Loading [MathJax]/extensions/tex2jax.js

6

6
3

文字

分享

6
6
3

五則 TED 演講,讓你看懂「淨零」怎麼做

鄭國威 Portnoy_96
・2022/03/17 ・5819字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

如烏克蘭氣象學家維特拉娜·克拉科夫斯卡 (vitlana Krakovska) 在 IPCC 的線上會議中所說,如果歐洲乃至於全世界沒有那麼對石油跟天然氣上癮這場戰爭或許不會出現。同樣的,如果要終結這場乃至於下一場因石油而起的戰爭,需要做的就是盡快結束我們對石油與天然氣的癮頭。

也因為如此,我這兩週看了所有去年 TED Coundown 大會的影片,就是想要知道圓形紅毯上有哪些新的「值得傳播的好點子」,能幫助人類更快達到淨零,不再依賴化石能源。以下挑出五則我個人最喜歡的演講,推薦給各位。

對付氣候危機的最速手段:針對大魔頭甲烷的獨立戰略

Ilissa Ocko:The fastest way to slow climate change now|TED Countdown/YouTube

伊麗莎·奧科(Ilissa Ocho)是一位氣候科學家,目前在環境保衛基金(Environmental Defense Fund)擔任研究員,她的任務是為氣候變遷溝通與政策提供有科學根據的指引。她利用各種模型去了解人類的行為怎麼加劇氣候變遷,反過來也研究哪些降低溫室氣體排放的行動真的有效。她善於用簡單語言、動人影像,來向非專家傳達科學。在這則 TED Countdown 的演講中,她精準地在 10 分鐘內,改變了我的想法。

結論先說:溫室氣體兩大魔頭二氧化碳跟甲烷,各有威能與弱點,不能一概而論,得分開對付。

二氧化碳就份量來說,是溫室氣體的主角,佔了 99%,剩下的 1% 則是甲烷,但若在未來十年這個時間段裡頭來看,這 1% 的甲烷讓地球升溫得更快。雖然二氧化碳會待在大氣層更久,也一定要對付,但就溫度上升來說,沒有甲烷造成的那麼快。

-----廣告,請繼續往下閱讀-----

奧科認為,減碳當然重要,但暖化已經造成了嚴重後果(熱浪、野火、洪水、饑荒……),那麼我們就該採用最快最有效的方式來抑制溫度上升的速度。講簡單點:要有針對甲烷的獨立戰略

甲烷有三個源頭,第一個就是生產能源,例如開採石油、煤炭跟天然氣的時候,甲烷就這麼外洩了。奧科表示雖然相較於石油跟煤炭,天然氣燃燒後排碳較少,但生產過程中造成的洩漏抵消了這好處。解決辦法超直白:把管線的螺絲上緊。問題是,哪裡的螺絲鬆了呢?過去難以監測,不知道哪裡洩漏,但現在可以透過物聯網、無人機、以及衛星來監測全球甲烷排放量。只要可以找到漏洞,就可以解決。

第二個源頭是廢棄物管理。大型垃圾掩埋場的生物腐爛、垃圾污水都會產生很多甲烷,但甲烷明明就是上等燃料,何不用管線吸走拿去用呢?另外,將廚餘分開拿去堆肥,也可以減少甲烷,許多國家包括台灣也都有沼氣發電廠。

第三個則是農業,在三大來源中佔比最大,不好對付,包括家畜(如牛)消化後打嗝跟放屁,不過她很興奮地指出,科學家發現,用特製的飼料添加劑,在牛的腸道內生成的甲烷可以降低 30%。牲畜的糞便尿液也會產生甲烷,用來來發電或供暖剛好。此外,全球半數人口仰賴的糧食作物水稻也是甲烷重要來源,但若改種植能在淺水生長的品種,調整供水方式,就可以降低大量甲烷生成。

-----廣告,請繼續往下閱讀-----

結論再講一次:減碳很好,但要把二氧化碳跟甲烷分開,針對甲烷設定獨立的目標跟行動。要是執行得好,將能快速奏效,阻止最嚴重的災變後果,而且這些方案也能創造工作機會喔~

世界準備好解決氣候變遷了嗎?

Solomon Goldstein-Rose:How much clean electricity do we really need?|TED Countdown/YouTube

索羅門·高斯坦(Solomon Goldstein)11 歲的時候就成為一名氣候行動者,學習工程跟公共政策,22 歲就參選美國麻州議員並當選。2018 年他放棄競選,全力投入氣候議題,也寫了一本被認為最實際的氣候變遷解法書。他在演講裡提出一個關鍵數據:要在 2050 年達到淨零排放,世界需要生產當下清潔能源總產出 12 倍那麼多的能源,而不是很多人認為的 2.5 倍。

為什麼呢?根據他的計算,目前全球已經有 10 拍瓦時(petawatts hours)的電力來自於清潔能源,包括風光等再生能源跟核能。要是現在立即能增加 2.5 倍的清潔能源產出,就可以置換其他能源,但是……

第一,隨著全球電力化,例如各類電動車輛、以電力供暖等等,雖然用電的效率會更高,進而降低整體能源耗用,但吃電的設備變多,還是會需要更多電。如果要把現在還沒電動化的設備中的 60% 電動化,起碼需要 40 拍瓦時。

第二,世界上還有 7 億多人沒有電可以用、另外幾十億的人的用電很不穩,而改善這些人的生活,將降低貧窮、改善教育、經濟,跟降低過度生育,這就需要更多電力。那麼照 2050 年的發展預測,所需電力得從 40 拍瓦時再增加至 60 拍瓦時。

-----廣告,請繼續往下閱讀-----

第三,有很多部分沒辦法電動化,例如長途海運、空運,部分工廠的製程等等。就算有碳捕捉、生物燃料等替代做法,也需要政府認真執行法規。而待過政治圈的他,明白政策很難做到百分百的現實,因此他估計得從 60 拍瓦時增加到 90 拍瓦時來當預備。

第四,除了「淨零」,也就是不繼續增加溫室氣體,我們還得「負碳」,就是把已經在大氣中的溫室氣體抓回來。因此他認為還得再加!從 90 拍瓦時增加到 120 拍瓦時。

更重要的是,要從現在的 10 拍瓦時增加到 120 拍瓦時,成長的曲線不能是一條直線連到 2050 年,而是該越快達到越好。他的野心非常大,目標不只是改變目前的電力系統,而是建造一個新的能源系統,不是要解決氣候變遷,而是打造更好的世界。老實說,高斯坦的論述對許多人來說可能太重也太巨大,但應該會擊中一些人的甜蜜點,特別是那些就喜歡解決大問題,賺大錢的人。(就是說你啊馬斯克)

透明公開的數據才能有效應對氣候變遷

Gavin McCormick:Tracking the whole world’s carbon emissions—with satellites&AI|TED Countdown/YouTube

溫室氣體到底是哪來的?哪些人類行為、在哪裡、為了什麼目的,製造出這些溫室氣體?要解決氣候變遷,得先知道這些問題對吧?但科學家知道的……其實很少?這種說法可能讓你覺得 WHAT THE F……?

-----廣告,請繼續往下閱讀-----

Gavin McCormick 是 Climate TRACE 聯盟的共同創辦者,也是 WattTime 這家非營利新創組織的執行長,兩個單位的任務一致,就是要用衛星數據結合 AI 判讀,來偵測跟追蹤排放污染源的工廠。他之所以放大絕說「我們知道的很少」,是因為在大多數國家的大多數時候,排放的數據是請污染者自己回報的,怎麼回報呢?就手寫在白紙上這樣。這品質堪慮啊!

沒有好的數據,就沒有辦法真正解決問題。有圖有真相,眼見為憑,所以他與一群科學家、工程師、行動者合作,利用人工智慧視覺判斷工廠的衛星影像,這樣就不用去問排放者「你們排了多少啊?」。就像電腦學會判斷貓跟狗一樣,要讓演算法更準確,就得餵給機械足夠多、足夠好的資料來訓練,一部分是清楚正確的工廠排放數據,另一部分是這些工廠在不同時段的衛星圖像。除了煙囪,還可以透過衛星圖中工廠外海水的波紋,判斷工廠吸入多少海水來冷卻,聽起來十足黑科技。在我看來,這任務非常挑戰,但解法的確合理。

等等,如果這樣也行,那何不監看全地球的污染鏈、包括農業、陸上交通、海運…..?沒錯,Climate Trace 獲得高爾支持,應用已有的數千顆衛星源源不絕的高品質資料,結合大數據跟人工智慧技術,就做了這件事。McCormick 說,其實 Twitter 或 FB 等早就將這樣的技術用在判斷哪些網路迷因會紅,他們只是將技術用來判斷哪些污染源會讓地球過熱。

他認為這種激進的透明(radical transparency)對國際合作應對氣候變遷,達成減碳協議至關重要。畢竟談判最大的問題就是大家底牌不揭開,你說我排碳多,我說你減碳不夠,沒有共同的基礎。所以 Climate TRACE 接下來會把全地球、全排放源的排放量數據,都透明公開地提供出來,這聽起來很刺激,儘管公信力應該也會遭受一定挑戰,但我樂見其成。

-----廣告,請繼續往下閱讀-----

關注氣候問題應從「我們的」角度出發

John Marshall:3 strategies for effectively talking about climate change|TED Countdown/YouTube

​​為什麼即使最了解狀況的科學家早就對氣候危機達成高度共識,認為改變迫在眉睫,不能拖延,大多數人卻還一知半解,行動遲緩,刻意忽略,甚至有少部分人群起反對?

John Marshall 是一位溝通專家,他成立的 Potential Energy 勢能,由媒體與行銷界中關心氣候變遷的人士所組成。說實在的,既然民意與政策受到媒體與行銷訊息影響,這領域的從業專家可能比科學家或政治人物更有機會改變局勢。他們要解決的問題就是發揮自身專業,讓大家聽懂、有感、肯行動。在 Potential Energy 的網站上,還串連了超過 200 家媒體與行銷公司,要一同改變氣候變遷不討喜、乏人問津的困境。

他在影片中指出,現在氣候變遷的討論參雜太多不具體、難以想像、不夠切身的名詞。例如淨零、碳稅、1.5 度 C、 500 億噸二氧化碳、排放、甲烷、人類世、去碳(decarbonization)……(我前面就寫了好多這些詞),那麼既然人們聽不懂,自然沒感覺,也不會在乎。

The Bottom Line on Climate Change:What You Need to Know in 30 Seconds/YouTube

相較於此,「臭氧層破了洞」的比喻卻很有效,也因此在當年讓蒙特婁議定書的執行更有利。Marshall 建議:別用暖化這個聽起來感覺溫溫柔柔蠻舒服的詞,用「過熱」吧!與其說氣候,不如說「極端天氣」更有感。與其說潔淨能源,不如說「便宜能源」,畢竟風力跟太陽光電在許多地方都已經比化石能源低廉。最後他還建議,與其用一直念著攝氏 1.5 度,不如改用華氏。這建議聽起來就很作弊了,針對美國人可能有效……吧。

-----廣告,請繼續往下閱讀-----

除了用詞,如何呈現氣候議題跟溝通對象的相關性也很重要。例如若溝通對象是美國佛羅里達人,與其對他們喊「阻止全球暖化」,不如喊「不要淹水」(”local flooding is more important than global warming”)。另外,他也建議科學家可從個人角度來進行情感訴求,特別是那些研究氣候的女性科學家的故事。一般人跟科學家之間總有點隔閡,但當看到這些研究並關心氣候的科學家,娓娓道來自己只是希望孩子有個更好的未來的時候,特別能夠打動人心。他們甚至還有一個用「佛羅里達男子 Florida man」的梗做的影片,知道這個梗的觀眾肯定覺得很好笑。

Later Is Too Late To Act On Climate Change/YouTube

或許科學家受的訓練就是把觀察到的抽象化、壓縮成一般人聽不懂的術語,才覺得溝通起來有效率,但這卻不利於觸動人心。Marshall 提醒每個想要讓更多人關注氣候問題的人,從「我們的」生活、「我們的」現在、「我們的」價值、「我們的」孩子切入,避免打高空。這樣,人們才會覺得我懂了、這跟我有關、這跟我在乎的人有關、我願意行動。

當能源遇上政治時……

Al Gore:How to make radical climate action the new normal|TED Countdown/YouTube

高爾是誰應該不用我多介紹,他在這場演講中再次展現強大的演說能力,極富情緒張力,雖然有點政治造勢場合的感覺(畢竟是他本行)。在他的框架中,我們從工業革命、數位革命、進入「永續革命」。永續革命是要用數位革命給我們的速度,幫我們從工業革命的後果中逃出。

這場演講,分為三個部分,前三分之一,他用數據跟近幾年各地的極端天氣事件再次強調問題已經很嚴重,後果也是,我們不是在等待一個即將發生的巨大危機,而是已經在災難裡,而且這些災難的規模在過往根本難以想像。

-----廣告,請繼續往下閱讀-----

中間三分之一,則是用數據與趨勢顯示「解法是什麼」。綠能的成本快速下降,例如在 2024 年,也就是距今兩年後,不管在地球的哪個地方,風力跟太陽能都會比傳統能源更便宜(這我存疑,要看一下怎麼算的)。儲能的市場正在指數級成長,鋰電池越來越便宜,2023-2024 年之間,主流的電動車售價將跟高效率的油車一樣便宜。然而石油與天然氣產業,儘管口口聲聲說增加了三倍的投資金額於再生能源跟碳捕捉,實際上只是從總投資中僅佔 1% 增加到 4.1%,96% 還是投資在化石能源上,塑膠等一次性用品是獲益的主要來源。

接下來三分之一,高爾開始進入重點,就是以「修正式全頻譜的資本主義」,取代現行問題叢生的資本主義。最重要的應該是這張圖:

圖/YouTube

他樂觀地指出,只要我們能達到淨零,氣候危機將可以被扭轉。氣溫將在 3-5 年內停止上升,而在 25-30 年內,半數人類製造的二氧化碳將離開大氣層(但前面的高斯坦有說到,得積極主動把碳抓回來,不能等那麼久)。最後他回顧歷史上各種人類進步的重要歷史節點來激勵觀眾,包括廢奴、婦女參政權、民權運動、反種族隔離運動、同性戀平權運動等。許多事情都曾經看起來不可能,直到被達成。「有人認為我們缺乏政治決心,但別忘了政治決心是可再生資源。」,真是很有力且扣合主題的結尾。

如果你有時間,當然很建議你把 2.5 小時的整個活動看完,唱歌吟詩說笑話的的部分我覺得也不錯啦。如果你跟我一樣,最近看了太多戰爭的消息,心情實在低落到不行,想知道自己還能多做些什麼來改變過度依賴化石能源的世界格局,透過這場 TED Coundown,除了深入瞭解淨零排碳的挑戰跟解法,應該也能替你的心靈充電。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 6
鄭國威 Portnoy_96
247 篇文章 ・ 1298 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

3
4

文字

分享

1
3
4
改良天然氣發電技術不會產生二氧化碳?灰氫、藍氫、綠氫分別是什麼?
PanSci_96
・2024/02/11 ・5659字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

用天然氣發電可以完全沒有二氧化碳排放?這怎麼可能?

2023 年 11 月,台電和中研院共同發表去碳燃氫技術,說是經過處理的天然氣,燃燒後可以不產生二氧化碳。

誒,減碳方式百百種,就是這個聽起來最怪。但仔細研究後,好像還真有這麼一回事。這種能發電,又不產二氧化碳的巫術到底是什麼?大量使用天然氣後,又有哪些隱憂是我們可能沒注意到的?

去碳燃氫是什麼?

去碳燃氫,指的是改良現有的天然氣發電方式,將甲烷天然氣的碳去除,只留下乾淨的氫氣作為燃燒燃料。在介紹去碳燃氫之前,我們想先針對我們的主角天然氣問一個問題。

-----廣告,請繼續往下閱讀-----

最近不論台灣、美國或是許多國家,都提升了天然氣發電的比例,但天然氣發電真的有比較好嗎?

好像還真的有。

根據聯合國底下的政府間氣候變化專門委員會 IPCC 的計算報告,若使用火力發電主要使用的煙煤與亞煙煤作為燃料,並以燃燒率百分之百來計算,燃料每釋放一兆焦耳的能量,就會分別產生 94600 公斤和 96100 公斤的二氧化碳排放。

如果將燃料換成天然氣,則大約會產生 56100 公斤的二氧化碳,大約只有燃燒煤炭的六成。這是因為天然氣在化學反應中,不只有碳元素會提供能量,氫元素也會氧化成水並放出能量。

圖/pexels

除了碳排較低以外,煤炭這類固體燃料往往含有更多雜質,燃燒時又容易產生更多的懸浮顆粒例如 PM 2.5 ,或是溫室效應的另一主力氧化亞氮(N2O)。具體來說,產生同等能量下,燃燒煤炭產生的氧化亞氮是天然氣的 150 倍。

當然,也別高興這麼早,天然氣本身也是個比二氧化碳更可怕的溫室氣體,一但洩漏問題也不小。關於這點,我們放到本集最後面再來討論。

-----廣告,請繼續往下閱讀-----

燃燒天然氣還是會產生二氧化碳?

雖然比較少,但也有燃煤的六成。像是綠能一樣的零碳排發電方式,不才是我們的終極目標嗎?別擔心,為了讓產生的二氧化碳量減到最小,我們可以來改造一下甲烷。

圖/unsplash

在攝氏 700 至 1100 度的高溫下,甲烷就會和水蒸氣反應,變成一氧化碳和氫氣,稱為蒸汽甲烷重組技術。目前全球的氫氣有 9 成以上,都是用此方式製造的,也就是所謂的「灰氫」。

而產物中的一氧化碳,還可以在銅或鐵的催化下,與水蒸氣進一步進行水煤氣反應,變成二氧化碳與氫氣。最後的產物很純,只有氫氣與二氧化碳,因此此時單獨將二氧化碳分離、封存的效率也會提升不少,也就是我們在介紹碳捕捉時介紹的「燃燒前捕捉」技術。

去碳燃氫又是什麼?

圖/pexels

即便我們能將甲烷蒸氣重組,但只要原料中含有碳,那最終還是會產生二氧化碳。那麼,我們把碳去掉不就好了?去碳燃氫,就是要在第一步把甲烷分解為碳和氫氣。這樣氫氣在發電時只會產生水蒸氣,而留下來的碳黑,也就是固態的碳,可以做為其他工業原料使用,提升附加價值。

-----廣告,請繼續往下閱讀-----

在氫氣產業鏈中,我們習慣將氫氣的來源做顏色分類。例如前面提到蒸氣重組後得到的氫氣被稱為灰氫,而搭配碳捕捉技術的氫,則稱為藍氫。完全使用綠能得到的氫,例如搭配太陽能或風力發電,將水電解後得到最潔淨的氫,則稱為綠氫。而介於這兩者之間,利用去碳燃氫技術分解不是水而是甲烷所得到的氫,則稱為藍綠氫。

但先不管它叫什麼氫,重點是如果真的不會產生二氧化碳,那我們就確實多了一種潔淨能源可以選擇。這個將甲烷一分為二的技術,聽起來應該也不會太難吧?畢竟連五◯悟都可以一分為二了,甲烷應該也行吧。

甲烷如何去碳?

甲烷要怎麼變成乾淨的氫氣呢?

很簡單,加溫就好了。

圖/giphy

只要加溫到高過攝氏 700 度,甲烷就會開始「熱裂解」,鍵結開始被打斷,變成碳與氫氣。

-----廣告,請繼續往下閱讀-----

等等等等…為了發電還要耗費能源搞高溫熱裂解,划算嗎?

甲烷裂解確實是一個吸熱反應,也就是需要耗費能量來拆散原本的鍵結。根據反應式,一莫耳甲烷要吸收 74 千焦耳的熱量,才會裂解為一莫耳的碳和兩莫耳的氫氣。但是兩莫耳的氫氣燃燒後,會產生 482 千焦耳的熱量。淨能量產出是 408 焦耳。與此相對,直接燃燒甲烷產生的熱量是 891 千焦耳。

而根據現實環境與設備的情況,中研院與台電推估一公噸的天然氣直接燃燒發電,與先去碳再燃氫的方式相比,發電量分別為 7700 度和 4272 度。雖然因為不燃燒碳,發電量下降了,但也省下了燃燒後捕存的成本。

要怎麼幫甲烷去碳呢?

在近二十幾年內,科學家嘗試使用各種材料作為催化劑,來提升反應效率。最常見的方式,是將特定比例的合金,例如鎳鉍合金,加熱為熔融態。並讓甲烷通過液態的合金,與這些高溫的催化劑產生反應。實驗證實,鎳鉍合金可以在攝氏 1065 度的高溫下,轉化 95% 的甲烷。

-----廣告,請繼續往下閱讀-----

中研院在 2021 年 3 月,啟動了「 Alpha 去碳計畫」,進行去碳燃氫的設備開發。但團隊發現,盡管在理論上行得通,但實際上裝置就像是個不受控的火山一樣,熔融金屬與蒸氣挾帶著碳粒形成黏稠流體,不斷從表面冒出,需要不斷暫停實驗來將岩漿撈出去。因此,即便理論上可行,但熔融合金的催化方式,還無法提供給發電機組使用。

去碳燃氫還能有突破嗎?

有趣的是,找了好一大圈,驀然回首,那人卻在燈火闌珊處。

最後大家把目光放到了就在你旁邊,你卻不知道它正在等你的那個催化劑,碳。其實過去就有研究表明碳是一種可行的催化劑。但直到 201 3年,才有韓國團隊,嘗試把碳真的拿來做為去碳燃氫的反應催化劑。

圖/pexels

他們在高溫管柱中,裝填了直徑 30 nm 的碳粒。結果發現,在 1,443 K 的高溫下,能達到幾乎 100 % 的甲烷轉化。而且碳本身就是反應的產物之一,因此整個裝置除了碳鋼容器以外,只有碳與氫參與反應,不僅成本低廉,要回收碳黑也變得容易許多。

-----廣告,請繼續往下閱讀-----

目前這個裝置需要加緊改良的,就是當碳不斷的積蓄,碳粒顆粒變大,反應會跟著下降。如何有效清除或更換濾網與反應材料,會是能否將此設備放大至工業化規模的關鍵。

最後,我們回頭來談談,在去碳燃氫技術逐漸成熟之後,我們可能需要面對的根本問題。

天然氣是救世主,還是雙面刃?

去碳燃氫後的第一階段,還是會以天然氣為主,只混和 10 % 以下的氫氣作為發電燃料。

這是因為甲烷的燃燒速度是每秒 0.38 公尺,氫氣則為每秒 2.9 公尺,有著更劇烈的燃燒反應。因此,目前仍未有高比例氫氣的發電機組,氫氣的最高比例,通常就是 30 % 。

目前除了已成功串連,使用 10 % 氫氣的小型發電機組以外。台電預計明年完成在興達電廠,使用 5 % 氫氣的示範計畫,並逐步提升混和氫氣的比例。根據估計,光是 5 % 的氫氣,就能減少每年 7000 噸的二氧化碳排放。

-----廣告,請繼續往下閱讀-----

但隨著天然氣的使用量逐步提高,我們也應該同時留意另一個問題。

天然氣洩漏導致的溫室效應,是不可忽視的!

根據 IPCC 2021 年的報告,若以 20 年為評估,甲烷產生的溫室效應效果是二氧化碳的 82.5 倍,以 100 年為評估,效果為 29.8 倍,是僅次於二氧化碳,對於溫室效應的貢獻者第二名。這,不可不慎啊。

圖/unsplash

從石油、天然氣井的大量甲烷洩漏,加上運輸時的洩漏,如果沒有嚴格控管,我們所做的努力,很有可能就白費了。

非營利組織「環境保衛基金」曾在 2018 年發表一篇研究,發現從 2012 到 2018 年,全球的甲烷排放量增加了 60 % ,從煤炭轉天然氣帶來的好處,可能因為甲烷洩漏而下修。當然,我們必須相信,當這處漏洞被補上,它還是能作為一個可期待的發電方式。

圖/giphy

另一篇發表在《 Nature Climate Change 》的分析研究就說明,以長期來看,由煤炭轉為天然氣,確實能有效減緩溫室氣體排放。但研究也特別提醒,天然氣應作為綠能發展健全前的過渡能源,千萬別因此放慢對於其他潔淨能源的研究腳步。

去碳燃氫技術看起來如此複雜,為什麼不直接發展綠氫就好了?

確實,綠氫很香。但是,綠氫的來源是電解水,而反應裝置也不可能直接使用雜質混雜的海水,因此若要大規模發展氫能,通常需要搭配水庫或海水淡化等供水設施。另外,綠氫本來就是屬於一種儲能的形式,在台灣自己的綠能還沒有多到有剩之前,當然直接送入電網,還輪不到拿來產綠氫。

圖/unsplash

相比於綠氫,去碳燃氫針對的是降低傳統火力發電的碳排,並且只需要在現有的發電廠旁架設熱裂解設備,就可以完成改造。可以想像成是在綠能、新世代核能發展成熟前的應急策略。

當然,除了今天提到的灰氫、藍氫、綠氫。我們還有用核能產生的粉紅氫、從地底開採出來的白氫等等,都還沒介紹呢!

除了可以回去複習我們這一集的氫能大盤點之外,也可以觀看這個介紹白氫的影片,一個連比爾蓋茲都在今年宣布加碼投資的新能源。它,會是下一個能源救世主嗎?

最後,也想問問大家,你認為未來 10 年內,哪種氫能會是最有潛力的發展方向呢?

  1. 當然是綠:要押當然還是壓最乾淨的綠氫啦,自產之前先進口也行啊。
  2. 肯定投藍:搭配碳捕捉的藍氫應該會是最快成熟的氫能吧。
  3. 絕對選白:連比爾蓋茲也投資的白氫感覺很不一樣。快介紹啊!

什麼?你覺得這幾個選項的顏色好像很熟悉?別太敏感了,下好離手啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

5
2

文字

分享

0
5
2
馬斯克不屑一顧;比爾蓋茲卻視若珍寶!氫能源會成為永續發展的救世主嗎?
PanSci_96
・2024/02/04 ・5542字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

馬斯克的「氫能愚蠢說」被打臉了嗎?

馬斯克曾多次斷言發展氫能是個愚蠢的決定,更說氫氣不會自然出現在地球上。

然而今年 7 月,美國新創公司 Koloma 從比爾蓋茲與其他投資者手中,獲得了總計 9100 萬美元的融資,準備開採地下氫氣。今年 9 月,地質學家更是直接在法國的地底下發現大量氫氣,總量估計有 4,600 萬噸。
而且比起需要搭配綠能或是熱裂解設備才能製造的綠氫與灰氫,這些氫氣價格將會十分低廉,難道,氫氣的時代要到來了嗎?為了環保,我們得挖呀挖呀挖?

地球上真的還有氫氣嗎?

這張照片就能證明地底中含有氫氣?

這拍攝於澳洲的珀斯盆地,大大小小的圓圈被稱為仙女圈,在仙女圈內沒有植物生長,甚至向內凹陷形成鹽湖。當科學家調查這些仙女圈,他們意外發現土壤中竟然含有氫氣。氫氣與仙女圈之間的確切關係還未知,有人推測可能氫氣抑制了植物或是微生物菌落的生長,使得該區光禿甚至土壤流失。

我們知道氫氣是世界上最輕的氣體,一旦進入大氣,就會向上飄散,直至被拋至太空,離開大氣層。然而地球的大氣層中還是有少量的氫氣被束縛住,大氣濃度約為 0.55 ppm ,是臭氧的 13 倍。

-----廣告,請繼續往下閱讀-----
圖/pexels

但只要沒有進入大氣,還是被封在地底的氫氣因為不容易溢散,至今存量還很豐富。不只在澳洲,世界各地都觀察到了氫氣從地底向地表洩漏的情形。

第一炬奧運聖火至今還在燃燒?

位於土耳其奧林匹斯山山谷,就在希臘火神赫菲斯托斯的神廟廢墟上方,大大小小的火焰從土石間冒出,就好像赫菲斯托斯至今都還存在在該處一樣。該地的冒火處有十幾個,總燃燒面積高達 5000 平方公尺。

根據地質學家推估,這片火焰已經燃燒了 2500 年,根據史料比對,很有可能就是最早奧林匹克聖火的發源地。

圖/wikipedia

地質學家調查了這股火焰的形成原因,發現從岩石中噴出的氣體,除了含有 87 % 的甲烷以外,還含有百分之 7.5 到 11 是氫氣。這股持續 2500 年間不斷冒出的氣體,根據地質學家推估,與石油、天然氣成因不同,並不是因為遺骸或微生物等生物原因才產生的。而是大地之母地球源源不斷提供給我們的,這又是怎麼一回事?

-----廣告,請繼續往下閱讀-----

氫氣知多少:哪來這麼多地底氫氣?

地底的氫氣怎麼來?

這與岩石的變質作用息息相關,我們知道火成岩、沉積岩會在高溫高壓下產生變質作用,轉為性質截然不同的變質岩。而富含鎂與鐵的矽酸鹽類礦物,例如橄欖石、輝石,當他們在高溫環境下與水作用,會轉為蛇紋石、水鎂石、磁鐵礦等礦物,這個過程稱為蛇紋石化作用。

圖/wikipedia

這種作用是一種化學反應,會將大量的水吸入岩石,讓岩石的密度下降。在反應結束後,除了礦物特性產生變化以外,還會生成副產物,也就是氫氣。如果地層中又剛好有二氧化碳存在,就會在高溫的環境下進一步甲烷化,將氫氣與二氧化碳轉成甲烷。

目前科學家認為,大部分地層中非生物性原因產生的的氫氣與甲烷,多是由這樣的過程產生的。奧林匹斯山的聖火,推測也是這樣產生的。

而對於地質學家來說,也代表尋找天然氫氣這一目標,也可以從盲目搜尋,轉為限縮在尋找有經歷過蛇紋石化作用的地層上。

-----廣告,請繼續往下閱讀-----
圖/usgs

但除了蛇紋石化作用以外,大自然還有兩種生產氫氣的主要方式:深層蘊藏與水的輻解。

地球內的氫氣

在地底深處,推測蘊藏著大量氫氣。它們深達地底,甚至可能存在於地函與地核之中。

我們現在的技術當然無法直接來個地心探險開採這些氣體,但科學家陸續從美國、俄羅斯、東歐等地的岩石鑽探結果可以觀察到,在越深的地方氫氣濃度越高。因此地質學家推測這些氫氣可能來自更深的地方,並正從橄欖岩緩緩地擴散,進入靠近地表的岩層之中。

然而,因為我們還無法進入地底,因此即便我們知道它們存在,但對於這些氫的形成原因目前還未有結論。有些科學家放眼整個太陽系的形成過程,推測在原始地球形成時,整顆行星包含地核之中就有氫的存在。而也有人認為,地核中的鐵元素與水反應,形成氧化鐵與一氫化鐵兩種物質型態,將氫存在地核之中。

-----廣告,請繼續往下閱讀-----

這個問題的解答,就等待地球科學家為我們帶來解答吧。而且了解這些元素存在於地核、地函的形式,也可以解開許多未知謎團,例如地核的詳細組成分、地函存在異常低電阻區的原因、改善地函動力學模型,以及找出哥吉拉到底在哪裡等等。

圖/giphy

輻射也能產生氫氣?

地殼中的釷、鈾等放射性元素,在漫長的衰變過程中,會緩慢地將地層中的水分子鍵結破壞,形成氧氣與氫氣。例如一顆 1 MeV 的 α 粒子,平均足以讓 10 個水分子解離。而當岩石擁有更高的孔隙率, α 粒子會更有機會與水分子產生作用,會有更高的氫氣產量。

但其實,考慮到衰變的速度以及放射性元素存在於地底的超低含量,這個方式的效率並不高,而且實際上 α 粒子用來解離水分子的能量只消耗了 1 % ,剩餘的能量都還是被附近的岩層吸收,以熱的形式消耗掉。

除了產量不高以外,理論來說在輻射發生的地方,應該要能看到氫氣與氧氣同時存在,但目前實地調查的結果,都只有發現氫氣。氧氣是否進一步參與了其他反應,或是已經逸散,或甚至這個理論需要再做調整,還需要更多的研究。

-----廣告,請繼續往下閱讀-----

好的,我們知道氫氣是怎麼產生的,那麼重點是,我們到底有多少氫氣能用呢?

地底有多少氫氣?

世界各地都有發現自然氫氣的存在。對了,雖然這張地圖看起來氫氣的發現地點都集中在北亞與東歐,但這只是因為目前的探勘都聚集在這邊,並不代表真實的氫氣分布。

這些來自地底的氫氣,我們稱為地質氫,如果用顏色來分類,則稱為白氫或是金氫。如果氫氣的開採規模能像天然氣一樣龐大,白氫的價格,預計會落在每公斤 1 美元。

相比之下其他的氫氣生產方式,例如我們上次提到,由蒸汽重組產生的灰氫,售價約為 0.9~3.2 美元。由綠能生成的綠氫則是 3~7.5 美元。因此,如果白氫正式被大量使用,將大幅降低現在的氫氣價格,甚至帶動氫氣運輸、儲存、發電機組等產業鏈的發展,連帶降低其他顏色氫氣的隱含成本。

-----廣告,請繼續往下閱讀-----

比爾蓋茲與氫能產業

與馬斯克看衰氫能不同,比爾蓋茲不僅投資白氫的開發,也投資了不少氫能產業。

例如他就投資了西班牙公司 H2SITE ,一間致力於氫能運輸與氫氣製造的公司。因為現在運輸氫氣的成本是製造氫氣的三倍,如果能降低運輸成本,將有助於整個氫氣產業的發展。在開採方面,各國也都開始投入地質氫的調查與開採技術研發。

美國地質調查局初步估計,全球地底下可能藏有百億噸的氫氣等著被開發,能滿足全人類數千年的能源需求。當然,這個數字並沒有考慮到開發的困難度,只是單純地以全球存量作分析。

但也有人正打算轉個念頭,何不將熱水注入富含鐵的岩層中,促使更多的氫氣產生?類似於地熱發電會使用的增強型地熱系統,只是我們獲得的不是直接的熱能,而是氫氣。

-----廣告,請繼續往下閱讀-----

什麼?氫氣也是溫室氣體?

話說回來,氫氣真的會成為救世主嗎?先等等,事情可能沒那麼簡單。

氫氣作為最輕的氣體,存在於大氣的壽命大約只有兩年。但氫氣在存在的這段時間中,會與大氣中的羥自由基和其他氣體作用,產生一系列的反應。造成的結果包含增加甲烷停留在大氣的時間、臭氧的增加、與平流層中水氣的增加。

圖/wikipedia

因此,氫氣屬於一種「間接」溫室氣體,氫氣的一百年全球暖化潛勢 GWP 100 ,被評估為 11.6 ,也就是以 100 為區間進行評估,氫氣的溫室效應是二氧化碳的 11.6 倍。

此外,我們對氫氣的研究還太少,所以才到現在才發現它就在我們的身邊。而就跟我們上次提到的一樣,大量使用天然氣,就意味會有許多天然氣洩漏。而伴隨著氫氣被大量開採,一定會有更多的氫氣被釋放到大氣之中。這對我們的大氣是否會產生負面效應,甚至於弊大於利,都還需要更多研究。

最後想問問大家,馬斯克與比爾蓋茲,對氫能的看法十分兩極。你呢?你認為氫能會改變未來的能源形式嗎?

  1. 會,不論是什麼顏色的氫,大家都很認真的在進行研究,一定很快就有好結果。
  2. 不會,氫能運輸、儲存成本怎麼看都還太高
  3. 不論有沒有氫能,人類懂不懂得節制,才是關鍵中的關鍵

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----