文字母與符號用數字代替,例如 A ~ Z 改為 11 ~ 33,分號”;” = 99,數字也跟著改用兩位數 00 ~ 09表示。如此一來,指令就會化為一串數字,圖靈稱之為「描述數」,意指這行純數字的數列就能描述圖靈機的行為。

正常的描述數可以讓圖靈機經過有限步驟後停下來,產生可計算數。但某些描述數卻可能讓圖靈機中途動彈不得,或是不斷來回繞圈圈,無法產生有意義的答案。例如「讀到 1 就往右;讀到 0 則往左」這個指令,就會讓圖靈機遇到 “1”、”0”相鄰時左右來回,永不停止(這其實就相當於「說謊者悖論」)。

如果一台圖靈機只有一個描述數,我們當然可以輕易地發現某台圖靈機停不下來,從而知道這個描述數有問題。不過實際上不需要建造那麼多台圖靈機。想像有台特別的「通用圖靈機」(圖靈稱之為 ”Universal machine“),可以把其它圖靈機的描述數都掃描進來,那麼它便能模擬任何一台圖靈機的運作。而且描述數除了代表運作規則,也可以當成數字做為編號,按大小順序排列,方便圖靈機搜尋。

-----廣告,請繼續往下閱讀-----

停機問題

現在問題來了,我們怎麼知道掃描進來的那麼多描述數之中,是否摻雜著造成圖靈機空轉的描述數?有沒有一套機械程序可以直接判定某個描述數能否讓圖靈機正常停機(而不用讓圖靈機實際執行,再看結果如何)?這就是所謂的「停機問題」。它的性質等同於希爾伯特的判定性問題:有沒有一套明確的程序可以判定某個陳述能不能被證明真假?

我們先假設真的有這麼一套判定停機與否的程序,那麼它可以把所有描述數的執行結果列表如下:(H代表會停機,N代表不會停機)

還記得上一篇介紹過的康托爾對角線法嗎?現在我們拿來如法炮製,可以編製一個新的描述數,輸入 1 的結果是 ”N”,與 M1 相反;輸入 2 的結果是 “N” 與 M2 相反;……以此類推。這麼一來,這個描述數絕對不在原來的表裡面,也就是出現判定程序不知其執行結果的描述數。

就算把這個新的描述數再納入表中也沒用,因為永遠都可以再用康托爾對角線法,新增一個不在表上的描述數。因此,根本不可能有套程序可以判定任一個描述數會不會停機。停機問題無解,代表數學上的判定性問題也確定無望,希爾伯特的三大提問至此可以休矣。(註三)

計算機不只會計算,還能模擬人的思考方式

1936 年 5 月,圖靈提交這篇影響深遠的論文:《論可計算數及其在判定性問題上的應用》 (On Computable Numbers, with an Application to the Entscheidungsproblem),不但在數學上占有重要地位,更展示許多計算機的創新設計。

他率先提出通用計算機的概念,將不同程式預先載入後再開始運行。而程式轉化為描述數,使得程式和資料共用同一個載體,也是首創。同時描述數做為程式的獨特編號,就相當於電腦程式在記憶體中的貯存位址;許多人相信這個概念啟發了馮紐曼用於 ENIAC 的設計。

圖靈還揭示了常人所未見的計算機角色。計算機的作用向來純粹就只為數學計算,但圖靈在這篇論文中卻是從人類如何思考的角度,討論如何讓機器模仿計算者的心智狀態。多年之後,圖靈提出「圖靈測試」,因而被稱為「人工智慧之父」,但其實這顆種子早在此時就已埋下了。

圖靈為了解決一個抽象的數學問題,而構思出通用圖靈機這台純屬想像的機器。幾年之後二次大戰爆發,這次為了千百萬人的生死存亡,圖靈將動手打造真正的計算機。

__________________________________________________________________________

註一:羅素設想有個集合 R 是由所有不包含它本身的集合所構成的集合。這定義感覺很撓口,但其實相當合理。因為在實際生活的應用上,幾乎所有集合本來就不包含本身,例如我們絕不會說昆蟲這個集合的成員包括昆蟲。問題來了,R 的成員應該包括它自己嗎?

如果說不應該,那麼 R 也是不包含自己的集合,所以 R 也應該屬於 R。但是這樣一來, R 就包含它自己,如此又不符合加入 R 的資格。結果不管 R 包不包含它自身,按照 R 的定義都會導致矛盾,這就是羅素悖論。

註二:算術公設指皮亞諾公設 (Peano axioms),是義大利數學家皮亞諾提出關於自然數的五條公設。

註三:其實美國普林斯頓大學的數學家丘奇 (Alonzo Church) 比圖靈早一個月,於 1936 年 4 月就提出論文,用正統的數學方法解決了判定性問題。圖靈獲悉後,也趕在論文發表前,在附錄處加註說明丘奇的證明。不過丘奇用的形式系統複雜多了,不如圖靈的方法簡單易懂,所以一般講到判定性問題的證明,都還是舉通用圖靈機為例。

文章難易度
張瑞棋_96
423 篇文章 ・ 945 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
驅動未來科技創新的運算平台領導廠商—Arm
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/26 ・2594字 ・閱讀時間約 5 分鐘

本文由 Arm 委託,泛科學企劃執行。

Arm(安謀)是一家來自英國提供處理器 IP 架構設計的矽智財公司,你可能不清楚 Arm 在做什麼?但你可能在最近的新聞中聽過它,而且,你可能每天都在使用他們的產品!

實際上,90% 的智慧型手機使用的 CPU 晶片,其指令架構集(ISA)都是採用 Arm 架構,例如部分蘋果產品所使用的晶片、Android 手機常見的驍龍系列,以及聯發科技推出的天璣系列晶片,Arm 都是這些處理器架構的主要供應商。

每片 CPU 上,都有 ISA。圖/pixabay

不過這個指令架構集(ISA)到底是什麼?為什麼每台手機甚至電腦都要有呢?

-----廣告,請繼續往下閱讀-----

什麼是指令架構集(ISA)?

指令集架構(ISA)是電腦抽象模型的一部分,它定義了 CPU 如何被軟體控制。ISA 作為硬體和軟體之間的介面,既規定了處理器能夠執行的任務,又規定了如何執行這些任務。ISA 提供了使用者與硬體互動的唯一途徑。ISA 可以被視為程式設計師的手冊,透過 ISA,組合語言程式設計師、編譯器編寫者和應用程式程式設計師方能與機器溝通。

處理器的構建和設計稱為微架構(micro-architecture),微架構告訴您特定處理器的工作原理,例如,Arm Cortex-A53 和 Cortex-A73 都是 Armv8-A 架構的實現,這意味著它們具有相同的架構,但它們具有不同的微架構。

目前常見的 ISA 有用於電腦的 Intel/AMD x86_64 架構,以及在行動裝置是主流的 Arm 架構。而 Arm 本身不製造晶片只授權其架構給各個合作夥伴,授權的架構也被稱為「矽智財」(Semiconductor intellectual property core,簡稱 IP),並由合作夥伴依據規格打造合規的矽晶片。

Arm 成為全球關注的焦點

今年九月,Arm 在美國紐約那斯達克交易所掛牌上市,吸引大量投資者的目光,除了節能的設計,Arm 持續提升產品效能,使得 Arm 架構具有強大的競爭優勢,讓 Arm 的技術和產品,除了在行動裝置與物聯網應用佔據了重要地位,也在後續發展的其他產品持續協助產業推動技術革命。

-----廣告,請繼續往下閱讀-----

最早,Arm 架構是為了依靠電池運作的產品而設計的,隨著這十多年來的轉變,行動裝置成為主流,而 Arm 架構也成為了行動裝置的首選。

除了 Arm 原本行動裝置的通用 CPU 領域,Arm 亦著手開發專用 CPU 的架構,這些專用 CPU 的使用情境包含雲端基礎設施、車用和物聯網(IoT)。

現在 Arm 除了在手機處理器上有超過 90 % 的市占率外,在物聯網與嵌入式應用上有 65% 的市占率,目前車用晶片也逐步轉向由軟體來定義汽車的電子電氣架構,這凸顯了軟體在未來汽車架構的重要性。「嵌入式邊緣裝置使用的可擴充開放架構 (Scalable Open Architecture for Embedded Edge;SOAFEE) 」建立以雲原生的系統架構,透過雲端先行開發軟體,協助汽車產業業者在產品正式商品化前,能在基於 Arm 架構的晶片上進行虛擬環境測試,目前 Arm 在車用晶片上,市佔率超過四成。

由感測器至智慧製造系統設計,Arm 與生態系密切合作,推動技術創新

在雲端運算上,Arm 也推出了 Arm Neoverse 技術平台來協助雲端伺服器的晶片設計,並配合新推出的 Arm Neoverse 運算子系統(CSS),來簡化專用晶片的設計複雜性,減少晶片設計花費的時間。

-----廣告,請繼續往下閱讀-----

在 Arm 日益完整的產品組合下,透過與廣大生態系合作,能為市場提供許多軟硬體解決方案。首先,在行動裝置上,Arm 近乎霸占市場。而在 AI 發展與網路速度持續提升的趨勢下,許多運算都可以在雲端完成,最近的實例為 Nvidia 的 GeForce Now,只需一台文書機,就能暢玩 3A 大作,或是 Google 的 Colab,讓 AI 能在文書機上完成運算,造福了沒有高級顯卡的使用者。

未來,邊緣運算將陸續解開雲端運算的束縛,而 Arm 也在前期投入了雲端基礎開發,配合行動裝置的市占率,無論如何 Arm 都將在未來科技業占有一席之地。

Arm Tech Symposia 將在 11 / 1 與 11 / 2 盛大舉辦

2023 Arm 科技論壇(Arm Tech Symposia)即將在 11/1 台北萬豪酒店,11/2 新竹國賓飯店盛大舉辦!這是 Arm 每年最重要的實體活動之一,以【Arm is Building the Future of Computing】為主軸,探討在 AI 時代來臨之際,Arm 最新的技術如何驅動創新科技,為次世代的智慧運算、沉浸式視覺、AI 應用、自主體驗等帶來更多可能性。 

這次 Arm 科技論壇將圍繞在車用、物聯網、基礎設施、終端產品等熱門 AI 應用領域,並邀請台積公司、Cadence、瑞薩電子、新思科技、CoAsia 擎亞半導體等各領域專家,帶來產業第一手趨勢洞察。

-----廣告,請繼續往下閱讀-----

其次,也會分享 Arm 的新技術在 AI 的應用,包含如何透過軟體定義汽車降低汽車電子系統核心 EUC 整合的複雜性,同時維持汽車資安;以及介紹專為特定工作負載而設計的運算方式,如何讓企業不受外在環境與技術影響,處理更大規模的數據。

今年 11/1 在台北場的座談會,主題為 Edge computing on AI,探討邊緣運算在人工智慧上的應用,以及人工智慧對於半導體產業以及晶片研發帶來的影響,邀請 iKala 共同創辦人暨執行長程世嘉、聯發科技執行副總經理暨技術長周漁君,以及 Arm 台灣總裁曾志光與會。

Arm 科技論壇 11 月 1 日台北萬豪酒店。 圖 / Arm 

11/2 在新竹場的座談會主題為 The Keys of Automotive Transformation,探討汽車產業的轉型趨勢,邀請 Anchor Taiwan 執行長邱懷萱、友達光電執行長暨總經理/達擎董事長柯富仁、波士頓顧問公司董事總經理暨資深合夥人徐瑞廷,以及 Arm 台灣總裁曾志光與會。

Arm科技論壇 11月 2 日新竹國賓飯店。 圖 / Arm 

無論你是硬體工程師、軟體開發人員、晶圓代工、晶片設計商、OEM/ODM 還是相關產業人士,都能在這場論壇中互相交流,充實自己。

-----廣告,請繼續往下閱讀-----

2023 Arm 科技論壇報名連結

活動結束後填寫問卷的朋友,還有機會現場抽中 iPhone 15 Pro、 iRobot Roomba j7+ 掃地機器人、Sony WH-1000XM5 無線耳機、Dyson Purifier Big+Quiet Formaldehyde 空氣清淨機等精美好禮喔!

報名截止倒數中,現在就立刻報名吧!

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
只要將大腦上傳到電腦中,複製出另一個你,就可以實現永生嗎?——《千腦智能新理論》
星出版
・2023/06/28 ・1983字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

假設在未來某個時候,我們有能力瞬間取得在電腦中重新創造一個人所需要的全部資料,假設我們的電腦有足夠能力模擬你和你的身體。果真如此,我完全不懷疑基於電腦的大腦會有意識和知覺,就像你一樣。但這會是你想要的嗎?也許你正在想像下列這種情境。

假設我們的電腦有足夠能力模擬你的身體、意識和知覺,這會是你想要的嗎?圖/Pixabay

你正處於生命的盡頭,醫師說你只剩下幾個小時的生命。此時你按下一個開關,你的大腦隨即一片空白。幾分鐘後,你醒過來,發現自己活在一個基於電腦的新身體裡。你的記憶完好無損,你覺得自己恢復了健康,展開新的永恆生命。你大喊:「耶!我還活著!」

現在想像一個稍微不同的情境。假設我們有技術可以複製你的生物大腦而不影響它,現在你按下開關之後,你的大腦被複製到一台電腦上,而你沒有任何感覺。幾分鐘後,電腦說:「耶!我還活著。」但是,你,那個生物你,還是存在。現在有兩個「你」,一個在生物身體中,一個在電腦身體中。電腦那個你說:「現在我已經上傳了,不需要原本那個身體了,請把它處理掉。」生物那個你說:「等一下,我還在,我不覺得有任何改變,我不想死。」我們應該如何處理這個問題?

解決這個難題的方法,或許就是讓生物那個你度過餘生,自然死亡。這似乎很合理。但是,在生物你死亡之前,世上有兩個你。生物你與電腦你會有不同的經歷,因此隨著時間推移,兩者漸行漸遠,變成了不同的人。例如,生物你和電腦你可能會發展出不同的道德與政治立場,生物你可能會後悔創造了電腦你,而電腦你可能不喜歡有一個生物老人聲稱是自己。

-----廣告,請繼續往下閱讀-----
在生物你死亡之前,世上有兩個你。隨著時間推移,兩者漸行漸遠,可能會發展出不同的道德與政治立場。圖/Pexels

更糟的是,你很可能會有壓力在你年輕時就上傳你的大腦。例如,想像一下,電腦你的智能健康,取決於大腦上傳時生物你的智能健康。因此,為了盡可能提高你的永生版本的生活品質,你應該在你心智健康最好時上傳你的大腦,譬如 35 歲時。你可能想在年輕時上傳大腦的另一個原因是,你以肉身活著的每一天都有可能意外死亡,因此失去永生的機會。因此,你決定在 35 歲時上傳自己。

請捫心自問:35 歲的生物你在複製了自己的大腦之後,可以安然殺死自己嗎?隨著你的電腦版本展開自己的生活,你(生物你)則慢慢衰老、最終死去,生物你會覺得自己已得到永生嗎?我認為答案是否定的。「上傳你的大腦」是個誤導的說法,你真正做的是把自己分裂成兩個人。

現在再想像一下,你上傳了你的大腦,然後電腦那個你立刻複製了三個自己。現在有四個電腦你和一個生物你,這五個你開始有不同的經歷,漸行漸遠。每一個你都有獨立的意識,你是否已得永生?那四個電腦你,哪一個是永生的你?生物你慢慢衰老、邁向死亡,看著四個電腦你過各自的生活。這裡沒有共同的「你」,只有五個個體,雖然起初有相同的大腦和記憶,但隨即成為獨立的存在,此後過著不同的生活。

想像一下,你上傳了你的大腦,然後電腦那個你立刻複製了好幾個自己,每個都有獨立的意識和不同的經歷,哪一個才是永生的你?圖/Pixabay

也許你已經注意到,這些情境與生孩子相似。當然,最大的不同是你不會在孩子出生時,上傳你的大腦到孩子的腦袋裡。然而,我們可說是在某程度上試圖這麼做,我們把家族史告訴孩子,教導他們,希望他們建立和我們一樣的道德觀和信仰。藉由這種方式,我們將我們的一些知識轉移到孩子的大腦裡。但隨著他們長大,他們會有自己的經歷,成為獨立的人,就像你上傳大腦產生的電腦你那樣。

-----廣告,請繼續往下閱讀-----

想像一下,如果你能把你的大腦上傳給你的孩子,你會這麼做嗎?如果你這麼做,我相信你會後悔。你的孩子將背負你的記憶,終其一生將致力忘記你做過的一切。

上傳大腦乍聽是個極好的主意,誰不想得永生呢?但是,藉由上傳大腦到電腦中來複製自己,其實無法實現永生,就像生孩子無法實現永生那樣。複製自己是開出一條岔路,而不是延伸原本的路。開出岔路之後,會有兩個擁有知覺和自我意識的存在,而不是只有一個。一旦你意識到這一點,上傳大腦的吸引力就會開始減弱。

——本文摘自《千腦智能新理論》,2023 年 5 月,星出版出版,未經同意請勿轉載。

星出版
3 篇文章 ・ 0 位粉絲