0

2
1

文字

分享

0
2
1

一天 24 小時不夠用?再等等,地球自轉越來越慢……

研之有物│中央研究院_96
・2019/06/16 ・5119字 ・閱讀時間約 10 分鐘 ・SR值 526 ・七年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|黃曉君、美術編輯|林洵安

地球自轉學問大

中學生就知道地球會自轉,自轉形成晝夜,自轉軸傾斜造成季節。但你知道嗎?地球自轉其實是忽快忽慢的,沒有一天是 24 小時,長期來說還有越轉越慢的趨勢。地球自轉軸也不是雷打不動,它會繞圈圈、各種搖擺,導致歲差和北極點不斷漂移等古怪現象。中研院地球科學研究所特聘研究員趙丰,帶你穿越上下億萬年的古今地球,聊聊中學地科老師沒告訴你的事。

趙丰,曾任美國國家暨太空總署 (NASA) 太空測地學實驗室主任,2006 年離開 NASA,回到臺灣任教,曾任中央大學地球科學學院院長、中研院地球科學研究所所長,目前為中研院地球科學研究所特聘研究員。
攝影│林洵安

太陽系分家產

說起地球自轉,首先得弄清楚:地球為什麼會轉,第二個問題是:為啥轉了 46 億年還不會停?

「地球會轉,是因為它在太陽系形成之初,分到一部分的『家產』:角動量。」趙丰幽默的比喻:「地球為什麼到現在還轉不停?因為分到的家產 (角動量) 還沒有用完啊。」

角動量是什麼?簡單說,它是物體轉動時的一種物理量。物體的質量越大、轉動半徑越大、轉速越快,角動量就越大。更重要的是,在沒有外力的情況下,角動量永遠守恆,不會變多、也不會變少,只能互相交換。

怎麼交換?靠摩擦!比方說,兩個旋轉的陀螺擦撞、分開,結果一個變慢,另一個就變快,就是前者的角動量藉由摩擦轉移到後者。而地球分到的角動量,則是跟太陽系其他天體「摩擦」來的。

時間回到 46 億年前,一場劇烈的超新星爆炸,太陽系誕生了。新生的太陽系宛如爐子上的一鍋熱粥,大小天體亂轉亂竄,就像一顆顆高速旋轉的大小陀螺,不斷發生碰撞,交換彼此的角動量。

太陽系形成的初始條件,決定了整個太陽系的角動量總和。所有天體藉由互相撞擊,交換彼此的角動量,各自分得一部份「家產」。
圖片來源│NASA

最後,太陽、地球、其他行星、小行星等所有天體,各自分到一部份的角動量 (家產),恆星和行星開始穩定的公轉和自轉,太陽系才逐漸成形。

然後勒?「從此,地球就過著穩定旋轉的日子……」並沒有!首先,地球自轉忽快忽慢,沒有一天是 24 小時。

地球自轉忽快忽慢

在原子鐘發明以先,地球自己就是時鐘。人們把地球自轉一周後,回到面對太陽同一角度所經歷的時間,訂為「一天」,後來又把一天等分為 24 份,每一等分稱為 1 小時。

近代改用原子鐘定義時間,重新測量地球自轉。結果發現:

二、三十年下來,地球自轉沒有一天是 24 小時。每天都跟 24 小時或多、或少差了千分之一、二秒。

為什麼?地球沒有受到外力,角動量不是應該守恆嗎?

「因為地球不是一塊死板板、硬梆梆的剛體,」趙丰說:「大氣環流海洋洋流地函對流,地球時時刻刻都在變化。」

地球自轉有角動量,大氣環流、海洋洋流、地函對流也有角動量。所謂角動量守恆,是指地球上所有物體角動量的總和不變,但可以互相交換。

比方說,地球自轉是由西向東轉,當大氣向東流速變快,會對地面的推擠摩擦,從地球本身「借走」一點角動量,導致地球自轉變慢;相反的,如果大氣向東的流速變慢,也會藉著摩擦,「還給」地球一些角動量,使地球自轉變快。

地球不是一整塊死板板的剛體,大氣環流、海洋洋流、地函對流、巨大地震、冰河融化……地球無時不刻不變化,影響自轉速度和地軸方向。尤其是當大氣、海洋、地函對流方向等等發生改變,因為角動量守恆,地球自轉就會忽快忽慢。
資料來源 │趙丰 圖片重製 │林洵安

「今天大氣拿走一點,明天海洋還來一點,加加減減的,地球自轉就忽快忽慢了,」趙丰繼續比喻:「就像銀行的存款,今天吃個大餐,明天領個薪水,每天生活的收入支出,都會讓戶頭金額微微變動。」

但麻煩來了!如果地球好一陣子都轉得比較慢,一天慢個一千分之一秒,兩三年下來,就可能慢上 1 秒了。我們該不該把原子鐘也塞進 1 秒,以免跟地球自轉越差越遠,這就是過去發生了二十幾次的閏秒事件。

最近一次閏秒發生在 2017 年的 1 月 1 號,那年元旦假期幸運的多了……1 秒鐘。

地球越轉越慢、月球越來越遠

好幾年才加減 1 秒,根本無感?沒關係!如果把時間拉長,從幾百萬、幾千萬、幾億年的尺度來看,地球真的越轉愈慢,每 100 年穩定慢上千分之一秒。

可別小看千分之一秒?想想,如果是累積了 100 萬年、100 個 100 萬年 (1 億年)……差距就非常可觀,而地球已經 46 億歲了。

從化石證據知道, 4 億年前,地球一天只有 22 小時,再往前推,新生地球可能幾小時就轉一圈!反過來說,

當未來地球越轉越慢,一天真的有 25 小時可用。只不過還要再等上……2 億年。

誰讓地球剎車了?罪魁禍首是:月球!月球吸引地球的海水,引發潮汐現象,海水來來回回摩擦地表,就像貼在地球表面的「剎車皮」,讓地球慢慢「減速」。

至於地球消失的角動量,則被月球神不知鬼不覺的接收,用來增加月球公轉的速度……

月球在地球引發潮汐,讓地球自轉越來越慢,地球消失的角動量則轉移到月球,增加月球公轉的速度。「為什麼不是增加月球自轉的速度?」因為地球對月球的潮汐力更強,造成月面如海水起伏摩擦,早就讓月球自轉「停擺」了,現在只能用同一面面對地球。
資料來源 │趙丰 圖片重製 │林洵安

「可是……不是說角動量一定要守恆嗎?但地球的角動量越來越少了……」

地球和月球互相吸引,又不受外力影響,可以看成一個系統。地球消失的角動量轉移到月球,整個系統的角動量還是守恆的!

月球的公轉角動量增加,又造成一個有趣的現象:

月球公轉速度變快,地球引力越來越拉不住它,於是月球越跑越遠、公轉軌道越來越大,每年平均遠離地球 3.8 公分。

由此反推,過去月球應該離地球非常近,當時月亮大又圓,而且每次漲潮都是恐怖大海嘯。

而未來,地球將越轉越慢,直到停止自轉,最後永遠只用同一面對著月球。屆時,地球只有一半地區可中秋賞月,但那時月亮只不過是天邊一顆不起眼的小白點。

地軸從來不安分

最後,地球自轉不只愈來愈慢,自轉軸還會各種搖擺,就像你甩出陀螺或是丟出飛盤,它們的旋轉軸也會繞圈圈或是些微晃動。

最有名的就是歲差現象:地軸週期性的繞圈圈,造成春分、秋分,冬至、夏至相對於星體的角度年年改變。幕後的主要黑手是:太陽和月球的引力,使地球自轉軸以 25800 年為週期,繞出一個圓錐。影響所及,人類的曆法必須考慮它、對它修正,才能跟著上地軸的「舞步」。地球就像陀螺一樣,自轉軸會週期性的繞圈圈,造成

地球就像陀螺一樣,自轉軸會週期性的繞圈圈,造成春分、秋分,冬至、夏至相對於星體的角度年年改變,比方說:地軸北方所對的「極星」隨著時間改變,未來將從北極星轉向織女星。
資料來源 │趙丰 圖片重製 │林洵安

但即使沒有外力,地球自轉軸也會自己擺動,造成許多古怪的現象,像是北極點不斷漂移,稱為極移。

早在 1900 年,人類就訂出地理北極點的位置,統一全世界的地圖和座標。但事實是,地球真正的北極點每天都像個陀螺似的,一邊打轉、一邊朝美國東部的方向漂移,目前已移動十多公尺。

原因與冰河期後的反彈現象有關。在冰河期,地表被厚重的冰層壓住,等到冰河期一過,冰原融化了,壓力解除了,大地就像彈簧床緩緩回彈,使地表某些地區「長胖」了。

地球的「形狀」改變了,質量重新分配,自轉軸也會跟著微調,真正的北極點(自轉軸穿出北方地面之處) 也就換位置了。這還是角動量守恆的結果!你可以把同一塊黏土捏成各種形狀,試著轉轉看,就會發現轉動軸真的會改變。

地球的北極點從來都不安份,從 1900 年開始,北極點已經朝向美國東部方向漂移十多公尺 (圖中綠色箭頭,但為了方便辨識,將實際尺度大大的誇張)。
圖片來源 │NASA

看到這裡,地球的大轉、小轉是不是把你的腦袋轉暈了呢?總的來說,地球自轉宛如氣勢恢弘的交響樂曲,主旋律是漸慢板,但其中還隱藏著更多奇妙的副旋律,崮中奧妙有賴科學家細細品聆了。

地球自轉的學問好有趣,但跟生活好像沒有關係?

關係可大了!如果沒有研究地球自轉,GPS 就無法精確定位,現代人的日子就沒法過了。

現代開車、找路都需要的 GPS (全球定位系統))衛星導航。原理是:地面接受器同時接收某四顆衛星傳來的訊號,訊號中有每顆衛星的座標和訊號發射時間,接受器再由收到訊號的時間差,反推每顆衛星距離它多遠,最後綜合考慮四顆衛星的座標和距離,推算出地面接受器當下的位置,完成定位任務。

問題來了!地球本身會自轉,接受器自己就動來動去,怎麼精確評估與衛星的距離?所以接受器必須時時接收當下地球自轉的資訊,修正計算,以免導航誤差。

值得一提的是,GPS的成功使用與地球自轉研究非常密切。譬如當地球上的科學家為了追蹤和指揮太空飛行物,或是發射到其他行星的太空船,地面指揮站必須能精準計算距離和位置,而第一步就得先扣除地球自轉造成的誤差。另外,地球自轉的研究也能幫助評估全球暖化的人為影響。

地球自轉是怎麼測量的呢?過去科學家是用現成的星星當作參考座標系,但不夠精確。現今使用的精密儀器,包括人造衛星的雷射測距、無線電天文的長基線干涉術,以及全球定位系統 GPS。例如:以遍布全球上空的衛星當作座標 (如上圖),測量地面測站與天上某四顆衛星的距離,計算每個時刻地面測站的當下位置,然後比較不同時刻的位置變化,藉此推知地球自轉的速度。
圖片重製 │林洵安

全球暖化跟地球自轉有什麼關係?

當前有種迷思:地球本來就有週期性的氣候變遷,例如:冰河期和間冰期的來來去去,目前的暖化現象只是自然週期的一部份,人為的影響不是主因,一切都是某些科學家大驚小怪。

所以科學家必須了解冰河期的自然週期,作為全球暖化的背景資料,才能正確評估人類的影響程度。

而冰河期最重要的成因,來自其他行星引力,首先改變地球公轉軌道,讓它變得更橢或更圓,此週期約為 10 萬年。當軌道越橢,日照量越少,冬夏差異越大,冰河期越容易發生。

其次,行星引力造成地軸傾角週期性的擺盪,也會影響冬夏差異的強弱,這個週期約為 4 萬年。

最後,地球公轉軌道也會晃動,加上地球自轉軸本來就會轉圈圈,聯手改變地球最接近或遠離太陽的日子,週期約為 2 萬年。當北半球冬季遇上遠日點,就容易形成冰河期。

資料來源 │趙丰 圖片重製 │林洵安

以上這些「萬年起跳」的週期,就是地球氣候變遷的自然週期。由此可知,人為破壞雖然局部的,但是 3~5 年就相當有感,效果又快又猛烈,真的是全球暖化的主要凶手。

地球自轉還有什麼有趣的研究方向嗎?

所有地球自轉會發生的現象,在其他行星上都會發生。前面說過地球對月球的潮汐力,讓月球只能用同一面面對地球,這個現象就廣泛的發生在各大行星與它們的衛星。國外行星研究正夯,這是很有發展的方向。

地球自轉還能探索地球內部。當前科技無法像電影般潛入地心,地球內部現象必須依靠地表能夠量測的數據反推,包括地震波、重力場、地球自轉變化、磁場的變化量。

最近兩三年,我從地球自轉的快慢變化,發現一個 6 年上下的小週期震盪,推測地球的內心會像鐘擺一樣來回搖擺。

我的推論是:地球的內核和外核不是完美的圓形,中間又隔著液體層,所以內核在液體內可能會晃動 ,造成鐘擺般的簡諧運動 。當地球內核晃動,外面地殼因為角動量守恆就會跟著改變轉速,造成地球自轉週期性的改變。

總之,只要發揮想像力,可以做的主題非常多,非常有趣的!

延伸閱讀

本文轉載自中央研究院研之有物,原文為一天 24 小時不夠用?再等等,地球自轉越來越慢……,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
285 篇文章 ・ 2900 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

7
0

文字

分享

0
7
0
氣候變遷會讓世界變得又熱又病嗎?暖化之下的寄生關係可不簡單
阿咏_96
・2023/05/15 ・3188字 ・閱讀時間約 6 分鐘

近年來,氣候變遷已經變成一個眾所皆知的熱門話題,不僅影響著我們身處的自然環境,以及人類生活,也對生物的繁殖、生長、分布等造成衝擊。不過,今天我們沒有要討論海平面上升、極端天氣等這些巨觀環境的改變,而是要來談談或許你我體內都有的——寄生蟲。

提到寄生蟲,大家比較熟悉的或許是蟯蟲、蛔蟲等,有機會寄生於人類體內的寄生蟲,而自然中許多物種之間也有寄生關係,但這與氣候變遷有什麼關係呢?

有許多研究顯示,氣溫升高會導致寄生蟲爆發事件增加,也有些研究說寄生蟲在高溫下的表現比宿主好,因此暖化可能會造成相關疾病越來越嚴峻,後來也衍生出「地球越溫暖,流行病越多」的假說。

地球越溫暖,流行病越多」的假說近來相當盛行。圖/envatoelements

寄生不是哩想ㄟ那麼簡單

俗話說:魔鬼藏在細節裡。腹肌藏在脂肪裡。

如同在生物課本裡學過的,寄生關係是生物間的交互作用,一種生物寄居在另一種生物的體表或體內,獲取營養得以生存、繁殖,所以也並非只有寄生蟲的事,和宿主的生理也有很大關係。找到溫度升高會影響寄生過程的哪些步驟,以及背後的機制怎麼運作,是了解氣候變遷對寄生關係影響的關鍵。

近期發表在英國皇家學會《自然科學會報》(Philosophical Transactions of the Royal Society B)的一項新研究就發現,溫度能夠調節寄生真菌在宿主水蚤體內的感染機制。

這個研究由臺灣大學氣候變遷與永續發展學程助理教授孫烜駿與美國密西根大學研究團隊合作,利用暖化實驗觀察水蚤和真菌之間的寄生關係。

他們將一種水蚤 Daphnia dentifera 作為實驗物種,水蚤平常吃藻類等浮游植物,然後也會被更大的捕食者吃掉,因此水蚤在淡水食物網中扮演著重要角色。而今天的另一個主角 —— 寄生真菌 Metschnikowia bicuspidata ,則是一種會感染多種水蚤的酵母菌。

那水蚤是怎麼被感染的呢?

宿主與寄生真菌之間的攻防戰

水蚤在濾食水中浮游植物時,寄生真菌的孢子可能會一起被牠吃進去,這時感染過程就開始了(水蚤表示:窩⋯⋯窩不知道QQ)首先,寄生真菌的針狀孢子需要先刺穿水蚤的腸道上皮細胞,才能進到體腔內開始發育、繁殖,感染初期有些水蚤還可能痊癒,否則就會進到最終感染階段,一旦水蚤體腔內充滿寄生真菌的孢子或孢子囊,便不可能康復,最終走向死亡,之後下一代孢子釋放回環境中,再被新宿主吃掉,完成感染週期。

寄生真菌在水蚤中的感染過程。生真菌的針狀孢子會先刺穿水蚤的腸道上皮細胞。圖/英國皇家學會《自然科學會報》

也不是所有被吃進去的孢子都能夠成功感染宿主,必須要經過重重關卡,畢竟水蚤也不是吃素的(好啦水蚤真的吃素沒錯 XD)

而兩道最重要的關卡就是「物理屏障」與「細胞免疫」。

物理屏障是一種常見的防禦形式,例如我們的皮膚和植物的角質層,在水蚤與寄生真菌的感染過程裡,腸道上皮細胞就是抵抗孢子進入體腔的物理屏障,像是一道能夠抵抗外來敵人的城牆。

但如果孢子還是順利進到水蚤的體腔內,細胞免疫就像一支軍隊,免疫細胞士兵們會聚集到被感染的部位,開啟防禦模式,共同抵禦外敵,也就是前面提到的,有些剛被感染的水蚤有機會康復的原因。

健康的 Daphnia dentifera 水蚤(左圖)與被寄生真菌 Metschnikowia bicuspidata 感染的水蚤(右圖)。圖/國立台灣大學

暖化之下,寄生關係會怎麼樣

研究團隊想知道:溫度對物裡屏障和細胞免疫的影響,以及會不會影響最終感染的機率。

因此他們把水蚤放到 20°C 和 24°C 下的環境飼養,為甚麼是這兩個溫度呢?

根據先前研究,20°C 是適合水蚤生長繁殖的溫度,而 24°C 則是來自 2100 年氣候變遷預測下的平均溫度變化,自西元 1985 年起,夏季的湖面溫度以每十年 0.34°C 攀升,到本世紀末預計上升 4°C。

並將不同溫度下飼養的水蚤,分別放入有寄生真菌和沒有寄生真菌的環境,總共四種環境條件的組別。

  1. 實驗組:24°C,沒有寄生真菌
  2. 實驗組:24°C,有寄生真菌
  3. 控制組:20°C,沒有寄生真菌
  4. 控制組:20°C,有寄生真菌

接著,為了知道感染初期的情形,針對有寄生真菌的組別,研究團隊在放入真菌 24 小時後,用複式顯微鏡觀察,檢查水蚤腸道和體腔內是否有孢子,以及孢子的數量。

那要怎麼知道物理屏障和細胞免疫的防禦效果呢?

如同前段提過的,我們將作為物理屏障的腸道上皮細胞想像成城牆,免疫細胞想像成軍隊,而寄生真菌的孢子是試圖入侵的外敵

腸道的防禦力便是用「後來在體腔內的孢子數」與「所有試圖刺穿腸道上皮的孢子數」相除;也就是「進到城牆內的敵人數」除以「所有一開始來城牆外攻擊的敵人數量」。(編按:每一百個攻擊城牆的敵人,會有多少人突破城牆的防禦進到牆內)

除此之外,團隊也觀察在不同溫度下水蚤腸壁上皮的厚度,畢竟城牆的厚度可能是防禦的關鍵。

而細胞免疫則是以「前來支援的免疫細胞數」除以「體腔內的孢子數」計算,可以想像成一個敵人需要幾個士兵一起抵抗

除了兩道關卡的抵禦能力外,為了解水蚤的健康狀態,研究團隊紀錄牠們在感染後的死亡率和繁殖力。

溫度影響的不只是寄生關係

實驗結果發現,較溫暖環境下的水蚤腸壁上皮細胞比控制組厚,但腸壁是越厚越好嗎?

另一個結果顯示,其實較厚和較薄的腸壁上皮細胞,比較能抵抗寄生孢子的攻擊,反而是有中等腸道厚度的水蚤防禦孢子進入體腔的能力較弱。

而關於細胞免疫,則發現隨著成功進入體腔的孢子數量增加,附著在孢子上的免疫細胞總數也跟著增加,但在較溫暖環境下飼養的水蚤召集來的免疫細胞,比控制環境下來得少。也就是說,越多敵人入侵,軍隊會募集越多士兵來共同對抗,但在溫暖環境下召來的士兵較少

那物理屏障和細胞免疫之間有什麼關係呢?

在 20°C 下,腸道上皮細胞越厚,每個寄生孢子所需要的免疫細胞數就越少,這似乎蠻容易理解的,若城牆越厚,軍隊火力就不需要太強,反之亦然。

但在 24°C 卻看不到同樣的趨勢,我們知道的只有在溫暖環境下,同樣腸道厚度免疫細胞仍比控制組少。

最後,不論是繁殖力還是存活率,都是在溫暖環境下被感染的水蚤敬陪末座。

從這個研究,我們可以得知,溫度上升不僅會改變宿主的物理屏障,也會影響細胞免疫,進而改變寄生真菌對水蚤的感染結果。在更了解溫度影響寄生關係中的哪些關鍵特徵和結果後,便能預測在暖化環境中,宿主與寄生蟲之間的交互作用,以及所導致的後果。

參考文獻

  1. Sun, S. J., Dziuba, M. K., Jaye, R. N., & Duffy, M. A. (2023). Temperature modifies trait-mediated infection outcomes in a Daphnia–fungal parasite system. Philosophical Transactions of the Royal Society B, 378(1873), 20220009.
  2. Rohr, J. R., & Cohen, J. M. (2020). Understanding how temperature shifts could impact infectious disease. PLoS biology, 18(11), e3000938.
  3. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162.
  4. Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston Jr, N. G. (2012). Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1873-1882.
  5. Ozersky, T., Nakov, T., Hampton, S. E., Rodenhouse, N. L., Woo, K. H., Shchapov, K., … & Moore, M. V. (2020). Hot and sick? Impacts of warming and a parasite on the dominant zooplankter of Lake Baikal. Limnology and Oceanography, 65(11), 2772-2786.
阿咏_96
12 篇文章 ・ 525 位粉絲
You can be the change you want to see in the world.

1

8
4

文字

分享

1
8
4
太陽系如何形成、如何演化?就讓「靈神星」來解答!
EASY天文地科小站_96
・2023/04/12 ・2962字 ・閱讀時間約 6 分鐘

  • 文/黃子權|掉入岩石堆中的研究生,現就讀台大地質所
  • 文/林彥興|現就讀清大天文所,努力在陰溝中仰望繁星

M 型小行星與行星的誕生

了解太陽系的形成歷史與演化,是行星科學最重要的使命之一。然而,身在太陽系形成後 46 億年的我們所看到的行星,都是經過漫長演化後的結果。它們的表面特性、內部結構,早已與剛形成時大相逕庭。

因此,想要研究太陽系的形成與演化,小行星是相當重要的目標。由於小行星質量小、冷卻快,更不會有複雜的風化和地質運動,因此它們從太陽系形成之初到現在都沒有什麼改變,就像活化石一般。而過去幾十年,人類也確實對小行星進行了廣泛而詳細的研究,比如拍攝照片計算它們的軌道,用光譜分析化學組成,甚至派遣太空船(如 JAXA 的隼鳥一號、隼鳥二號、NASA 的 OSIRIS-REx)直接前往小行星,將樣本採回地球分析。

而在太陽系目前已知的一百多萬顆小行星中,有一個相當特殊的族群,它們大多具有較大的密度和較高的雷達反照率,同時在光譜上缺乏特徵。基於上述特點,科學家們認為它們的組成中有含有不少金屬,因此稱之為 M 型小行星。

根據目前天文學家對行星形成的理解,原行星盤(protoplanetary disk)中的金屬元素分布理應相當分散,因此能夠自然產生元素分異並聚集大量金屬的地方,只有足夠大、足夠熱的原行星(protoplanet)的行星核。所以傳統上,M 型小行星被視為受到撞擊後裸露的行星核,同時也是鐵隕石的來源之一。但截至目前,仍未有探測器直接造訪 M 型小行星,確認這個假說是否正確。

近期,新的觀測資料更顯示,某些 M 型小行星似乎比人們預想的還輕,各種特徵也和人們對行星核的認知不盡相同(例如,在表面觀測到含水礦物的訊號)。這表示傳統的行星形成與演化模型,也許不盡正確。換個角度看,這也代表對 M 型小行星的研究,也許將能幫助我們揭開行星演化理論中的盲區。

M 型小行星是由什麼構成的?它們的演化歷史又是如何?苦於距離遙遠,過去人們對這些問題往往只能止於粗略的推測。但隨著靈神星號任務逐漸上軌,我們離解答這些問題(的一部分)只有一步之遙了。

靈神星號探測器。圖/NASA/JPL-Caltech/ASU

靈神星探索任務

靈神星探索任務(Psyche)是 NASA 發現計畫(Discovery Program)的一部分。發現計畫始於 1989 年,每隔幾年就會向全美國徵求任務提案,經過重重篩選後,最具有科學價值且最可行的團隊,就可以獲得 NASA 提供的經費,將他們的構想付諸實行。從 1996 年的 NEAR 任務開始,發現計畫已經為十幾個重要的太陽系探索任務提供機會,包含近期因太陽能板發電量降低而終止的火星「洞察號(InSight)」任務。2014 年,第 13、14 次發現計畫徵選開始,最後脫穎而出的其中一個計畫,正是靈神星探索任務。

而計畫要觀測的目標靈神星(16 Psyche)於 1852 年被義大利天文學家加斯帕里斯(Annibale de Gasparis)發現,並以希臘神話中靈魂之神「賽姬」命名。祂是第 16 個被發現的小行星,雖然不是最大的小行星(平均寬度約 220 公里)但卻是目前已知小行星中第 10 重的,其質量佔小行星帶總質量的 1%。根據估算,靈神星的密度大約為 3.9 g/cm3,遠低於鐵鎳隕石的 7.9 g/cm3,因此靈神星不太可能真的完全由金屬構成,比較可能是類似石鐵隕石那樣,由金屬與岩石共同組成。

科學家對靈神星的想像。圖/ NASA/JPL

作為發現計畫的一員,靈神星計畫切實地反映了該系列任務的宗旨:便宜、快速的解答重要的疑問。M 型小行星是行星形成與演化中相當重要的一片拼圖,而靈神星又是體積最大的 M 型小行星,其重要性不言而喻。對靈神星的探測,勢必能更加推進人們對行星演化的認知。

靈神星號的科學目標及預期解答的問題為:

  1. 靈神星是行星核還是未熔結物質?
  2. 靈神星表面的相對年齡為何?
  3. 小型金屬天體是否含有和高壓地核同比例的輕金屬?
  4. 靈神星形成環境的氧化還原性?
  5. 靈神星地表及撞擊坑特徵?

為了達到這些目標,靈神星號上搭載了以下儀器:

  • 多光譜成像儀 (Multispectral Imager)
  • 伽馬射線/中子光譜儀 (Gamma-Ray and Neutron Spectrometer, GRNS)
  • 通量閘磁強計 (Fluxgate Magnetometer)
  • X頻無線電實驗 (Radio Science (X-band))

整體而言,靈神星號的載酬相當簡要,科研儀器加總起來只占約 30 公斤,且每項儀器都是經過「實戰」驗證過的:多光譜成像儀來自火星好奇號探測車,GRNS 來自水星的信使號任務、磁強計參與了洞察號任務、X 頻無線電實驗(利用通訊時訊號的都卜勒效應測量重力強度變化)更是有多項成功紀錄。使用這些驗證過的儀器不僅能減少任務風險,同時能省下不少研發經費,提高任務的 CP 值。另外,靈神星號同時也會為深空網路(Deep Space Network, DSN)測試全新的「深空光學通訊(Deep Space Optical Communication, DSOC)」系統,利用雷射作為資料載體進行傳輸,科學家估計 DSOC 的資料傳輸速度,將比過去使用無線電的 DSN 快 10 到 100 倍。

靈神星號各項儀器位置圖。圖/修改自NASA/JPL-Caltech/ASU
靈神星號的伽馬射線光譜儀及中子光譜儀。圖/Johns Hopkins APL/Ed Whitman

另外,隨著科技進步,太空探索不再是國家機構的天下,各種商業公司紛紛加入了衛星製造的行列。因此重視任務 CP 值的靈神星號,從設計初期,科學家們便決定向商業公司尋求成熟、有發射紀錄且搭載了離子推進系統的衛星載具。最終他們選定了 Maxar 旗下的 Space Systems/Loral(SSL)公司的 1300 系列框架作為靈神星號的主體,並由噴氣推進實驗室(JPL)整合飛行系統(包含指令及資料處理系統)。靈神星號的推進系統是一具 SPT-140 霍爾效應推進器(Hall effect thruster),藉由游離氙氣並透過磁場將其加速噴出以獲得推力。搭配發電量達 20 千瓦的太陽能板及 922 公斤的氙氣,足夠支持靈神星號走完將近六年的航程。

抵達靈神星後,探測器將嵌入軌道開始環繞靈神星。科學家為靈神星號安排了四個逐漸降低的軌道(A 到 D),每個軌道都有各自主要的研究目標:

  1. 最高也是最初始的軌道 A 半徑約 700 公里,靈神新號將會在這裡測量靈神星的磁場。
  2. 56 天後,探測器將降至軌道 B(半徑 290 公里)並且開始對靈神星的地貌進行調查。
  3. 76 天後,靈神星將下降至半徑 170 公里的軌道 C,這是最小的穩定繞極軌道,同時也是最適合用來探測靈神星重力場的高度。
  4. 100 天後靈神星號將會降至最後、最低的軌道 D,軌道半徑僅 85 公里,在這探測器將利用 GRNS 調查靈神星表面的元素分布。
靈神星號任務示意圖。圖/修改自 NASA/JPL-Caltech

靈神星號原訂的發射日期為 2022 年 9 月。然而在飛行前的測試中,任務團隊發現飛行軟體異常,導致它錯過了 2022 年的發射窗口。經過幾個月的調查和調整,目前 NASA 公布的下個發射窗口為 2023 年 10 月 10 日以後,屆時靈神星號將會搭乘 SpaceX 的獵鷹重型火箭進入太空,就讓我們好好期待靈神星號傳回來的各種資料吧!

延伸閱讀

  1. 我們的征途是星辰大海:回顧隼鳥二號的億里長征
  2. Just Look Up!小行星監測系統「哨兵」全面升級
  3. 災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?
所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1137 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

8
5

文字

分享

0
8
5
數學有多好用?從種馬鈴薯到上太空,那些我們沒發現的數學——《大自然的數學遊戲》
天下文化_96
・2022/12/25 ・2278字 ・閱讀時間約 4 分鐘

數學的共振系統存在於太陽系中

太陽系的動力系統充滿了共振。

月球的自轉由於受到其他天體的攝動(perturbation),因而有輕微的起伏,不過它的自轉週期與它環繞地球的公轉週期相同,這是自轉週期與軌道週期的「一:一」共振。因此,我們在地球上總是看到月球的同一側,從來無法看到月球的「背面」。

水星每隔五十八.六五日自轉一周,每隔八十七.九七日公轉太陽一周。二乘八十七.九七等於一七五.九四,而三乘五十八.六五等於一七五.九五,因此水星的自轉週期與軌道週期是一個「二:三」共振。事實上,長久以來,天文學家一直以為兩者構成「一:一」共振,以為兩個週期大約都是八十八日。

因為想要觀察像水星這麼接近太陽的行星,實在是一件很困難的事情。這使得天文學家相信,水星的一側熱得不可思議,而另一側則冷得不可思議,最後卻發現事實並非如此。不過共振還是存在,而且比單純的「一:一」更有意思。

在火星與木星之間,有一個寬闊的小行星帶(asteroid belt),其中包含了數千個微小的天體。這些小行星的分布並不均勻,在某些與太陽距離固定的軌道上,我們發現還有些「小行星子帶」,在其他距離上則幾乎找不到它們的蹤跡。這兩者都得歸因於與木星的共振。

火星與木星間的小行星帶。圖/wikipedia

希耳達群(Hilda group)小行星就位在小行星子帶,它們與木星形成「二:三」共振。也就是說,這群小行星所處的位置,剛好使它們在木星公轉兩圈的時間中環繞太陽三圈。而最有名的小行星帶隙(gap of asteroid),則是「一:二」、「一:三」、「一:四」、「二:五」與「二:七」的共振。

各位讀者也許有些擔心,為什麼共振同時能夠解釋小行星帶的叢聚與間隙呢? 答案是每一個共振都具有本身的動力學特徵,某些會造成叢聚效應,某些的作用則剛好相反,全都由共振比例數字來決定。

用數學來預測未來

數學的另一項功能是進行預測。

在了解天體的運動之後,天文學家便能預測月食、日食,以及彗星的回歸等等。他們知道應該將望遠鏡對準何處,才能重新發現運行到太陽背面、暫時無法觀測的小行星。由於潮汐主要是由日、月與地球的相對位置所控制,所以他們也能預測許多年後的潮汐。

(但這種預測的主要困難並非來自天文學,而是大陸的形狀與海底的地形,它們都能使某個高潮提前或延後。然而,即使過了一個世紀,這些地理因素也幾乎不會有什麼改變,因此一旦了解它們造成的效應之後,將這些效應考慮在內只是例行公事。)

反之,想要預測天氣則困難無數倍。對於控制天氣的數學,我們知道的跟控制潮汐的數學一樣多,可是天氣天生就有一種不可預測性。縱使如此,氣象學家仍能做出有效的短期預測,比方說三、四天以後的天氣。不過,天氣的不可預測性與隨機性毫無關聯。在第八章中,當我們討論到混沌概念的時候,將會詳加探討這個題目。

數學所能做的遠不止於預測。一旦了解某個系統如何運作,我們就不必再做個被動的觀察者了。我們可以試圖控制這個系統,讓它照我們的意思行事。可是最好不要野心太大,例如天氣控制就仍處於嬰兒期,我們還無法隨心所欲地造雨,即使天上有一大團現成的雨雲。

控制系統的例子不勝枚舉,從保持汽鍋溫度固定的恆溫器(thermostat)到中世紀式的造林。還有,假如沒有精妙的數學控制系統,太空梭就會在空中橫衝直撞,因為任何太空人絕對沒有足夠迅速的反應,可矯正它固有的不穩定性。至於使用電子式心律調節器幫助心臟病患者,則是控制的另一項實例。

這些例子,讓我們看到數學最為實際的一面,也就是它的實際應用:數學如何造福人群。

隱身文化幕後的數學工具

我們的世界奠立在數學基礎上,數學不可避免地深植於全球文化中。我們並非總能夠了解數學對我們的生活有多大影響,理由是它被人盡可能藏在幕後。

這是很合理的,譬如您找旅行社安排一次度假旅遊時,不必了解設計電腦或電話線的數學與物理理論,也不必了解使某座機場能起降最多架次飛機的最佳化(optimization)程式,或是為駕駛員提供正確雷達影像的信號處理方法。

當您收看電視節目的時候,也不必了解在螢幕上製造特殊效果的三維幾何、藉由衛星傳送電視訊號的編碼方式、解出衛星軌道運動方程式的數學技巧,以及在製造可將衛星送到定位的太空的各個零組件時,每個步驟所應用的數千種不同的數學工具。

還有,農夫在種植新品種的馬鈴薯時,也不必知道遺傳學統計理論,不必知道這理論如何幫助育種學家找出何種基因使這品種具有抗病性。

然而,以前一定有人了解這一切,否則飛機、電視、太空船、抗病性的馬鈴薯都不可能發明出來。現在也需要有人了解這一切,否則它們就不會繼續運作。而將來也需要有人發明新的數學,以便解決新出現的或迄今尚未有解的難題,否則當我們面對某種改變,必須解決新的問題,或是舊問題需要新的解答時,我們的社會便會崩潰。

假如數學以及所有植基其上的發展,突然之間從我們的世界消失,人類社會將在瞬間四分五裂。又假如數學從此停滯不前,再也不會向前邁出一步,我們的文明便會很快開始倒退。

——本文摘自《大自然的數學遊戲 》,2022 年 11 月,天下文化出版,未經同意請勿轉載。

天下文化_96
129 篇文章 ・ 613 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。