6

6
3

文字

分享

6
6
3

五則 TED 演講,讓你看懂「淨零」怎麼做

鄭國威 Portnoy_96
・2022/03/17 ・5819字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

如烏克蘭氣象學家維特拉娜·克拉科夫斯卡 (vitlana Krakovska) 在 IPCC 的線上會議中所說,如果歐洲乃至於全世界沒有那麼對石油跟天然氣上癮這場戰爭或許不會出現。同樣的,如果要終結這場乃至於下一場因石油而起的戰爭,需要做的就是盡快結束我們對石油與天然氣的癮頭。

也因為如此,我這兩週看了所有去年 TED Coundown 大會的影片,就是想要知道圓形紅毯上有哪些新的「值得傳播的好點子」,能幫助人類更快達到淨零,不再依賴化石能源。以下挑出五則我個人最喜歡的演講,推薦給各位。

對付氣候危機的最速手段:針對大魔頭甲烷的獨立戰略

Ilissa Ocko:The fastest way to slow climate change now|TED Countdown/YouTube

伊麗莎·奧科(Ilissa Ocho)是一位氣候科學家,目前在環境保衛基金(Environmental Defense Fund)擔任研究員,她的任務是為氣候變遷溝通與政策提供有科學根據的指引。她利用各種模型去了解人類的行為怎麼加劇氣候變遷,反過來也研究哪些降低溫室氣體排放的行動真的有效。她善於用簡單語言、動人影像,來向非專家傳達科學。在這則 TED Countdown 的演講中,她精準地在 10 分鐘內,改變了我的想法。

結論先說:溫室氣體兩大魔頭二氧化碳跟甲烷,各有威能與弱點,不能一概而論,得分開對付。

二氧化碳就份量來說,是溫室氣體的主角,佔了 99%,剩下的 1% 則是甲烷,但若在未來十年這個時間段裡頭來看,這 1% 的甲烷讓地球升溫得更快。雖然二氧化碳會待在大氣層更久,也一定要對付,但就溫度上升來說,沒有甲烷造成的那麼快。

-----廣告,請繼續往下閱讀-----

奧科認為,減碳當然重要,但暖化已經造成了嚴重後果(熱浪、野火、洪水、饑荒……),那麼我們就該採用最快最有效的方式來抑制溫度上升的速度。講簡單點:要有針對甲烷的獨立戰略

甲烷有三個源頭,第一個就是生產能源,例如開採石油、煤炭跟天然氣的時候,甲烷就這麼外洩了。奧科表示雖然相較於石油跟煤炭,天然氣燃燒後排碳較少,但生產過程中造成的洩漏抵消了這好處。解決辦法超直白:把管線的螺絲上緊。問題是,哪裡的螺絲鬆了呢?過去難以監測,不知道哪裡洩漏,但現在可以透過物聯網、無人機、以及衛星來監測全球甲烷排放量。只要可以找到漏洞,就可以解決。

第二個源頭是廢棄物管理。大型垃圾掩埋場的生物腐爛、垃圾污水都會產生很多甲烷,但甲烷明明就是上等燃料,何不用管線吸走拿去用呢?另外,將廚餘分開拿去堆肥,也可以減少甲烷,許多國家包括台灣也都有沼氣發電廠。

第三個則是農業,在三大來源中佔比最大,不好對付,包括家畜(如牛)消化後打嗝跟放屁,不過她很興奮地指出,科學家發現,用特製的飼料添加劑,在牛的腸道內生成的甲烷可以降低 30%。牲畜的糞便尿液也會產生甲烷,用來來發電或供暖剛好。此外,全球半數人口仰賴的糧食作物水稻也是甲烷重要來源,但若改種植能在淺水生長的品種,調整供水方式,就可以降低大量甲烷生成。

-----廣告,請繼續往下閱讀-----

結論再講一次:減碳很好,但要把二氧化碳跟甲烷分開,針對甲烷設定獨立的目標跟行動。要是執行得好,將能快速奏效,阻止最嚴重的災變後果,而且這些方案也能創造工作機會喔~

世界準備好解決氣候變遷了嗎?

Solomon Goldstein-Rose:How much clean electricity do we really need?|TED Countdown/YouTube

索羅門·高斯坦(Solomon Goldstein)11 歲的時候就成為一名氣候行動者,學習工程跟公共政策,22 歲就參選美國麻州議員並當選。2018 年他放棄競選,全力投入氣候議題,也寫了一本被認為最實際的氣候變遷解法書。他在演講裡提出一個關鍵數據:要在 2050 年達到淨零排放,世界需要生產當下清潔能源總產出 12 倍那麼多的能源,而不是很多人認為的 2.5 倍。

為什麼呢?根據他的計算,目前全球已經有 10 拍瓦時(petawatts hours)的電力來自於清潔能源,包括風光等再生能源跟核能。要是現在立即能增加 2.5 倍的清潔能源產出,就可以置換其他能源,但是……

第一,隨著全球電力化,例如各類電動車輛、以電力供暖等等,雖然用電的效率會更高,進而降低整體能源耗用,但吃電的設備變多,還是會需要更多電。如果要把現在還沒電動化的設備中的 60% 電動化,起碼需要 40 拍瓦時。

第二,世界上還有 7 億多人沒有電可以用、另外幾十億的人的用電很不穩,而改善這些人的生活,將降低貧窮、改善教育、經濟,跟降低過度生育,這就需要更多電力。那麼照 2050 年的發展預測,所需電力得從 40 拍瓦時再增加至 60 拍瓦時。

-----廣告,請繼續往下閱讀-----

第三,有很多部分沒辦法電動化,例如長途海運、空運,部分工廠的製程等等。就算有碳捕捉、生物燃料等替代做法,也需要政府認真執行法規。而待過政治圈的他,明白政策很難做到百分百的現實,因此他估計得從 60 拍瓦時增加到 90 拍瓦時來當預備。

第四,除了「淨零」,也就是不繼續增加溫室氣體,我們還得「負碳」,就是把已經在大氣中的溫室氣體抓回來。因此他認為還得再加!從 90 拍瓦時增加到 120 拍瓦時。

更重要的是,要從現在的 10 拍瓦時增加到 120 拍瓦時,成長的曲線不能是一條直線連到 2050 年,而是該越快達到越好。他的野心非常大,目標不只是改變目前的電力系統,而是建造一個新的能源系統,不是要解決氣候變遷,而是打造更好的世界。老實說,高斯坦的論述對許多人來說可能太重也太巨大,但應該會擊中一些人的甜蜜點,特別是那些就喜歡解決大問題,賺大錢的人。(就是說你啊馬斯克)

透明公開的數據才能有效應對氣候變遷

Gavin McCormick:Tracking the whole world’s carbon emissions—with satellites&AI|TED Countdown/YouTube

溫室氣體到底是哪來的?哪些人類行為、在哪裡、為了什麼目的,製造出這些溫室氣體?要解決氣候變遷,得先知道這些問題對吧?但科學家知道的……其實很少?這種說法可能讓你覺得 WHAT THE F……?

-----廣告,請繼續往下閱讀-----

Gavin McCormick 是 Climate TRACE 聯盟的共同創辦者,也是 WattTime 這家非營利新創組織的執行長,兩個單位的任務一致,就是要用衛星數據結合 AI 判讀,來偵測跟追蹤排放污染源的工廠。他之所以放大絕說「我們知道的很少」,是因為在大多數國家的大多數時候,排放的數據是請污染者自己回報的,怎麼回報呢?就手寫在白紙上這樣。這品質堪慮啊!

沒有好的數據,就沒有辦法真正解決問題。有圖有真相,眼見為憑,所以他與一群科學家、工程師、行動者合作,利用人工智慧視覺判斷工廠的衛星影像,這樣就不用去問排放者「你們排了多少啊?」。就像電腦學會判斷貓跟狗一樣,要讓演算法更準確,就得餵給機械足夠多、足夠好的資料來訓練,一部分是清楚正確的工廠排放數據,另一部分是這些工廠在不同時段的衛星圖像。除了煙囪,還可以透過衛星圖中工廠外海水的波紋,判斷工廠吸入多少海水來冷卻,聽起來十足黑科技。在我看來,這任務非常挑戰,但解法的確合理。

等等,如果這樣也行,那何不監看全地球的污染鏈、包括農業、陸上交通、海運…..?沒錯,Climate Trace 獲得高爾支持,應用已有的數千顆衛星源源不絕的高品質資料,結合大數據跟人工智慧技術,就做了這件事。McCormick 說,其實 Twitter 或 FB 等早就將這樣的技術用在判斷哪些網路迷因會紅,他們只是將技術用來判斷哪些污染源會讓地球過熱。

他認為這種激進的透明(radical transparency)對國際合作應對氣候變遷,達成減碳協議至關重要。畢竟談判最大的問題就是大家底牌不揭開,你說我排碳多,我說你減碳不夠,沒有共同的基礎。所以 Climate TRACE 接下來會把全地球、全排放源的排放量數據,都透明公開地提供出來,這聽起來很刺激,儘管公信力應該也會遭受一定挑戰,但我樂見其成。

-----廣告,請繼續往下閱讀-----

關注氣候問題應從「我們的」角度出發

John Marshall:3 strategies for effectively talking about climate change|TED Countdown/YouTube

​​為什麼即使最了解狀況的科學家早就對氣候危機達成高度共識,認為改變迫在眉睫,不能拖延,大多數人卻還一知半解,行動遲緩,刻意忽略,甚至有少部分人群起反對?

John Marshall 是一位溝通專家,他成立的 Potential Energy 勢能,由媒體與行銷界中關心氣候變遷的人士所組成。說實在的,既然民意與政策受到媒體與行銷訊息影響,這領域的從業專家可能比科學家或政治人物更有機會改變局勢。他們要解決的問題就是發揮自身專業,讓大家聽懂、有感、肯行動。在 Potential Energy 的網站上,還串連了超過 200 家媒體與行銷公司,要一同改變氣候變遷不討喜、乏人問津的困境。

他在影片中指出,現在氣候變遷的討論參雜太多不具體、難以想像、不夠切身的名詞。例如淨零、碳稅、1.5 度 C、 500 億噸二氧化碳、排放、甲烷、人類世、去碳(decarbonization)……(我前面就寫了好多這些詞),那麼既然人們聽不懂,自然沒感覺,也不會在乎。

The Bottom Line on Climate Change:What You Need to Know in 30 Seconds/YouTube

相較於此,「臭氧層破了洞」的比喻卻很有效,也因此在當年讓蒙特婁議定書的執行更有利。Marshall 建議:別用暖化這個聽起來感覺溫溫柔柔蠻舒服的詞,用「過熱」吧!與其說氣候,不如說「極端天氣」更有感。與其說潔淨能源,不如說「便宜能源」,畢竟風力跟太陽光電在許多地方都已經比化石能源低廉。最後他還建議,與其用一直念著攝氏 1.5 度,不如改用華氏。這建議聽起來就很作弊了,針對美國人可能有效……吧。

-----廣告,請繼續往下閱讀-----

除了用詞,如何呈現氣候議題跟溝通對象的相關性也很重要。例如若溝通對象是美國佛羅里達人,與其對他們喊「阻止全球暖化」,不如喊「不要淹水」(”local flooding is more important than global warming”)。另外,他也建議科學家可從個人角度來進行情感訴求,特別是那些研究氣候的女性科學家的故事。一般人跟科學家之間總有點隔閡,但當看到這些研究並關心氣候的科學家,娓娓道來自己只是希望孩子有個更好的未來的時候,特別能夠打動人心。他們甚至還有一個用「佛羅里達男子 Florida man」的梗做的影片,知道這個梗的觀眾肯定覺得很好笑。

Later Is Too Late To Act On Climate Change/YouTube

或許科學家受的訓練就是把觀察到的抽象化、壓縮成一般人聽不懂的術語,才覺得溝通起來有效率,但這卻不利於觸動人心。Marshall 提醒每個想要讓更多人關注氣候問題的人,從「我們的」生活、「我們的」現在、「我們的」價值、「我們的」孩子切入,避免打高空。這樣,人們才會覺得我懂了、這跟我有關、這跟我在乎的人有關、我願意行動。

當能源遇上政治時……

Al Gore:How to make radical climate action the new normal|TED Countdown/YouTube

高爾是誰應該不用我多介紹,他在這場演講中再次展現強大的演說能力,極富情緒張力,雖然有點政治造勢場合的感覺(畢竟是他本行)。在他的框架中,我們從工業革命、數位革命、進入「永續革命」。永續革命是要用數位革命給我們的速度,幫我們從工業革命的後果中逃出。

這場演講,分為三個部分,前三分之一,他用數據跟近幾年各地的極端天氣事件再次強調問題已經很嚴重,後果也是,我們不是在等待一個即將發生的巨大危機,而是已經在災難裡,而且這些災難的規模在過往根本難以想像。

-----廣告,請繼續往下閱讀-----

中間三分之一,則是用數據與趨勢顯示「解法是什麼」。綠能的成本快速下降,例如在 2024 年,也就是距今兩年後,不管在地球的哪個地方,風力跟太陽能都會比傳統能源更便宜(這我存疑,要看一下怎麼算的)。儲能的市場正在指數級成長,鋰電池越來越便宜,2023-2024 年之間,主流的電動車售價將跟高效率的油車一樣便宜。然而石油與天然氣產業,儘管口口聲聲說增加了三倍的投資金額於再生能源跟碳捕捉,實際上只是從總投資中僅佔 1% 增加到 4.1%,96% 還是投資在化石能源上,塑膠等一次性用品是獲益的主要來源。

接下來三分之一,高爾開始進入重點,就是以「修正式全頻譜的資本主義」,取代現行問題叢生的資本主義。最重要的應該是這張圖:

圖/YouTube

他樂觀地指出,只要我們能達到淨零,氣候危機將可以被扭轉。氣溫將在 3-5 年內停止上升,而在 25-30 年內,半數人類製造的二氧化碳將離開大氣層(但前面的高斯坦有說到,得積極主動把碳抓回來,不能等那麼久)。最後他回顧歷史上各種人類進步的重要歷史節點來激勵觀眾,包括廢奴、婦女參政權、民權運動、反種族隔離運動、同性戀平權運動等。許多事情都曾經看起來不可能,直到被達成。「有人認為我們缺乏政治決心,但別忘了政治決心是可再生資源。」,真是很有力且扣合主題的結尾。

如果你有時間,當然很建議你把 2.5 小時的整個活動看完,唱歌吟詩說笑話的的部分我覺得也不錯啦。如果你跟我一樣,最近看了太多戰爭的消息,心情實在低落到不行,想知道自己還能多做些什麼來改變過度依賴化石能源的世界格局,透過這場 TED Coundown,除了深入瞭解淨零排碳的挑戰跟解法,應該也能替你的心靈充電。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 6
鄭國威 Portnoy_96
247 篇文章 ・ 1400 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
4

文字

分享

1
3
4
改良天然氣發電技術不會產生二氧化碳?灰氫、藍氫、綠氫分別是什麼?
PanSci_96
・2024/02/11 ・5659字 ・閱讀時間約 11 分鐘

用天然氣發電可以完全沒有二氧化碳排放?這怎麼可能?

2023 年 11 月,台電和中研院共同發表去碳燃氫技術,說是經過處理的天然氣,燃燒後可以不產生二氧化碳。

誒,減碳方式百百種,就是這個聽起來最怪。但仔細研究後,好像還真有這麼一回事。這種能發電,又不產二氧化碳的巫術到底是什麼?大量使用天然氣後,又有哪些隱憂是我們可能沒注意到的?

去碳燃氫是什麼?

去碳燃氫,指的是改良現有的天然氣發電方式,將甲烷天然氣的碳去除,只留下乾淨的氫氣作為燃燒燃料。在介紹去碳燃氫之前,我們想先針對我們的主角天然氣問一個問題。

-----廣告,請繼續往下閱讀-----

最近不論台灣、美國或是許多國家,都提升了天然氣發電的比例,但天然氣發電真的有比較好嗎?

好像還真的有。

根據聯合國底下的政府間氣候變化專門委員會 IPCC 的計算報告,若使用火力發電主要使用的煙煤與亞煙煤作為燃料,並以燃燒率百分之百來計算,燃料每釋放一兆焦耳的能量,就會分別產生 94600 公斤和 96100 公斤的二氧化碳排放。

如果將燃料換成天然氣,則大約會產生 56100 公斤的二氧化碳,大約只有燃燒煤炭的六成。這是因為天然氣在化學反應中,不只有碳元素會提供能量,氫元素也會氧化成水並放出能量。

圖/pexels

除了碳排較低以外,煤炭這類固體燃料往往含有更多雜質,燃燒時又容易產生更多的懸浮顆粒例如 PM 2.5 ,或是溫室效應的另一主力氧化亞氮(N2O)。具體來說,產生同等能量下,燃燒煤炭產生的氧化亞氮是天然氣的 150 倍。

當然,也別高興這麼早,天然氣本身也是個比二氧化碳更可怕的溫室氣體,一但洩漏問題也不小。關於這點,我們放到本集最後面再來討論。

-----廣告,請繼續往下閱讀-----

燃燒天然氣還是會產生二氧化碳?

雖然比較少,但也有燃煤的六成。像是綠能一樣的零碳排發電方式,不才是我們的終極目標嗎?別擔心,為了讓產生的二氧化碳量減到最小,我們可以來改造一下甲烷。

圖/unsplash

在攝氏 700 至 1100 度的高溫下,甲烷就會和水蒸氣反應,變成一氧化碳和氫氣,稱為蒸汽甲烷重組技術。目前全球的氫氣有 9 成以上,都是用此方式製造的,也就是所謂的「灰氫」。

而產物中的一氧化碳,還可以在銅或鐵的催化下,與水蒸氣進一步進行水煤氣反應,變成二氧化碳與氫氣。最後的產物很純,只有氫氣與二氧化碳,因此此時單獨將二氧化碳分離、封存的效率也會提升不少,也就是我們在介紹碳捕捉時介紹的「燃燒前捕捉」技術。

去碳燃氫又是什麼?

圖/pexels

即便我們能將甲烷蒸氣重組,但只要原料中含有碳,那最終還是會產生二氧化碳。那麼,我們把碳去掉不就好了?去碳燃氫,就是要在第一步把甲烷分解為碳和氫氣。這樣氫氣在發電時只會產生水蒸氣,而留下來的碳黑,也就是固態的碳,可以做為其他工業原料使用,提升附加價值。

-----廣告,請繼續往下閱讀-----

在氫氣產業鏈中,我們習慣將氫氣的來源做顏色分類。例如前面提到蒸氣重組後得到的氫氣被稱為灰氫,而搭配碳捕捉技術的氫,則稱為藍氫。完全使用綠能得到的氫,例如搭配太陽能或風力發電,將水電解後得到最潔淨的氫,則稱為綠氫。而介於這兩者之間,利用去碳燃氫技術分解不是水而是甲烷所得到的氫,則稱為藍綠氫。

但先不管它叫什麼氫,重點是如果真的不會產生二氧化碳,那我們就確實多了一種潔淨能源可以選擇。這個將甲烷一分為二的技術,聽起來應該也不會太難吧?畢竟連五◯悟都可以一分為二了,甲烷應該也行吧。

甲烷如何去碳?

甲烷要怎麼變成乾淨的氫氣呢?

很簡單,加溫就好了。

圖/giphy

只要加溫到高過攝氏 700 度,甲烷就會開始「熱裂解」,鍵結開始被打斷,變成碳與氫氣。

-----廣告,請繼續往下閱讀-----

等等等等…為了發電還要耗費能源搞高溫熱裂解,划算嗎?

甲烷裂解確實是一個吸熱反應,也就是需要耗費能量來拆散原本的鍵結。根據反應式,一莫耳甲烷要吸收 74 千焦耳的熱量,才會裂解為一莫耳的碳和兩莫耳的氫氣。但是兩莫耳的氫氣燃燒後,會產生 482 千焦耳的熱量。淨能量產出是 408 焦耳。與此相對,直接燃燒甲烷產生的熱量是 891 千焦耳。

而根據現實環境與設備的情況,中研院與台電推估一公噸的天然氣直接燃燒發電,與先去碳再燃氫的方式相比,發電量分別為 7700 度和 4272 度。雖然因為不燃燒碳,發電量下降了,但也省下了燃燒後捕存的成本。

要怎麼幫甲烷去碳呢?

在近二十幾年內,科學家嘗試使用各種材料作為催化劑,來提升反應效率。最常見的方式,是將特定比例的合金,例如鎳鉍合金,加熱為熔融態。並讓甲烷通過液態的合金,與這些高溫的催化劑產生反應。實驗證實,鎳鉍合金可以在攝氏 1065 度的高溫下,轉化 95% 的甲烷。

-----廣告,請繼續往下閱讀-----

中研院在 2021 年 3 月,啟動了「 Alpha 去碳計畫」,進行去碳燃氫的設備開發。但團隊發現,盡管在理論上行得通,但實際上裝置就像是個不受控的火山一樣,熔融金屬與蒸氣挾帶著碳粒形成黏稠流體,不斷從表面冒出,需要不斷暫停實驗來將岩漿撈出去。因此,即便理論上可行,但熔融合金的催化方式,還無法提供給發電機組使用。

去碳燃氫還能有突破嗎?

有趣的是,找了好一大圈,驀然回首,那人卻在燈火闌珊處。

最後大家把目光放到了就在你旁邊,你卻不知道它正在等你的那個催化劑,碳。其實過去就有研究表明碳是一種可行的催化劑。但直到 201 3年,才有韓國團隊,嘗試把碳真的拿來做為去碳燃氫的反應催化劑。

圖/pexels

他們在高溫管柱中,裝填了直徑 30 nm 的碳粒。結果發現,在 1,443 K 的高溫下,能達到幾乎 100 % 的甲烷轉化。而且碳本身就是反應的產物之一,因此整個裝置除了碳鋼容器以外,只有碳與氫參與反應,不僅成本低廉,要回收碳黑也變得容易許多。

-----廣告,請繼續往下閱讀-----

目前這個裝置需要加緊改良的,就是當碳不斷的積蓄,碳粒顆粒變大,反應會跟著下降。如何有效清除或更換濾網與反應材料,會是能否將此設備放大至工業化規模的關鍵。

最後,我們回頭來談談,在去碳燃氫技術逐漸成熟之後,我們可能需要面對的根本問題。

天然氣是救世主,還是雙面刃?

去碳燃氫後的第一階段,還是會以天然氣為主,只混和 10 % 以下的氫氣作為發電燃料。

這是因為甲烷的燃燒速度是每秒 0.38 公尺,氫氣則為每秒 2.9 公尺,有著更劇烈的燃燒反應。因此,目前仍未有高比例氫氣的發電機組,氫氣的最高比例,通常就是 30 % 。

目前除了已成功串連,使用 10 % 氫氣的小型發電機組以外。台電預計明年完成在興達電廠,使用 5 % 氫氣的示範計畫,並逐步提升混和氫氣的比例。根據估計,光是 5 % 的氫氣,就能減少每年 7000 噸的二氧化碳排放。

-----廣告,請繼續往下閱讀-----

但隨著天然氣的使用量逐步提高,我們也應該同時留意另一個問題。

天然氣洩漏導致的溫室效應,是不可忽視的!

根據 IPCC 2021 年的報告,若以 20 年為評估,甲烷產生的溫室效應效果是二氧化碳的 82.5 倍,以 100 年為評估,效果為 29.8 倍,是僅次於二氧化碳,對於溫室效應的貢獻者第二名。這,不可不慎啊。

圖/unsplash

從石油、天然氣井的大量甲烷洩漏,加上運輸時的洩漏,如果沒有嚴格控管,我們所做的努力,很有可能就白費了。

非營利組織「環境保衛基金」曾在 2018 年發表一篇研究,發現從 2012 到 2018 年,全球的甲烷排放量增加了 60 % ,從煤炭轉天然氣帶來的好處,可能因為甲烷洩漏而下修。當然,我們必須相信,當這處漏洞被補上,它還是能作為一個可期待的發電方式。

圖/giphy

另一篇發表在《 Nature Climate Change 》的分析研究就說明,以長期來看,由煤炭轉為天然氣,確實能有效減緩溫室氣體排放。但研究也特別提醒,天然氣應作為綠能發展健全前的過渡能源,千萬別因此放慢對於其他潔淨能源的研究腳步。

去碳燃氫技術看起來如此複雜,為什麼不直接發展綠氫就好了?

確實,綠氫很香。但是,綠氫的來源是電解水,而反應裝置也不可能直接使用雜質混雜的海水,因此若要大規模發展氫能,通常需要搭配水庫或海水淡化等供水設施。另外,綠氫本來就是屬於一種儲能的形式,在台灣自己的綠能還沒有多到有剩之前,當然直接送入電網,還輪不到拿來產綠氫。

圖/unsplash

相比於綠氫,去碳燃氫針對的是降低傳統火力發電的碳排,並且只需要在現有的發電廠旁架設熱裂解設備,就可以完成改造。可以想像成是在綠能、新世代核能發展成熟前的應急策略。

當然,除了今天提到的灰氫、藍氫、綠氫。我們還有用核能產生的粉紅氫、從地底開採出來的白氫等等,都還沒介紹呢!

除了可以回去複習我們這一集的氫能大盤點之外,也可以觀看這個介紹白氫的影片,一個連比爾蓋茲都在今年宣布加碼投資的新能源。它,會是下一個能源救世主嗎?

最後,也想問問大家,你認為未來 10 年內,哪種氫能會是最有潛力的發展方向呢?

  1. 當然是綠:要押當然還是壓最乾淨的綠氫啦,自產之前先進口也行啊。
  2. 肯定投藍:搭配碳捕捉的藍氫應該會是最快成熟的氫能吧。
  3. 絕對選白:連比爾蓋茲也投資的白氫感覺很不一樣。快介紹啊!

什麼?你覺得這幾個選項的顏色好像很熟悉?別太敏感了,下好離手啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2568 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。