0

0
2

文字

分享

0
0
2

順時鐘逆時鐘?南北半球的馬桶水流真的不一樣?

李 卓然
・2014/12/04 ・2259字 ・閱讀時間約 4 分鐘 ・SR值 510 ・六年級

source:John Johnson @ pexels

當你拔掉浴缸的拴子放掉洗澡水時,看著排水口的水流轉阿轉阿的……有多少人試過用手去強制逼水流漩渦往反方向旋轉…(有的請舉手)?但是常常漩渦方向改變後沒多久,它又改回原本的方向了。這時大部分的人甚至學校老師都會跟你說:「造成漩渦的這個現象的主因是科氏力,在南半球的話就會發現漩渦的方向和北半球相反噢!」。

最近網路上更流傳著一則在赤道國家拍的短片,影片中有三個水盆,一個放在北半球邊、一個放在南半球邊,然後非常犯賤的,最後一個當然在放在赤道上。三個盆子中間都有一個排水孔,裝滿水後他們在水面上放一朵小花,以便在放水時看出水流的方向。

 

影片中的結果是在北半球時水會以順時鐘的方向流出,南半球會以逆時鐘的方向流出,在赤道時完全沒有漩渦產生的直直流出!這影片到底是真是假?真的有這麼神奇差個幾公尺就會有如此奇妙的現象?在破解這個現象之前,我們得先了解到底什麼是科氏力。

科氏力 Coriolis Effect

科氏力所造成的現象可以用這段影片來示意:

影片中的兩個人在旋轉平台靜止的時候都可以互相把球直直的傳到對面的人手中,但是當平台開始旋轉時,一樣是把球瞄準對面的人直直丟出,球卻會以一個拋物線的方式往旁偏,此現象就是科氏力所造成的問題。

這一切都跟觀察者的相對角度有關。當我們站在一個絕對旁觀的立場來看的時候,可以看出被丟出的球或任何東西其實都是依它原來的路徑前進,這正是古典物理學中牛頓的第一定律所說的:動者恆動,靜者恆靜,在沒有外力的干擾下物體會照原來的運動方式繼續運動,在被丟出去的球這個例子中,球應該繼續直線前進才對(先不管受地心引力影響往下掉的部份)。

U0lOI8c

那為什麼我們會覺得直直拋出去的球正在以拋物線的方式往旁邊偏呢?那是因為我們沒站在旁觀者的立場,我們站在當事者的立場觀察而且這個觀察視角正是一個旋轉的觀察平台,我們覺得自己沒有在動,是球改變了方向,但是事實是球沒有在改變方向,只是我們自己在動。這就是科氏力的基本概念。

這個現象在1835年被法國科學家Gaspard-Gustave Coriolis 第一次以數學和物理的公式來解釋[1],因此後來就把此現象稱作Coriolis Effect(科氏力現象)。與科氏力有關的公式[2]比較複雜所以在這裡就先不多做說明了。

生活中的科氏力

我們的生活為什麼會跟科氏力有分不開的關係正是因為我們活在地球上,地球以一天一圈的速率不停地旋轉著,我們不會覺得自己頭昏眼花而且走路都能直直走,一則是因為我們已經習慣在這個第一人稱的觀察者視角裡生活,另一則是因為我們的活動都是在非常小的範圍內,不足以被科氏力影響。

當你要傳球給一壘手時,先假設你的球很準技術很好而且當時並沒有颱風,為什麼球會直直的進到壘手的手套裡而沒因為地球旋轉造成暴傳?正是因為那個距離相對於地球的直徑以及旋轉速率實在太微不足道,造成的偏差效果遠遠在感官觀察的到的範圍之下。但是如果今天北韓政府決定向世界開戰並用超長程洲際飛彈射往美國白宮的話,假設他們缺乏會精確計算科氏力的工程師,只是拿著一張地圖以及指南針對準白宮的方向發射,這個飛彈的落點會偏的非常非常遠。關於地圖和方位請另外請參照 〈麥卡托投影〉

coriolis_force

 

另一個生活常見的例子就是颱風以及颶風,颱風其實就是一個低氣壓中心,空氣就和水一樣,都會從高壓處流往低壓處,但是此時空氣並不是以直線的方式流向低氣壓中心,而是受到科氏力的影響而產生了偏轉,在北半球的颱風或颶風會產生逆時鐘旋轉的氣旋,在南半球則會產生順時鐘旋轉的氣旋。有趣的是,在赤道附近科氏力非常微弱(在緯度南北五度以內的科氏力都非常微弱),即使有低氣壓也很難形成氣旋,沒有氣旋就無法產生颱風,所以這也是為何赤道附近幾乎沒有颱風或颶風的一個原因[3]。

螢幕快照 2014-11-18 下午5.08.35
2018.1 編按:右圖為熱帶氣旋而非颱風,謝謝專欄作者潘昌志的指正。

所以科氏力到底能不能影響馬桶水流?

答案是否定的,因為科氏力與地球旋轉的速率有關,而這個力量其實是很微弱的因為地球的旋轉速率大約是每天一圈(每圈/86400秒),你的浴缸或是馬桶裡面的水可能一秒就轉好幾圈了,在旋轉的角速率上有了上千甚至上萬倍的差距,因此今天要是有人無聊到把同樣的馬桶從北半球搬到南半球,他會很失望的發現水流的結果是一樣的。

所以到底是什麼在決定水流旋轉的方向?事實是有太多因素能影響了,最大的兩個因素就是浴缸或馬桶的結構,只要有任何的不對稱或些微的表面不平均就可以造成水流的方向改變。即使容器表面可以做到完完全全對稱毫無瑕疵,任何一點點在漏水之前的餘留水流或水波都能改變水流旋轉的方向(你不小心吹了一口氣也會影響水波)[4]。

所以簡單來說日常生活能觀察的到的水流旋轉方向都不是因為南北半球差異所造成的啦,一開頭的影片最有可能的解釋就是這幾個水盆本來的設計就不太平均,今天如果把放在南北半球的兩個水盆交換位置擺放可能也不會改變水流的結果噢。

參考資料:

  1. G-G Coriolis (1835). “Sur les équations du mouvement relatif des systèmes de corps”. J. de l’Ecole royale polytechnique 15: 144–154.
  2. Hestenes, David (1990). New Foundations for Classical Mechanics. The Netherlands: Kluwer Academic Publishers. p. 312.
  3. John M. Wallace and Peter V. Hobbs (1977). Atmospheric Science: An Introductory Survey. Academic Press, Inc. pp. 368–371.
  4. Y. A. Stepanyants and G. H. Yeoh (2008). “Stationary bathtub vortices and a critical regime of liquid discharge”. Journal of Fluid Mechanics 604 (1): 77–98.
  5. “Coriolis Effect”
  6. Everyday Mysteries
  7. Getting Around The Coriolis Force
文章難易度
李 卓然
6 篇文章 ・ 1 位粉絲
PanSci 實習編輯,陽明大學生物醫學技術暨檢驗學系畢業。對科學新知總是充滿興趣與好奇,對各種事情都保持懷疑和謹慎的態度所以常常被覺得人很機歪,但我真的只是想要很科學而已啊!

2

3
3

文字

分享

2
3
3
精準預測氣象的「掩星技術」,讓你知道颱風放不放假!
科技大觀園_96
・2021/11/16 ・2380字 ・閱讀時間約 4 分鐘

新颱風生成後,大家最關心的就是颱風的路徑、帶來的風雨大不大,以及——到底放不放颱風假?要能預測和評估颱風的走向影響,可靠的氣象觀測資料是不可或缺的。這就不得不提,在我們頭頂上認真執行觀測任務的人造衛星,以及它們身懷測知氣象變化的絕技!

每次颱風來襲,大家都關心會不會放颱風假。圖/pixabay

貢獻全球氣象資料,福爾摩沙衛星功不可沒

過去福爾摩沙衛星三號(福三)執勤十年,為全世界多個氣象中心與研究單位提供無以計數的資料,可謂台灣在國際氣象上的外交大使,於減少天氣預報誤差的貢獻度上,更曾被評為全球前五。福三榮退後,接棒的福爾摩沙衛星七號(福七)也在今年二月完成任務軌道的全部部署。福三和福七都不只有一枚衛星,而是由各 6 枚衛星組成的衛星星系(constellation)。每一枚衛星就像在不同位置巡守、收集氣象情報並互相通報的將士,使得觀測範圍可以覆蓋地球各個區域,提供即時而完整的三維觀測數據。

福衛七號結構示意圖。圖/國家太空中心

但福七與行經南北極的「繞極衛星」福三不同的是,它在南北緯 50 度間軌道繞行,主攻台灣、赤道與中低緯度颱風盛行區的觀測。因此福七可以提供密集度更高、更多的溫度、壓力、水氣等氣象資料。國家太空中心推估,它可提升氣象預報準度 10% ——以颱風為例,可以讓 72 小時的路徑誤差改善 10%,協助我們更精準地評估氣象變化與預防災害。

每日可提供 4000 點大氣垂直剖線資料、大幅提升全球氣象預報準確度的福七,究竟是怎麽辦到的?答案就是掩星技術 (Radio Occultation) 。

掩星技術,讓衛星成為太空中最精準的溫度計!

在天文學上,「掩星」指的是一個天體,在另一個天體與觀測者之間通過,產生的遮蔽現象。但英文中的「Occultation」,也可以指前景中的物體,阻擋遮蔽背景中任何物體的情形。而所謂的「掩星技術」,就是利用電磁波訊號在經過大氣層時,會因穿透不同溫度、壓力或濕度的空氣層,被「遮蔽」而產生轉向、變慢、減弱等的特性,來反演出地球上空之溫度、氣壓和濕度。

衛星與衛星之間,本來因為地球的阻隔看不到彼此,但可以接受來自彼此的電磁波訊號。福七的主要酬載儀器——全球衛星導航系統無線電訊號接收儀」(TGRS),可以接受美國全球定位系統(GPS) 和俄羅斯全球導航衛星系統(GLONASS)全球定位衛星通過大氣與電離層的折射訊號。接著,通過計算電波訊號的偏折程度,就可以反演出大氣與電離層中的溫度、水氣、壓力、電子密度等數據。

掩星技術在 1995 年才開始投入應用,而從 2006 年的福三,到如今福七計劃中積累的研究經驗,使台灣成為這項新穎技術領域的佼佼者。掩星技術所得到的資料具備高準確度和解析度,也擁有不需要大量接收訊號的衛星,就可以得到大範圍數據、降低成本的優勢,不僅可以用作氣象預報,更能幫助我們監控和增進對氣候變遷的瞭解。

衛星加上同位素的助攻,可以使天氣預報更精準

另一方面,除了改善觀測一般氣象資料如溫度、濕度、大氣壓力等參數的準確度,在氣象觀測中新增測定不一樣的參數——如大氣水分子的同位素,也可以讓我們的天氣預報更精準!

過去礙於資料的取得有限,同位素分析在氣象觀測與預報中常被忽略。但近年來人造衛星技術的發展,為氣象科學推開新的一扇窗。來自歐洲太空總署、搭載光譜分析儀的衛星 IASI ( Infrared Atmospheric Sounding Interferometer ),讓東京大學的研究團隊,可以利用其所搜集到的大氣水氣資訊,在氣象預報的模型中,第一次嘗試納入同位素資訊的考量來做分析。

我們都知道,擁有相同質子數、不同中子數的氫與氧元素之同位素,會讓個別水分子的重量變得更重或輕一些。水分子同位素對氣相和液相轉換相當敏感,與一般的水分子 H2O 相比,較重的水分子如 H2HO 或H218O 會更傾向於凝結成水珠,或更難蒸發。因此蒸發與降雨過程等大氣運動,便會影響不同同位素水氣分子的分佈。追蹤它們的行跡,能增進我們對氣象系統的瞭解。

研究團隊以 2013 年在日本發生的低壓事件作為參照,發現納入同位素的數據之後,氣象模型能更好地模擬這次事件的整體氣壓情形。而在全球的尺度,尤其是中緯度及北半球地區,融合同位素資訊後,氣象預報如氣溫及濕度預測的準確度,也都有所提高。雖然這只是初步的探究,但科學家期許,未來進一步完善氣象觀測衛星對同位素資料的收集,能使人類更往精準氣象預測的目標邁進。

人造衛星就像是科學家的千里眼,能觀測千里之外的風雲變化。發展衛星技術,不僅能讓我們更精準預測氣象,在全球化的現代,也能在國際上發揮「Taiwan Can Help」及互助的精神;各國對航太技術的投入與數據資源共享,更是科研工作與人類社會的一大福音。

福爾摩沙衛星拍攝的美麗福爾摩沙島。圖/國家太空中心

參考文獻

所有討論 2
科技大觀園_96
82 篇文章 ・ 1103 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

4
3

文字

分享

0
4
3
沒有颱風的七月!颱風為何銷聲匿跡?——《科學月刊》
科學月刊_96
・2020/09/11 ・1882字 ・閱讀時間約 3 分鐘 ・SR值 515 ・六年級

〈本文選自《科學月刊》2020年9月號〉

  • 賈新興/臺灣大學大氣科學系博士,前中央氣象局長期預報課課長,現職為天氣風險管理公司總監。

夏季是颱風出現的季節,往年的 7 月平均會有 3~4 個颱風生成。但今(2020)年 7 月卻罕見地無颱風生成,主要原因是季風槽受太平洋高壓,以及較大的垂直風切所導致。

夏天是颱風的好發季節。圖:Pexels

颱風消失了?生成條件大盤點

每年的 7 月是颱風開始活躍的月份,平均而言,7 月都有 3~4 個颱風生成,從 1951 年以來的颱風生成資料顯示,歷年 7 月最少都有 1 個颱風生成,最多則有 8 個颱風生成,分別是 1971 年 7 月和 2017 年 7 月。

然而今年的 7 月,整個西北太平洋海域卻靜悄悄的,沒有半個颱風生成,到底是發生了什麼事,讓 7 月颱風銷聲匿跡了呢?就讓我們一一檢視颱風生成的條件。

生成條件一:溫暖的洋面

颱風生成在海面上,廣大的洋面能提供足夠水氣,當水氣蒸發釋放潛熱時,就可以讓颱風有足夠的能量成長。

一般來說,當海水溫度超過 26°C 時,才會產生足夠的水氣。而西北太平洋地區,每月氣候平均的海溫都在 27°C 以上,其中 2 月的平均海水溫度也有 27°C(圖一)。

圖為東經120度~160度,與北緯5度~20度之間的區域,即西北太平洋區域平均每月海溫值。通常海水溫度高於26℃時可以產生足夠的水氣,而往年7月的平均海溫都超過27℃,是颱風形成的重要條件之一。

因此,西北太平洋溫暖的海域,時時刻刻都有足夠的水氣提供颱風生成所需的能量。從西北太平洋區域今年 7 月平均的海水溫度分布圖發現,整個西北太平洋的海溫至少都超過 29°C(圖二)。

溫暖的洋面,雖然提供了足夠的能量,但為什麼颱風仍舊長不出來呢?讓我們再檢視其它颱風生成的動力條件!

條件二:活躍的季風槽

颱風是個逆時針旋轉的低壓中心。夏季時,當北半球的西南季風,和太平洋高壓所帶來的東風或東北風相遇,兩者所造成的輻合作用,會使低氣壓的漩渦繼續加深,讓風速增強。

當低氣壓的近地面最大風速到達或超過每小時 62 公里或每秒 17.2 公尺時,我們就將它稱為颱風。這個伴隨西南季風和太平洋高壓南側的東風或東北風相遇的地方,通常稱作季風槽,或是俗稱颱風生長的故鄉。

從 7 月大氣低空風場的氣候平均圖,可以看到西南季風和太平洋高壓南側的東風形成的季風槽,從東經 120 度往東南方向延伸至東經 160 度。比較今年 7 月的大氣低空風場(圖三)可以發現,整個季風槽不見了,原來應該是季風槽所在的區域,一整個都被太平洋高壓的東風所佔據了。

而太平洋高壓是個穩定且下沉的空氣,但颱風是個垂直發展的低氣壓,因此,偏強的太平洋高壓讓今年的西南季風無法深入至西北太平洋區域,剷平了颱風的家,也就讓颱風長不起來了。

條件三:垂直風切不能太大

另外,颱風垂直發展的高度至少可以達到對流層頂的高度,因此當高空風和低空風的風向差異太大時,也就是一般我們所說的垂直風切太大時,就無法讓水氣凝結所釋放出的潛熱更有效地提供颱風發展,造成颱風的垂直發展不好,颱風就不容易生成。

根據7月氣候上的垂直風切分布顯示,在西北太平洋區域的風切平均介於 -10~5之間。但今年 7 月的垂直風切,則介於 -10~10 之間,明顯比氣候平均值高,因此不利於颱風的垂直發展。

都是高壓和垂直風切惹的禍!

從以上颱風的生成條件來看,今年 7 月雖然有足夠的水氣提供的能量來源,但要讓颱風旋轉起來的季風槽,因為太平洋高壓太強,使得季風槽無法向東推進到西北太平洋區域;偏強的太平洋高壓帶來穩定的下沉空氣,連帶的也讓垂直風切太大,颱風更是長不起來!

今年 7 月的太平洋高壓太強,不但讓颱風長不起來,連帶的也是造成臺北創下自 1897 年以來的最高溫紀錄 39.7°C 的原因之一!至於為什麼今年的太平洋高壓如此強大,就是另一篇故事了。

圖二(上):以往的7月氣候平均海溫分布和大氣 850 百帕(hPa)流線圖,圖中粗黑線為季風槽,此在正常的氣候條件下是有利於颱風生成的。圖三(下):今年7月平均海溫分布和大氣850百帕流線圖。讀者可以發現,今年的海溫分布雖較以往高,有利於颱風出現,但原先的季風槽位置卻被太平洋高壓所佔據,造成颱風無法生成。

〈本文選自《科學月刊》2020年9月號〉

科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

科學月刊_96
231 篇文章 ・ 2264 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
0

文字

分享

0
2
0
想過河?涉水、游泳聽起來太普通,還有哪些浮誇的過河方式?——《這麼做就對了!最ㄎ一ㄤ的生活科學指南》
天下文化_96
・2020/02/18 ・2669字 ・閱讀時間約 5 分鐘 ・SR值 488 ・五年級

  • 作者/蘭德爾‧門羅(Randall Munroe);譯者/黃靜雅

人類喜歡住在河流附近,這代表我們常常發現自己需要過河。

過河最簡單的方法是「涉水而過」,意思其實就是「假裝河不在那裡,一直走一直走,走多遠算多遠」。

圖/天下文化提供

在河水很淺的地區,人們通常會試著涉水過河,但即使是淺水,也可能會有令人意想不到的危險。水的流速有多快,不太容易判斷,只要深及腳踝的水,就能把人沖得連站都站不穩。

圖/天下文化提供

如果河水太深,無法涉水而過,你可以試著游泳過河。但游泳是否行得通,很大程度取決於河的狀況。如果河水太湍急,你可能會被水流沖到下游,或是被吸入急流或障礙物底下。

會游泳的普通人(但不是游泳選手之類的)游速可能是每秒 2、3 公尺。這比有些河快很多,也比有些河慢很多,河水的流速從每秒不到 0.3 公尺到每秒超過 9 公尺不等。

假如河流是理想化的水域,以固定的速率沿直線流動,很容易就可以算出游泳過河所需要的時間,因為你可以直接游向對岸,忽略水流不計。游泳過程中,流速較快的河流會把你帶到下游較遠的地方,但你仍然會在相同的時間內游到對岸。

圖/天下文化提供

不幸的是,真正的河流並不是以均勻的速率流動。水的流速往往在河的中間比在河的邊緣更快,在河面比在河底更快。流速最快的地方通常位於河流最深處的上方、略低於水面下。河底平滑均勻、沿直線流動的河,其速率可能像這樣:

圖/天下文化提供

河床有寬平區域也有深水道,看起來可能比較像這樣:

圖/天下文化提供

如果你試圖游過這種河,你的路徑看起來會更複雜。而且,真正的河不會以直線流動。河裡有小漩渦、大漩渦和來來回回的曲流。在真正的河裡,你可能會發現水流不斷把你推離河岸,或把你捲入河底,或把你沖到下游的瀑布。

聽起來挺危險的。我們還是來看一些別的方法吧。

跳遠過河法

如果游泳過河吸引不了你,你可以試著跨越它。如果河夠小的話,最簡單的方法就是跳過去。

圖/天下文化提供

有個簡單公式可以算出,在理想條件下,拋射物以斜角發射可以飛多遠。

\(距離= \frac{速率^{2}}{重力加速度}\)

你能跳多遠,確切的距離取決於你的跳法、起跳、落地的細節,但可能的距離是多少,這個公式提供了相當實際的估計值。根據公式,如果你以時速 16 公里起跑,預期可跳過的間距達到 2 公尺左右。這證實,以非常小的河來說,跳過去絕對是個選擇。

你可以藉由提高速率來增加距離,這就是為什麼跳遠冠軍有時候也是短跑冠軍,某種意義上,跳遠選手正是擅長於「突然向上騰起而不是向前衝刺」的短跑選手。最厲害的跳遠選手可以跳出將近 9 公尺的距離,這代表短跑速率在起跳前一剎那加速到時速 32 公里以上。

自行車比短跑選手更快。如果你騎一輛很棒的自行車,用力踩踏板,或許能加速到時速 48 公里左右。以這樣的速率,你可以跳過 18 公尺寬的河(理論上)。

圖/天下文化提供

不幸的是,由於能量守恆,如果你起跳的時速是 48 公里,當你在對岸降落時,你的時速也會是 48 公里。這樣太快了,很容易造成嚴重或致命的傷害。在寬度「超過」18 公尺的河上嘗試這種特技,實際上可能比較安全。

如果你試圖跳過 24 公尺寬而不是 18 公尺寬的河,你會在「靠近對岸的水裡」降落,這樣對你的身體造成的傷害,大概會比「在堅硬的地上」降落來得不嚴重。

圖/天下文化提供

至少,假設水夠深的話。

更快的車子當然可以跳得更遠。時速 96 公里的汽車理論上可以跳過將近 73 公尺寬的間隔。然而,汽車以時速 96 公里降落,這不太可能。

圖/天下文化提供

飛車手克尼維爾(Evel Knievel)藝高人膽大,他因為騎摩托車飛越各種東西而出名,廣為人知的是,他曾嘗試騎火箭自行車飛越蛇河峽谷(Snake River Canyon)。由於法律因素,火箭自行車技術上被歸類為飛機。克尼維爾在職業生涯中究竟斷過幾根骨頭?這點眾說紛紜。但是他的「摩托車跳躍成功次數:骨折」比值並不大,可能還不到 1。

圖/天下文化提供

仔細想一想,或許你應該把「跳遠過河」留給專業人士,說不定專業人士也決定不要做這種事。

「掠水過河」法

人無法在液態水的表面上行走,至少在沒有科技或超自然力量的幫助下不行。

有些影片在網路上爆紅,影片中的人跑步過水、騎自行車過水或騎摩托車過水。所有這些特技背後的基本原理很簡單:如果你跑得夠快,當你碰到水的時候會滑過去。這些影片之所以爆紅,往往是因為至少它們看起來像真的一樣,直到惡作劇的始作俑者坦承,或是科普節目「流言終結者」(MythBusters)去嘗試,事情才真相大白。

哪些類型的特技是真的、哪些是假的,以下是簡單的概述:

圖/天下文化提供

赤腳滑水的人都知道,為了保持在水面上,你的腳相對於水需要以大約時速 50 或 60 公里移動。就算是博爾特的飛毛腿,當他在衝刺時也沒跑那麼快。

自行車也不行。你試都不用試,只要問問經驗豐富的自行車手就能搞清楚。自行車手可以告訴你,自行車和汽車不一樣,自行車通常不會「打滑」。自行車或許會在潮濕的路面上摔倒,但由於車輪的彎曲形狀把水往兩邊推,所以自行車輪胎不會因為「抓不到地」而在一層水的上面「衝浪」。

圖/天下文化提供

摩托車輪胎比較扁平、胎面有花紋,和汽車輪胎一樣,兩者都會打滑,「流言終結者」節目已經證實,這些輪胎也可以用來「過水」一小段距離,相當戲劇化。但這又讓我們回到飛車手克尼維爾的地盤了。

當然,有那種專門設計用來行駛於水面的車子。

如果你有船,那是非常完美的方法。事實上,有些河有長期駐守的船隻,在兩岸之間為人們擺渡往返。

——本文摘自泛科學 2020 年 2 月選書《這麼做就對了!:最ㄎ一ㄤ的生活科學指南》,2020 年 1 月,天下文化

天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。