Loading [MathJax]/extensions/tex2jax.js

2

1
2

文字

分享

2
1
2

順時鐘逆時鐘?南北半球的馬桶水流真的不一樣?

李 卓然
・2014/12/04 ・2259字 ・閱讀時間約 4 分鐘 ・SR值 510 ・六年級

-----廣告,請繼續往下閱讀-----

source:John Johnson @ pexels

當你拔掉浴缸的拴子放掉洗澡水時,看著排水口的水流轉阿轉阿的……有多少人試過用手去強制逼水流漩渦往反方向旋轉…(有的請舉手)?但是常常漩渦方向改變後沒多久,它又改回原本的方向了。這時大部分的人甚至學校老師都會跟你說:「造成漩渦的這個現象的主因是科氏力,在南半球的話就會發現漩渦的方向和北半球相反噢!」。

最近網路上更流傳著一則在赤道國家拍的短片,影片中有三個水盆,一個放在北半球邊、一個放在南半球邊,然後非常犯賤的,最後一個當然在放在赤道上。三個盆子中間都有一個排水孔,裝滿水後他們在水面上放一朵小花,以便在放水時看出水流的方向。

 

影片中的結果是在北半球時水會以順時鐘的方向流出,南半球會以逆時鐘的方向流出,在赤道時完全沒有漩渦產生的直直流出!這影片到底是真是假?真的有這麼神奇差個幾公尺就會有如此奇妙的現象?在破解這個現象之前,我們得先了解到底什麼是科氏力。

科氏力 Coriolis Effect

科氏力所造成的現象可以用這段影片來示意:

-----廣告,請繼續往下閱讀-----

影片中的兩個人在旋轉平台靜止的時候都可以互相把球直直的傳到對面的人手中,但是當平台開始旋轉時,一樣是把球瞄準對面的人直直丟出,球卻會以一個拋物線的方式往旁偏,此現象就是科氏力所造成的問題。

這一切都跟觀察者的相對角度有關。當我們站在一個絕對旁觀的立場來看的時候,可以看出被丟出的球或任何東西其實都是依它原來的路徑前進,這正是古典物理學中牛頓的第一定律所說的:動者恆動,靜者恆靜,在沒有外力的干擾下物體會照原來的運動方式繼續運動,在被丟出去的球這個例子中,球應該繼續直線前進才對(先不管受地心引力影響往下掉的部份)。

U0lOI8c

那為什麼我們會覺得直直拋出去的球正在以拋物線的方式往旁邊偏呢?那是因為我們沒站在旁觀者的立場,我們站在當事者的立場觀察而且這個觀察視角正是一個旋轉的觀察平台,我們覺得自己沒有在動,是球改變了方向,但是事實是球沒有在改變方向,只是我們自己在動。這就是科氏力的基本概念。

這個現象在1835年被法國科學家Gaspard-Gustave Coriolis 第一次以數學和物理的公式來解釋[1],因此後來就把此現象稱作Coriolis Effect(科氏力現象)。與科氏力有關的公式[2]比較複雜所以在這裡就先不多做說明了。

-----廣告,請繼續往下閱讀-----

生活中的科氏力

我們的生活為什麼會跟科氏力有分不開的關係正是因為我們活在地球上,地球以一天一圈的速率不停地旋轉著,我們不會覺得自己頭昏眼花而且走路都能直直走,一則是因為我們已經習慣在這個第一人稱的觀察者視角裡生活,另一則是因為我們的活動都是在非常小的範圍內,不足以被科氏力影響。

當你要傳球給一壘手時,先假設你的球很準技術很好而且當時並沒有颱風,為什麼球會直直的進到壘手的手套裡而沒因為地球旋轉造成暴傳?正是因為那個距離相對於地球的直徑以及旋轉速率實在太微不足道,造成的偏差效果遠遠在感官觀察的到的範圍之下。但是如果今天北韓政府決定向世界開戰並用超長程洲際飛彈射往美國白宮的話,假設他們缺乏會精確計算科氏力的工程師,只是拿著一張地圖以及指南針對準白宮的方向發射,這個飛彈的落點會偏的非常非常遠。關於地圖和方位請另外請參照 〈麥卡托投影〉

coriolis_force

 

另一個生活常見的例子就是颱風以及颶風,颱風其實就是一個低氣壓中心,空氣就和水一樣,都會從高壓處流往低壓處,但是此時空氣並不是以直線的方式流向低氣壓中心,而是受到科氏力的影響而產生了偏轉,在北半球的颱風或颶風會產生逆時鐘旋轉的氣旋,在南半球則會產生順時鐘旋轉的氣旋。有趣的是,在赤道附近科氏力非常微弱(在緯度南北五度以內的科氏力都非常微弱),即使有低氣壓也很難形成氣旋,沒有氣旋就無法產生颱風,所以這也是為何赤道附近幾乎沒有颱風或颶風的一個原因[3]。

螢幕快照 2014-11-18 下午5.08.35
2018.1 編按:右圖為熱帶氣旋而非颱風,謝謝專欄作者潘昌志的指正。

所以科氏力到底能不能影響馬桶水流?

答案是否定的,因為科氏力與地球旋轉的速率有關,而這個力量其實是很微弱的因為地球的旋轉速率大約是每天一圈(每圈/86400秒),你的浴缸或是馬桶裡面的水可能一秒就轉好幾圈了,在旋轉的角速率上有了上千甚至上萬倍的差距,因此今天要是有人無聊到把同樣的馬桶從北半球搬到南半球,他會很失望的發現水流的結果是一樣的。

-----廣告,請繼續往下閱讀-----

所以到底是什麼在決定水流旋轉的方向?事實是有太多因素能影響了,最大的兩個因素就是浴缸或馬桶的結構,只要有任何的不對稱或些微的表面不平均就可以造成水流的方向改變。即使容器表面可以做到完完全全對稱毫無瑕疵,任何一點點在漏水之前的餘留水流或水波都能改變水流旋轉的方向(你不小心吹了一口氣也會影響水波)[4]。

所以簡單來說日常生活能觀察的到的水流旋轉方向都不是因為南北半球差異所造成的啦,一開頭的影片最有可能的解釋就是這幾個水盆本來的設計就不太平均,今天如果把放在南北半球的兩個水盆交換位置擺放可能也不會改變水流的結果噢。

參考資料:

  1. G-G Coriolis (1835). “Sur les équations du mouvement relatif des systèmes de corps”. J. de l’Ecole royale polytechnique 15: 144–154.
  2. Hestenes, David (1990). New Foundations for Classical Mechanics. The Netherlands: Kluwer Academic Publishers. p. 312.
  3. John M. Wallace and Peter V. Hobbs (1977). Atmospheric Science: An Introductory Survey. Academic Press, Inc. pp. 368–371.
  4. Y. A. Stepanyants and G. H. Yeoh (2008). “Stationary bathtub vortices and a critical regime of liquid discharge”. Journal of Fluid Mechanics 604 (1): 77–98.
  5. “Coriolis Effect”
  6. Everyday Mysteries
  7. Getting Around The Coriolis Force
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
李 卓然
6 篇文章 ・ 1 位粉絲
PanSci 實習編輯,陽明大學生物醫學技術暨檢驗學系畢業。對科學新知總是充滿興趣與好奇,對各種事情都保持懷疑和謹慎的態度所以常常被覺得人很機歪,但我真的只是想要很科學而已啊!

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
鳴人的螺旋丸真實現形——瀨戶內海上的鳴門渦漩!
Mia_96
・2023/10/17 ・1855字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

「らせんまる!」,當鳴人帥氣地喊出與卡卡西老師一同練習而成的忍術螺旋丸時,相信一定是許多人的童年回憶!其實鳴人名字的由來取材自日本四國德島縣的鳴門市(なると),而鳴門最具特色指標,正是被稱為世界三大漩渦的「鳴門の渦潮」!

說不定鳴人的忍術為螺旋丸也是因為鳴門擁有的特色渦旋!圖/IMDB

鳴門の渦潮——一窺鳴門海底的起起伏伏

鳴門海峽位於瀨戶內海與太平洋的交界處,其海底呈現 V 字形的深谷,其深度約為 100 公尺,因中央深谷無障礙物的阻擋,造成水流快速流動,形成主流,而在鳴門海峽的兩側(接近鳴門與淡路島)的海底地形較淺,因有地形阻擋,造成水流流速慢。而正是因為鳴門海峽中有兩種不同的水流流速,才會形成特殊的鳴門渦漩!

鳴門海峽為本州底下之淡路島與四國的交界之處。圖/wikimedia

鳴門渦漩的漩渦最大直徑可達 20 公尺,當逢大潮時,渦漩的水流流速更可以到達每小時 20 公里,實際站在觀潮船或是鳴門大橋上觀賞渦漩,更會看到大小渦漩不停的旋繞、消失、旋繞,反反覆覆的出現於鳴門海峽上。

站在鳴門大橋上,鳴門の渦潮就像是一條大蛇出現在海面。圖/作者

太陽月亮呀!我什麼時候才能看到最厲害的渦漩?

因鳴門渦漩被譽為世界第一的渦漩,許多人慕名而來,但其實,要看到最厲害的渦漩不僅僅需要運氣,更需要懂得看每天與每個月的潮汐現象!

-----廣告,請繼續往下閱讀-----
鳴門渦漩的觀賞方式之一「觀潮船」都會於網站上標註適合觀測渦漩的時間與日期,在對的時間與日期上船往往更容易看到越精彩的渦漩!圖/高速觀潮船

其一是對的時間,最明顯的渦漩會發生於滿潮(水位最高時)或是乾潮(水位最低時)前,當鳴門海峽北側為滿潮時,南側即為乾潮,此時的水位落差造成水流由北側向南側流動,快速移動的水流正是渦漩的成因之一。

而滿乾潮的產生原因來自於地月引力與向心力所造成的引潮力(關於潮汐現象的成因,可以參考臺灣也有摩西分海?——澎湖奎壁山的秘密 ),大部分地區的潮汐為半日潮,即為半天會有一次滿潮與一次乾潮出現,所以一天中有兩次可以登上觀潮船觀測渦漩的機會!(而另外半天為晚上,即使也有一次的滿潮與乾潮,卻也無法清楚的觀測渦漩。)

鳴門渦漩產生的原因正是因為當潮流從紀伊水道(太平洋)流向瀨戶內海約需 5-6 小時,所以瀨戶內海滿潮時正巧是紀伊水道乾潮,造成鳴門海峽南北兩側巨大的水位落差進而產生急速海流,而於急速海流中產生的正是一個個快速旋繞的渦漩!圖/渦流觀潮船

其二則是對的日期,前面提到渦漩是因水位落差產生的流動,若水位落差越大,流動的速度越快,產生的渦漩自然越厲害!

滿潮與乾潮的水位落差(又稱為潮差)影響因素為日、地、月三者的相對位置,當日、地、月連成一直線時,太陽與月球的引潮力朝向同一個平面作用,造成滿潮時水位更高,乾潮時水位更低,潮差較大;而當日、地、月三著呈現直角交角時,太陽與月球的引潮力作用於不同平面,相互造成些微的抵銷,造成滿潮水位相對較低,乾潮水位相對較高,潮差較小。

-----廣告,請繼續往下閱讀-----
日地月連成一直線時因潮差大,故被稱為大潮,出現的月相為新月與滿月(初一十五);日地月呈現直角交角關係時因潮差小,故被稱為小潮,出現的月相為上弦與下弦月。圖/中央氣象局數位科普網

所以在一個月中有兩次大潮最適合進行渦漩的觀測,而在兩次大潮中又有各一次的滿潮乾潮時間適合踏上觀潮船或是鳴門大橋觀賞這獨一無二的特殊景觀!

一同踏上螺旋丸修習之路吧!

鳴門渦漩除卻其特殊性,大大小小的漩渦其實也符合數學中的黃金比例呢!在後疫情時代各國旅遊逐漸開放之際,或許可以安排一趟德島之旅,一同體驗現實中的らせんまる!

-----廣告,請繼續往下閱讀-----

0

1
1

文字

分享

0
1
1
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

-----廣告,請繼續往下閱讀-----

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

-----廣告,請繼續往下閱讀-----

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

-----廣告,請繼續往下閱讀-----

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

-----廣告,請繼續往下閱讀-----
輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

-----廣告,請繼續往下閱讀-----
2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

-----廣告,請繼續往下閱讀-----

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

-----廣告,請繼續往下閱讀-----

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----