6

6
2

文字

分享

6
6
2

五則 TED 演講,讓你看懂「淨零」怎麼做

鄭國威 Portnoy_96
・2022/03/17 ・5819字 ・閱讀時間約 12 分鐘

如烏克蘭氣象學家維特拉娜·克拉科夫斯卡 (vitlana Krakovska) 在 IPCC 的線上會議中所說,如果歐洲乃至於全世界沒有那麼對石油跟天然氣上癮這場戰爭或許不會出現。同樣的,如果要終結這場乃至於下一場因石油而起的戰爭,需要做的就是盡快結束我們對石油與天然氣的癮頭。

也因為如此,我這兩週看了所有去年 TED Coundown 大會的影片,就是想要知道圓形紅毯上有哪些新的「值得傳播的好點子」,能幫助人類更快達到淨零,不再依賴化石能源。以下挑出五則我個人最喜歡的演講,推薦給各位。

對付氣候危機的最速手段:針對大魔頭甲烷的獨立戰略

Ilissa Ocko:The fastest way to slow climate change now|TED Countdown/YouTube

伊麗莎·奧科(Ilissa Ocho)是一位氣候科學家,目前在環境保衛基金(Environmental Defense Fund)擔任研究員,她的任務是為氣候變遷溝通與政策提供有科學根據的指引。她利用各種模型去了解人類的行為怎麼加劇氣候變遷,反過來也研究哪些降低溫室氣體排放的行動真的有效。她善於用簡單語言、動人影像,來向非專家傳達科學。在這則 TED Countdown 的演講中,她精準地在 10 分鐘內,改變了我的想法。

結論先說:溫室氣體兩大魔頭二氧化碳跟甲烷,各有威能與弱點,不能一概而論,得分開對付。

二氧化碳就份量來說,是溫室氣體的主角,佔了 99%,剩下的 1% 則是甲烷,但若在未來十年這個時間段裡頭來看,這 1% 的甲烷讓地球升溫得更快。雖然二氧化碳會待在大氣層更久,也一定要對付,但就溫度上升來說,沒有甲烷造成的那麼快。

奧科認為,減碳當然重要,但暖化已經造成了嚴重後果(熱浪、野火、洪水、饑荒……),那麼我們就該採用最快最有效的方式來抑制溫度上升的速度。講簡單點:要有針對甲烷的獨立戰略

甲烷有三個源頭,第一個就是生產能源,例如開採石油、煤炭跟天然氣的時候,甲烷就這麼外洩了。奧科表示雖然相較於石油跟煤炭,天然氣燃燒後排碳較少,但生產過程中造成的洩漏抵消了這好處。解決辦法超直白:把管線的螺絲上緊。問題是,哪裡的螺絲鬆了呢?過去難以監測,不知道哪裡洩漏,但現在可以透過物聯網、無人機、以及衛星來監測全球甲烷排放量。只要可以找到漏洞,就可以解決。

第二個源頭是廢棄物管理。大型垃圾掩埋場的生物腐爛、垃圾污水都會產生很多甲烷,但甲烷明明就是上等燃料,何不用管線吸走拿去用呢?另外,將廚餘分開拿去堆肥,也可以減少甲烷,許多國家包括台灣也都有沼氣發電廠。

第三個則是農業,在三大來源中佔比最大,不好對付,包括家畜(如牛)消化後打嗝跟放屁,不過她很興奮地指出,科學家發現,用特製的飼料添加劑,在牛的腸道內生成的甲烷可以降低 30%。牲畜的糞便尿液也會產生甲烷,用來來發電或供暖剛好。此外,全球半數人口仰賴的糧食作物水稻也是甲烷重要來源,但若改種植能在淺水生長的品種,調整供水方式,就可以降低大量甲烷生成。

結論再講一次:減碳很好,但要把二氧化碳跟甲烷分開,針對甲烷設定獨立的目標跟行動。要是執行得好,將能快速奏效,阻止最嚴重的災變後果,而且這些方案也能創造工作機會喔~

世界準備好解決氣候變遷了嗎?

Solomon Goldstein-Rose:How much clean electricity do we really need?|TED Countdown/YouTube

索羅門·高斯坦(Solomon Goldstein)11 歲的時候就成為一名氣候行動者,學習工程跟公共政策,22 歲就參選美國麻州議員並當選。2018 年他放棄競選,全力投入氣候議題,也寫了一本被認為最實際的氣候變遷解法書。他在演講裡提出一個關鍵數據:要在 2050 年達到淨零排放,世界需要生產當下清潔能源總產出 12 倍那麼多的能源,而不是很多人認為的 2.5 倍。

為什麼呢?根據他的計算,目前全球已經有 10 拍瓦時(petawatts hours)的電力來自於清潔能源,包括風光等再生能源跟核能。要是現在立即能增加 2.5 倍的清潔能源產出,就可以置換其他能源,但是……

第一,隨著全球電力化,例如各類電動車輛、以電力供暖等等,雖然用電的效率會更高,進而降低整體能源耗用,但吃電的設備變多,還是會需要更多電。如果要把現在還沒電動化的設備中的 60% 電動化,起碼需要 40 拍瓦時。

第二,世界上還有 7 億多人沒有電可以用、另外幾十億的人的用電很不穩,而改善這些人的生活,將降低貧窮、改善教育、經濟,跟降低過度生育,這就需要更多電力。那麼照 2050 年的發展預測,所需電力得從 40 拍瓦時再增加至 60 拍瓦時。

第三,有很多部分沒辦法電動化,例如長途海運、空運,部分工廠的製程等等。就算有碳捕捉、生物燃料等替代做法,也需要政府認真執行法規。而待過政治圈的他,明白政策很難做到百分百的現實,因此他估計得從 60 拍瓦時增加到 90 拍瓦時來當預備。

第四,除了「淨零」,也就是不繼續增加溫室氣體,我們還得「負碳」,就是把已經在大氣中的溫室氣體抓回來。因此他認為還得再加!從 90 拍瓦時增加到 120 拍瓦時。

更重要的是,要從現在的 10 拍瓦時增加到 120 拍瓦時,成長的曲線不能是一條直線連到 2050 年,而是該越快達到越好。他的野心非常大,目標不只是改變目前的電力系統,而是建造一個新的能源系統,不是要解決氣候變遷,而是打造更好的世界。老實說,高斯坦的論述對許多人來說可能太重也太巨大,但應該會擊中一些人的甜蜜點,特別是那些就喜歡解決大問題,賺大錢的人。(就是說你啊馬斯克)

透明公開的數據才能有效應對氣候變遷

Gavin McCormick:Tracking the whole world’s carbon emissions—with satellites&AI|TED Countdown/YouTube

溫室氣體到底是哪來的?哪些人類行為、在哪裡、為了什麼目的,製造出這些溫室氣體?要解決氣候變遷,得先知道這些問題對吧?但科學家知道的……其實很少?這種說法可能讓你覺得 WHAT THE F……?

Gavin McCormick 是 Climate TRACE 聯盟的共同創辦者,也是 WattTime 這家非營利新創組織的執行長,兩個單位的任務一致,就是要用衛星數據結合 AI 判讀,來偵測跟追蹤排放污染源的工廠。他之所以放大絕說「我們知道的很少」,是因為在大多數國家的大多數時候,排放的數據是請污染者自己回報的,怎麼回報呢?就手寫在白紙上這樣。這品質堪慮啊!

沒有好的數據,就沒有辦法真正解決問題。有圖有真相,眼見為憑,所以他與一群科學家、工程師、行動者合作,利用人工智慧視覺判斷工廠的衛星影像,這樣就不用去問排放者「你們排了多少啊?」。就像電腦學會判斷貓跟狗一樣,要讓演算法更準確,就得餵給機械足夠多、足夠好的資料來訓練,一部分是清楚正確的工廠排放數據,另一部分是這些工廠在不同時段的衛星圖像。除了煙囪,還可以透過衛星圖中工廠外海水的波紋,判斷工廠吸入多少海水來冷卻,聽起來十足黑科技。在我看來,這任務非常挑戰,但解法的確合理。

等等,如果這樣也行,那何不監看全地球的污染鏈、包括農業、陸上交通、海運…..?沒錯,Climate Trace 獲得高爾支持,應用已有的數千顆衛星源源不絕的高品質資料,結合大數據跟人工智慧技術,就做了這件事。McCormick 說,其實 Twitter 或 FB 等早就將這樣的技術用在判斷哪些網路迷因會紅,他們只是將技術用來判斷哪些污染源會讓地球過熱。

他認為這種激進的透明(radical transparency)對國際合作應對氣候變遷,達成減碳協議至關重要。畢竟談判最大的問題就是大家底牌不揭開,你說我排碳多,我說你減碳不夠,沒有共同的基礎。所以 Climate TRACE 接下來會把全地球、全排放源的排放量數據,都透明公開地提供出來,這聽起來很刺激,儘管公信力應該也會遭受一定挑戰,但我樂見其成。

關注氣候問題應從「我們的」角度出發

John Marshall:3 strategies for effectively talking about climate change|TED Countdown/YouTube

​​為什麼即使最了解狀況的科學家早就對氣候危機達成高度共識,認為改變迫在眉睫,不能拖延,大多數人卻還一知半解,行動遲緩,刻意忽略,甚至有少部分人群起反對?

John Marshall 是一位溝通專家,他成立的 Potential Energy 勢能,由媒體與行銷界中關心氣候變遷的人士所組成。說實在的,既然民意與政策受到媒體與行銷訊息影響,這領域的從業專家可能比科學家或政治人物更有機會改變局勢。他們要解決的問題就是發揮自身專業,讓大家聽懂、有感、肯行動。在 Potential Energy 的網站上,還串連了超過 200 家媒體與行銷公司,要一同改變氣候變遷不討喜、乏人問津的困境。

他在影片中指出,現在氣候變遷的討論參雜太多不具體、難以想像、不夠切身的名詞。例如淨零、碳稅、1.5 度 C、 500 億噸二氧化碳、排放、甲烷、人類世、去碳(decarbonization)……(我前面就寫了好多這些詞),那麼既然人們聽不懂,自然沒感覺,也不會在乎。

The Bottom Line on Climate Change:What You Need to Know in 30 Seconds/YouTube

相較於此,「臭氧層破了洞」的比喻卻很有效,也因此在當年讓蒙特婁議定書的執行更有利。Marshall 建議:別用暖化這個聽起來感覺溫溫柔柔蠻舒服的詞,用「過熱」吧!與其說氣候,不如說「極端天氣」更有感。與其說潔淨能源,不如說「便宜能源」,畢竟風力跟太陽光電在許多地方都已經比化石能源低廉。最後他還建議,與其用一直念著攝氏 1.5 度,不如改用華氏。這建議聽起來就很作弊了,針對美國人可能有效……吧。

除了用詞,如何呈現氣候議題跟溝通對象的相關性也很重要。例如若溝通對象是美國佛羅里達人,與其對他們喊「阻止全球暖化」,不如喊「不要淹水」(”local flooding is more important than global warming”)。另外,他也建議科學家可從個人角度來進行情感訴求,特別是那些研究氣候的女性科學家的故事。一般人跟科學家之間總有點隔閡,但當看到這些研究並關心氣候的科學家,娓娓道來自己只是希望孩子有個更好的未來的時候,特別能夠打動人心。他們甚至還有一個用「佛羅里達男子 Florida man」的梗做的影片,知道這個梗的觀眾肯定覺得很好笑。

Later Is Too Late To Act On Climate Change/YouTube

或許科學家受的訓練就是把觀察到的抽象化、壓縮成一般人聽不懂的術語,才覺得溝通起來有效率,但這卻不利於觸動人心。Marshall 提醒每個想要讓更多人關注氣候問題的人,從「我們的」生活、「我們的」現在、「我們的」價值、「我們的」孩子切入,避免打高空。這樣,人們才會覺得我懂了、這跟我有關、這跟我在乎的人有關、我願意行動。

當能源遇上政治時……

Al Gore:How to make radical climate action the new normal|TED Countdown/YouTube

高爾是誰應該不用我多介紹,他在這場演講中再次展現強大的演說能力,極富情緒張力,雖然有點政治造勢場合的感覺(畢竟是他本行)。在他的框架中,我們從工業革命、數位革命、進入「永續革命」。永續革命是要用數位革命給我們的速度,幫我們從工業革命的後果中逃出。

這場演講,分為三個部分,前三分之一,他用數據跟近幾年各地的極端天氣事件再次強調問題已經很嚴重,後果也是,我們不是在等待一個即將發生的巨大危機,而是已經在災難裡,而且這些災難的規模在過往根本難以想像。

中間三分之一,則是用數據與趨勢顯示「解法是什麼」。綠能的成本快速下降,例如在 2024 年,也就是距今兩年後,不管在地球的哪個地方,風力跟太陽能都會比傳統能源更便宜(這我存疑,要看一下怎麼算的)。儲能的市場正在指數級成長,鋰電池越來越便宜,2023-2024 年之間,主流的電動車售價將跟高效率的油車一樣便宜。然而石油與天然氣產業,儘管口口聲聲說增加了三倍的投資金額於再生能源跟碳捕捉,實際上只是從總投資中僅佔 1% 增加到 4.1%,96% 還是投資在化石能源上,塑膠等一次性用品是獲益的主要來源。

接下來三分之一,高爾開始進入重點,就是以「修正式全頻譜的資本主義」,取代現行問題叢生的資本主義。最重要的應該是這張圖:

圖/YouTube

他樂觀地指出,只要我們能達到淨零,氣候危機將可以被扭轉。氣溫將在 3-5 年內停止上升,而在 25-30 年內,半數人類製造的二氧化碳將離開大氣層(但前面的高斯坦有說到,得積極主動把碳抓回來,不能等那麼久)。最後他回顧歷史上各種人類進步的重要歷史節點來激勵觀眾,包括廢奴、婦女參政權、民權運動、反種族隔離運動、同性戀平權運動等。許多事情都曾經看起來不可能,直到被達成。「有人認為我們缺乏政治決心,但別忘了政治決心是可再生資源。」,真是很有力且扣合主題的結尾。

如果你有時間,當然很建議你把 2.5 小時的整個活動看完,唱歌吟詩說笑話的的部分我覺得也不錯啦。如果你跟我一樣,最近看了太多戰爭的消息,心情實在低落到不行,想知道自己還能多做些什麼來改變過度依賴化石能源的世界格局,透過這場 TED Coundown,除了深入瞭解淨零排碳的挑戰跟解法,應該也能替你的心靈充電。

文章難易度
所有討論 6
鄭國威 Portnoy_96
247 篇文章 ・ 1052 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

0

1
1

文字

分享

0
1
1
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
研之有物│中央研究院_96
290 篇文章 ・ 3086 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

6

6
2

文字

分享

6
6
2
五則 TED 演講,讓你看懂「淨零」怎麼做
鄭國威 Portnoy_96
・2022/03/17 ・5819字 ・閱讀時間約 12 分鐘

如烏克蘭氣象學家維特拉娜·克拉科夫斯卡 (vitlana Krakovska) 在 IPCC 的線上會議中所說,如果歐洲乃至於全世界沒有那麼對石油跟天然氣上癮這場戰爭或許不會出現。同樣的,如果要終結這場乃至於下一場因石油而起的戰爭,需要做的就是盡快結束我們對石油與天然氣的癮頭。

也因為如此,我這兩週看了所有去年 TED Coundown 大會的影片,就是想要知道圓形紅毯上有哪些新的「值得傳播的好點子」,能幫助人類更快達到淨零,不再依賴化石能源。以下挑出五則我個人最喜歡的演講,推薦給各位。

對付氣候危機的最速手段:針對大魔頭甲烷的獨立戰略

Ilissa Ocko:The fastest way to slow climate change now|TED Countdown/YouTube

伊麗莎·奧科(Ilissa Ocho)是一位氣候科學家,目前在環境保衛基金(Environmental Defense Fund)擔任研究員,她的任務是為氣候變遷溝通與政策提供有科學根據的指引。她利用各種模型去了解人類的行為怎麼加劇氣候變遷,反過來也研究哪些降低溫室氣體排放的行動真的有效。她善於用簡單語言、動人影像,來向非專家傳達科學。在這則 TED Countdown 的演講中,她精準地在 10 分鐘內,改變了我的想法。

結論先說:溫室氣體兩大魔頭二氧化碳跟甲烷,各有威能與弱點,不能一概而論,得分開對付。

二氧化碳就份量來說,是溫室氣體的主角,佔了 99%,剩下的 1% 則是甲烷,但若在未來十年這個時間段裡頭來看,這 1% 的甲烷讓地球升溫得更快。雖然二氧化碳會待在大氣層更久,也一定要對付,但就溫度上升來說,沒有甲烷造成的那麼快。

奧科認為,減碳當然重要,但暖化已經造成了嚴重後果(熱浪、野火、洪水、饑荒……),那麼我們就該採用最快最有效的方式來抑制溫度上升的速度。講簡單點:要有針對甲烷的獨立戰略

甲烷有三個源頭,第一個就是生產能源,例如開採石油、煤炭跟天然氣的時候,甲烷就這麼外洩了。奧科表示雖然相較於石油跟煤炭,天然氣燃燒後排碳較少,但生產過程中造成的洩漏抵消了這好處。解決辦法超直白:把管線的螺絲上緊。問題是,哪裡的螺絲鬆了呢?過去難以監測,不知道哪裡洩漏,但現在可以透過物聯網、無人機、以及衛星來監測全球甲烷排放量。只要可以找到漏洞,就可以解決。

第二個源頭是廢棄物管理。大型垃圾掩埋場的生物腐爛、垃圾污水都會產生很多甲烷,但甲烷明明就是上等燃料,何不用管線吸走拿去用呢?另外,將廚餘分開拿去堆肥,也可以減少甲烷,許多國家包括台灣也都有沼氣發電廠。

第三個則是農業,在三大來源中佔比最大,不好對付,包括家畜(如牛)消化後打嗝跟放屁,不過她很興奮地指出,科學家發現,用特製的飼料添加劑,在牛的腸道內生成的甲烷可以降低 30%。牲畜的糞便尿液也會產生甲烷,用來來發電或供暖剛好。此外,全球半數人口仰賴的糧食作物水稻也是甲烷重要來源,但若改種植能在淺水生長的品種,調整供水方式,就可以降低大量甲烷生成。

結論再講一次:減碳很好,但要把二氧化碳跟甲烷分開,針對甲烷設定獨立的目標跟行動。要是執行得好,將能快速奏效,阻止最嚴重的災變後果,而且這些方案也能創造工作機會喔~

世界準備好解決氣候變遷了嗎?

Solomon Goldstein-Rose:How much clean electricity do we really need?|TED Countdown/YouTube

索羅門·高斯坦(Solomon Goldstein)11 歲的時候就成為一名氣候行動者,學習工程跟公共政策,22 歲就參選美國麻州議員並當選。2018 年他放棄競選,全力投入氣候議題,也寫了一本被認為最實際的氣候變遷解法書。他在演講裡提出一個關鍵數據:要在 2050 年達到淨零排放,世界需要生產當下清潔能源總產出 12 倍那麼多的能源,而不是很多人認為的 2.5 倍。

為什麼呢?根據他的計算,目前全球已經有 10 拍瓦時(petawatts hours)的電力來自於清潔能源,包括風光等再生能源跟核能。要是現在立即能增加 2.5 倍的清潔能源產出,就可以置換其他能源,但是……

第一,隨著全球電力化,例如各類電動車輛、以電力供暖等等,雖然用電的效率會更高,進而降低整體能源耗用,但吃電的設備變多,還是會需要更多電。如果要把現在還沒電動化的設備中的 60% 電動化,起碼需要 40 拍瓦時。

第二,世界上還有 7 億多人沒有電可以用、另外幾十億的人的用電很不穩,而改善這些人的生活,將降低貧窮、改善教育、經濟,跟降低過度生育,這就需要更多電力。那麼照 2050 年的發展預測,所需電力得從 40 拍瓦時再增加至 60 拍瓦時。

第三,有很多部分沒辦法電動化,例如長途海運、空運,部分工廠的製程等等。就算有碳捕捉、生物燃料等替代做法,也需要政府認真執行法規。而待過政治圈的他,明白政策很難做到百分百的現實,因此他估計得從 60 拍瓦時增加到 90 拍瓦時來當預備。

第四,除了「淨零」,也就是不繼續增加溫室氣體,我們還得「負碳」,就是把已經在大氣中的溫室氣體抓回來。因此他認為還得再加!從 90 拍瓦時增加到 120 拍瓦時。

更重要的是,要從現在的 10 拍瓦時增加到 120 拍瓦時,成長的曲線不能是一條直線連到 2050 年,而是該越快達到越好。他的野心非常大,目標不只是改變目前的電力系統,而是建造一個新的能源系統,不是要解決氣候變遷,而是打造更好的世界。老實說,高斯坦的論述對許多人來說可能太重也太巨大,但應該會擊中一些人的甜蜜點,特別是那些就喜歡解決大問題,賺大錢的人。(就是說你啊馬斯克)

透明公開的數據才能有效應對氣候變遷

Gavin McCormick:Tracking the whole world’s carbon emissions—with satellites&AI|TED Countdown/YouTube

溫室氣體到底是哪來的?哪些人類行為、在哪裡、為了什麼目的,製造出這些溫室氣體?要解決氣候變遷,得先知道這些問題對吧?但科學家知道的……其實很少?這種說法可能讓你覺得 WHAT THE F……?

Gavin McCormick 是 Climate TRACE 聯盟的共同創辦者,也是 WattTime 這家非營利新創組織的執行長,兩個單位的任務一致,就是要用衛星數據結合 AI 判讀,來偵測跟追蹤排放污染源的工廠。他之所以放大絕說「我們知道的很少」,是因為在大多數國家的大多數時候,排放的數據是請污染者自己回報的,怎麼回報呢?就手寫在白紙上這樣。這品質堪慮啊!

沒有好的數據,就沒有辦法真正解決問題。有圖有真相,眼見為憑,所以他與一群科學家、工程師、行動者合作,利用人工智慧視覺判斷工廠的衛星影像,這樣就不用去問排放者「你們排了多少啊?」。就像電腦學會判斷貓跟狗一樣,要讓演算法更準確,就得餵給機械足夠多、足夠好的資料來訓練,一部分是清楚正確的工廠排放數據,另一部分是這些工廠在不同時段的衛星圖像。除了煙囪,還可以透過衛星圖中工廠外海水的波紋,判斷工廠吸入多少海水來冷卻,聽起來十足黑科技。在我看來,這任務非常挑戰,但解法的確合理。

等等,如果這樣也行,那何不監看全地球的污染鏈、包括農業、陸上交通、海運…..?沒錯,Climate Trace 獲得高爾支持,應用已有的數千顆衛星源源不絕的高品質資料,結合大數據跟人工智慧技術,就做了這件事。McCormick 說,其實 Twitter 或 FB 等早就將這樣的技術用在判斷哪些網路迷因會紅,他們只是將技術用來判斷哪些污染源會讓地球過熱。

他認為這種激進的透明(radical transparency)對國際合作應對氣候變遷,達成減碳協議至關重要。畢竟談判最大的問題就是大家底牌不揭開,你說我排碳多,我說你減碳不夠,沒有共同的基礎。所以 Climate TRACE 接下來會把全地球、全排放源的排放量數據,都透明公開地提供出來,這聽起來很刺激,儘管公信力應該也會遭受一定挑戰,但我樂見其成。

關注氣候問題應從「我們的」角度出發

John Marshall:3 strategies for effectively talking about climate change|TED Countdown/YouTube

​​為什麼即使最了解狀況的科學家早就對氣候危機達成高度共識,認為改變迫在眉睫,不能拖延,大多數人卻還一知半解,行動遲緩,刻意忽略,甚至有少部分人群起反對?

John Marshall 是一位溝通專家,他成立的 Potential Energy 勢能,由媒體與行銷界中關心氣候變遷的人士所組成。說實在的,既然民意與政策受到媒體與行銷訊息影響,這領域的從業專家可能比科學家或政治人物更有機會改變局勢。他們要解決的問題就是發揮自身專業,讓大家聽懂、有感、肯行動。在 Potential Energy 的網站上,還串連了超過 200 家媒體與行銷公司,要一同改變氣候變遷不討喜、乏人問津的困境。

他在影片中指出,現在氣候變遷的討論參雜太多不具體、難以想像、不夠切身的名詞。例如淨零、碳稅、1.5 度 C、 500 億噸二氧化碳、排放、甲烷、人類世、去碳(decarbonization)……(我前面就寫了好多這些詞),那麼既然人們聽不懂,自然沒感覺,也不會在乎。

The Bottom Line on Climate Change:What You Need to Know in 30 Seconds/YouTube

相較於此,「臭氧層破了洞」的比喻卻很有效,也因此在當年讓蒙特婁議定書的執行更有利。Marshall 建議:別用暖化這個聽起來感覺溫溫柔柔蠻舒服的詞,用「過熱」吧!與其說氣候,不如說「極端天氣」更有感。與其說潔淨能源,不如說「便宜能源」,畢竟風力跟太陽光電在許多地方都已經比化石能源低廉。最後他還建議,與其用一直念著攝氏 1.5 度,不如改用華氏。這建議聽起來就很作弊了,針對美國人可能有效……吧。

除了用詞,如何呈現氣候議題跟溝通對象的相關性也很重要。例如若溝通對象是美國佛羅里達人,與其對他們喊「阻止全球暖化」,不如喊「不要淹水」(”local flooding is more important than global warming”)。另外,他也建議科學家可從個人角度來進行情感訴求,特別是那些研究氣候的女性科學家的故事。一般人跟科學家之間總有點隔閡,但當看到這些研究並關心氣候的科學家,娓娓道來自己只是希望孩子有個更好的未來的時候,特別能夠打動人心。他們甚至還有一個用「佛羅里達男子 Florida man」的梗做的影片,知道這個梗的觀眾肯定覺得很好笑。

Later Is Too Late To Act On Climate Change/YouTube

或許科學家受的訓練就是把觀察到的抽象化、壓縮成一般人聽不懂的術語,才覺得溝通起來有效率,但這卻不利於觸動人心。Marshall 提醒每個想要讓更多人關注氣候問題的人,從「我們的」生活、「我們的」現在、「我們的」價值、「我們的」孩子切入,避免打高空。這樣,人們才會覺得我懂了、這跟我有關、這跟我在乎的人有關、我願意行動。

當能源遇上政治時……

Al Gore:How to make radical climate action the new normal|TED Countdown/YouTube

高爾是誰應該不用我多介紹,他在這場演講中再次展現強大的演說能力,極富情緒張力,雖然有點政治造勢場合的感覺(畢竟是他本行)。在他的框架中,我們從工業革命、數位革命、進入「永續革命」。永續革命是要用數位革命給我們的速度,幫我們從工業革命的後果中逃出。

這場演講,分為三個部分,前三分之一,他用數據跟近幾年各地的極端天氣事件再次強調問題已經很嚴重,後果也是,我們不是在等待一個即將發生的巨大危機,而是已經在災難裡,而且這些災難的規模在過往根本難以想像。

中間三分之一,則是用數據與趨勢顯示「解法是什麼」。綠能的成本快速下降,例如在 2024 年,也就是距今兩年後,不管在地球的哪個地方,風力跟太陽能都會比傳統能源更便宜(這我存疑,要看一下怎麼算的)。儲能的市場正在指數級成長,鋰電池越來越便宜,2023-2024 年之間,主流的電動車售價將跟高效率的油車一樣便宜。然而石油與天然氣產業,儘管口口聲聲說增加了三倍的投資金額於再生能源跟碳捕捉,實際上只是從總投資中僅佔 1% 增加到 4.1%,96% 還是投資在化石能源上,塑膠等一次性用品是獲益的主要來源。

接下來三分之一,高爾開始進入重點,就是以「修正式全頻譜的資本主義」,取代現行問題叢生的資本主義。最重要的應該是這張圖:

圖/YouTube

他樂觀地指出,只要我們能達到淨零,氣候危機將可以被扭轉。氣溫將在 3-5 年內停止上升,而在 25-30 年內,半數人類製造的二氧化碳將離開大氣層(但前面的高斯坦有說到,得積極主動把碳抓回來,不能等那麼久)。最後他回顧歷史上各種人類進步的重要歷史節點來激勵觀眾,包括廢奴、婦女參政權、民權運動、反種族隔離運動、同性戀平權運動等。許多事情都曾經看起來不可能,直到被達成。「有人認為我們缺乏政治決心,但別忘了政治決心是可再生資源。」,真是很有力且扣合主題的結尾。

如果你有時間,當然很建議你把 2.5 小時的整個活動看完,唱歌吟詩說笑話的的部分我覺得也不錯啦。如果你跟我一樣,最近看了太多戰爭的消息,心情實在低落到不行,想知道自己還能多做些什麼來改變過度依賴化石能源的世界格局,透過這場 TED Coundown,除了深入瞭解淨零排碳的挑戰跟解法,應該也能替你的心靈充電。

文章難易度
所有討論 6
鄭國威 Portnoy_96
247 篇文章 ・ 1052 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

0

7
0

文字

分享

0
7
0
氣候變遷會讓世界變得又熱又病嗎?暖化之下的寄生關係可不簡單
阿咏_96
・2023/05/15 ・3188字 ・閱讀時間約 6 分鐘

近年來,氣候變遷已經變成一個眾所皆知的熱門話題,不僅影響著我們身處的自然環境,以及人類生活,也對生物的繁殖、生長、分布等造成衝擊。不過,今天我們沒有要討論海平面上升、極端天氣等這些巨觀環境的改變,而是要來談談或許你我體內都有的——寄生蟲。

提到寄生蟲,大家比較熟悉的或許是蟯蟲、蛔蟲等,有機會寄生於人類體內的寄生蟲,而自然中許多物種之間也有寄生關係,但這與氣候變遷有什麼關係呢?

有許多研究顯示,氣溫升高會導致寄生蟲爆發事件增加,也有些研究說寄生蟲在高溫下的表現比宿主好,因此暖化可能會造成相關疾病越來越嚴峻,後來也衍生出「地球越溫暖,流行病越多」的假說。

地球越溫暖,流行病越多」的假說近來相當盛行。圖/envatoelements

寄生不是哩想ㄟ那麼簡單

俗話說:魔鬼藏在細節裡。腹肌藏在脂肪裡。

如同在生物課本裡學過的,寄生關係是生物間的交互作用,一種生物寄居在另一種生物的體表或體內,獲取營養得以生存、繁殖,所以也並非只有寄生蟲的事,和宿主的生理也有很大關係。找到溫度升高會影響寄生過程的哪些步驟,以及背後的機制怎麼運作,是了解氣候變遷對寄生關係影響的關鍵。

近期發表在英國皇家學會《自然科學會報》(Philosophical Transactions of the Royal Society B)的一項新研究就發現,溫度能夠調節寄生真菌在宿主水蚤體內的感染機制。

這個研究由臺灣大學氣候變遷與永續發展學程助理教授孫烜駿與美國密西根大學研究團隊合作,利用暖化實驗觀察水蚤和真菌之間的寄生關係。

他們將一種水蚤 Daphnia dentifera 作為實驗物種,水蚤平常吃藻類等浮游植物,然後也會被更大的捕食者吃掉,因此水蚤在淡水食物網中扮演著重要角色。而今天的另一個主角 —— 寄生真菌 Metschnikowia bicuspidata ,則是一種會感染多種水蚤的酵母菌。

那水蚤是怎麼被感染的呢?

宿主與寄生真菌之間的攻防戰

水蚤在濾食水中浮游植物時,寄生真菌的孢子可能會一起被牠吃進去,這時感染過程就開始了(水蚤表示:窩⋯⋯窩不知道QQ)首先,寄生真菌的針狀孢子需要先刺穿水蚤的腸道上皮細胞,才能進到體腔內開始發育、繁殖,感染初期有些水蚤還可能痊癒,否則就會進到最終感染階段,一旦水蚤體腔內充滿寄生真菌的孢子或孢子囊,便不可能康復,最終走向死亡,之後下一代孢子釋放回環境中,再被新宿主吃掉,完成感染週期。

寄生真菌在水蚤中的感染過程。生真菌的針狀孢子會先刺穿水蚤的腸道上皮細胞。圖/英國皇家學會《自然科學會報》

也不是所有被吃進去的孢子都能夠成功感染宿主,必須要經過重重關卡,畢竟水蚤也不是吃素的(好啦水蚤真的吃素沒錯 XD)

而兩道最重要的關卡就是「物理屏障」與「細胞免疫」。

物理屏障是一種常見的防禦形式,例如我們的皮膚和植物的角質層,在水蚤與寄生真菌的感染過程裡,腸道上皮細胞就是抵抗孢子進入體腔的物理屏障,像是一道能夠抵抗外來敵人的城牆。

但如果孢子還是順利進到水蚤的體腔內,細胞免疫就像一支軍隊,免疫細胞士兵們會聚集到被感染的部位,開啟防禦模式,共同抵禦外敵,也就是前面提到的,有些剛被感染的水蚤有機會康復的原因。

健康的 Daphnia dentifera 水蚤(左圖)與被寄生真菌 Metschnikowia bicuspidata 感染的水蚤(右圖)。圖/國立台灣大學

暖化之下,寄生關係會怎麼樣

研究團隊想知道:溫度對物裡屏障和細胞免疫的影響,以及會不會影響最終感染的機率。

因此他們把水蚤放到 20°C 和 24°C 下的環境飼養,為甚麼是這兩個溫度呢?

根據先前研究,20°C 是適合水蚤生長繁殖的溫度,而 24°C 則是來自 2100 年氣候變遷預測下的平均溫度變化,自西元 1985 年起,夏季的湖面溫度以每十年 0.34°C 攀升,到本世紀末預計上升 4°C。

並將不同溫度下飼養的水蚤,分別放入有寄生真菌和沒有寄生真菌的環境,總共四種環境條件的組別。

  1. 實驗組:24°C,沒有寄生真菌
  2. 實驗組:24°C,有寄生真菌
  3. 控制組:20°C,沒有寄生真菌
  4. 控制組:20°C,有寄生真菌

接著,為了知道感染初期的情形,針對有寄生真菌的組別,研究團隊在放入真菌 24 小時後,用複式顯微鏡觀察,檢查水蚤腸道和體腔內是否有孢子,以及孢子的數量。

那要怎麼知道物理屏障和細胞免疫的防禦效果呢?

如同前段提過的,我們將作為物理屏障的腸道上皮細胞想像成城牆,免疫細胞想像成軍隊,而寄生真菌的孢子是試圖入侵的外敵

腸道的防禦力便是用「後來在體腔內的孢子數」與「所有試圖刺穿腸道上皮的孢子數」相除;也就是「進到城牆內的敵人數」除以「所有一開始來城牆外攻擊的敵人數量」。(編按:每一百個攻擊城牆的敵人,會有多少人突破城牆的防禦進到牆內)

除此之外,團隊也觀察在不同溫度下水蚤腸壁上皮的厚度,畢竟城牆的厚度可能是防禦的關鍵。

而細胞免疫則是以「前來支援的免疫細胞數」除以「體腔內的孢子數」計算,可以想像成一個敵人需要幾個士兵一起抵抗

除了兩道關卡的抵禦能力外,為了解水蚤的健康狀態,研究團隊紀錄牠們在感染後的死亡率和繁殖力。

溫度影響的不只是寄生關係

實驗結果發現,較溫暖環境下的水蚤腸壁上皮細胞比控制組厚,但腸壁是越厚越好嗎?

另一個結果顯示,其實較厚和較薄的腸壁上皮細胞,比較能抵抗寄生孢子的攻擊,反而是有中等腸道厚度的水蚤防禦孢子進入體腔的能力較弱。

而關於細胞免疫,則發現隨著成功進入體腔的孢子數量增加,附著在孢子上的免疫細胞總數也跟著增加,但在較溫暖環境下飼養的水蚤召集來的免疫細胞,比控制環境下來得少。也就是說,越多敵人入侵,軍隊會募集越多士兵來共同對抗,但在溫暖環境下召來的士兵較少

那物理屏障和細胞免疫之間有什麼關係呢?

在 20°C 下,腸道上皮細胞越厚,每個寄生孢子所需要的免疫細胞數就越少,這似乎蠻容易理解的,若城牆越厚,軍隊火力就不需要太強,反之亦然。

但在 24°C 卻看不到同樣的趨勢,我們知道的只有在溫暖環境下,同樣腸道厚度免疫細胞仍比控制組少。

最後,不論是繁殖力還是存活率,都是在溫暖環境下被感染的水蚤敬陪末座。

從這個研究,我們可以得知,溫度上升不僅會改變宿主的物理屏障,也會影響細胞免疫,進而改變寄生真菌對水蚤的感染結果。在更了解溫度影響寄生關係中的哪些關鍵特徵和結果後,便能預測在暖化環境中,宿主與寄生蟲之間的交互作用,以及所導致的後果。

參考文獻

  1. Sun, S. J., Dziuba, M. K., Jaye, R. N., & Duffy, M. A. (2023). Temperature modifies trait-mediated infection outcomes in a Daphnia–fungal parasite system. Philosophical Transactions of the Royal Society B, 378(1873), 20220009.
  2. Rohr, J. R., & Cohen, J. M. (2020). Understanding how temperature shifts could impact infectious disease. PLoS biology, 18(11), e3000938.
  3. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162.
  4. Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston Jr, N. G. (2012). Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1873-1882.
  5. Ozersky, T., Nakov, T., Hampton, S. E., Rodenhouse, N. L., Woo, K. H., Shchapov, K., … & Moore, M. V. (2020). Hot and sick? Impacts of warming and a parasite on the dominant zooplankter of Lake Baikal. Limnology and Oceanography, 65(11), 2772-2786.

0

6
0

文字

分享

0
6
0
比爾蓋茲的親筆揭露:淨零轉型應該何去何從?——《如何避免氣候災難》
天下雜誌出版_96
・2023/03/31 ・1271字 ・閱讀時間約 2 分鐘

2020 年迎來一場災難,一種新型冠狀病毒在全世界傳播開來。任何略知流行病史的人,應該都不會對新冠病毒造成的嚴重疫情感到太意外。我極為關注全球衛生問題,從多年前就開始研究疾病的爆發,一直很擔憂全球還沒準備好應付像 1918 年流感那樣的疾病大流行;那場大流行病造成幾千萬人死亡。我在 2015 年發表過一場 TED 演講,同時在幾次採訪中,也提出我們需要建立一個檢測和應對疾病大規模爆發的系統。

遺憾的是,全球還是沒有做好準備。當新冠病毒爆發,疫情造成巨大的人命損失,以及自大蕭條以來最嚴重的經濟痛苦。

付出高昂代價換來的 4.5% 減幅

由於經濟活動大幅衰減,2020 年全球的溫室氣體排放量比前一年少。減幅大約是 4.5% ,這是有效的減幅,假如溫室氣體排放量每年都能保持這樣的降幅,我們就可以高枕無憂了。

很可惜,這是不可能的事。

想一想,我們付出了多少代價才有這 4.5% 的減幅:全球有上百萬人死亡,幾千萬人失業。沒有人希望疫情持續下去,更別說重來一遍。疫情使溫室氣體排放量下降,我感到驚訝的不是降這麼多,而是怎麼降這麼少。

這一點點減幅證明了我們不能光靠少搭飛機、少開車來達到零排放,甚至就連那些被我們視為減少排放的主要途徑,效果都十分有限。

由於經濟活動大幅衰減,2020 年全球的溫室氣體排放量比前一年少,減幅大約是 4.5%(示意圖)。圖/envatoelements

我的思維比較像工程師,不是政治人物,所以也不知該如何解決氣候變遷的政治問題,特別是在美國,氣候變遷的討論已經被政治綁架。能做的只是把討論重點放在該怎麼達到零排放:我們必須傾全世界之力、投入全人類的科學頭腦,讓現有的清潔能源方案能被有效運用,同時發明新技術,以徹底停止排放溫室氣體到大氣中。

關鍵在清潔能源如何變得便宜又穩定

我的碳足跡實在高得離譜。多年來,我一直對此感到內疚。由於寫這本書,更加意識到自己有責任減碳。身為憂心氣候變遷、公開呼籲大家攜手對抗的一份子,減少個人碳足跡是最基本該做到的事。

我從 2020 年開始購買永續航空燃料,預計到 2021 年就會完全抵銷我和家人搭飛機所造成的碳足跡。至於其他方面,我也投資零碳技術,希望這也算是我個人碳足跡的補償,前後已經投入超過 10 億美元,但願這些技術最終能幫助全球實現零排放,研發出穩定而人人負擔得起的清潔能源。

儘管像我這樣的重度排碳者應該減少能源用量,全球整體其實應該使用更多由能源提供的產品和服務,只要是零碳能源,消耗更多能源就不是問題。解決氣候變遷問題的關鍵,就是使清潔能源和化石燃料一樣便宜和穩定。

——本文摘自《如何避免氣候災難:結合科技與商業的奇蹟,全面啟動淨零轉型新經濟》,2023 年 3 月,天下雜誌出版,未經同意請勿轉載。

天下雜誌出版_96
24 篇文章 ・ 17 位粉絲
天下雜誌出版持續製作與出版國內外好書,引進新趨勢、新做法,期盼能透過閱讀與活動實做,分享創新觀點、開拓視野、促進管理、領導、職場能力、教養教育、同時促進身心靈的美好生活。