0

0
2

文字

分享

0
0
2

除了葉黃素,想保養眼睛還能吃什麼?常見護眼營養成分盤點

Aaron H._96
・2019/03/22 ・2045字 ・閱讀時間約 4 分鐘 ・SR值 554 ・八年級

-----廣告,請繼續往下閱讀-----

這,可能是你今天一整天的生活:

剛睡醒,燈都還沒開,賴在床上先刷一輪臉書;去公司的路上,拿著小小的螢幕,搖搖晃晃地追著劇;上班時間,長時間近距離地看著大大小小,不只一個的螢幕;下班後又繼續看電影或是回家看電視。一整天下來,你的眼睛從來沒有休息過,不斷地接受著各種閃動的畫面和強光照射。

圖/pixabay

這也難怪有很多人從小到大,桌上放滿了各種強調保養眼睛的保養品。但要怎麼吃才有真的對眼睛有用呢?以下簡介幾種相當常見的護眼成分。

蝦紅素 (Astaxanthin)

蝦紅素又稱為蝦青素變胞藻黃素,是類胡蘿蔔素這個大家族的一種。蝦紅素正是在許多藻類、龍蝦、鮭魚等海鮮中,形成紅色或粉紅色的色素。蝦紅素是目前最受注目的抗氧化劑,同時具有親水端與親油端,所以比起維生素C、維生素E、花青素等抗氧化劑,能同時作用在細胞膜內外,消除更多自由基的傷害。

也因為高度抗氧化的能力,科學家對於蝦紅素在減緩眼睛、心血管和皮膚的老化上都寄予厚望。目前認為,蝦紅素的確可以有效減緩眼睛疲勞,改善睫狀肌調節的能力。每天服用 4-6 mg 蝦紅素,持續 2 到 4 周,就能明顯改善眼睛的疲勞感、保護黃斑部、增進眼睛聚焦的能力。

目前蝦紅素含量最高的雨生紅球藻,每 100 克大約含有 6000 毫克的蝦紅素,已經有大量研究測試商業化生產的可能性。

-----廣告,請繼續往下閱讀-----

花青素 (Anthocyanins)

花青素和它的前驅物「原花青素」 (Proanthocyanins) ,也是近年來非常熱門的抗氧化物。花青素是一種水溶性、普遍存在於植物中的色素,像是葡萄、藍莓、蔓越莓、洛神花中都含有大量花青素。

由於目前主流科學認為自由基與老化有關,與蝦紅素類似,花青素在化學性質上,也是很強的抗氧化劑;對於抗發炎、保護眼球組織、保護眼睛微血管,改善區域血液循環都有所幫助。

花青素在人體內也用於合成視紫質。視紫質 (Rhodopsin) 的功用是用於提升眼睛對光的敏感度用,讓人適應較為黑暗的區域。如果視紫質不足,就容易有夜盲或弱視的現象。因此補充花青素,可以提高眼睛在暗處的辨識力。

β胡蘿蔔素與維生素A

β胡蘿蔔素在體內能夠轉變成維生素A,在許多水果、黃綠色蔬菜、肉蛋肝臟類食物中都有豐富含量。兩者都是脂溶性的營養素,一樣需要藉由脂肪輔助吸收,經過腸道吸收後,儲存在肝臟中,必要時再送到特定的位置,進行下一步的合成。

-----廣告,請繼續往下閱讀-----

如果長期缺乏維生素A,可能會導致視力障礙、淚液分泌不足,角膜和結膜軟化等症狀。

也由於維生素A是脂溶性維生素,過度攝取,則容易堆積在體內,造成維他命A中毒,導致視力模糊、噁心頭痛等。孕婦如果在懷孕前期,補充過多維生素A也會導致胎兒的發育構造出現畸形,會增加小朋友發生唇顎裂的機率。

圖/Couleur@Pixabay

葉黃素 (Lutein)

目前研究認為,葉黃素除了能夠抗氧化之外,還能降低視網膜黃斑病變的機率,降低藍光對視網膜的傷害。市售葉黃素因為製作過程的不同,分為游離型 (free lutein) 與葉黃素酯 (lutein ester) 兩種型態。游離型葉黃素吸收過程中減損的比率較低,葉黃素酯因分子較大,消化的過程減損較多。食物中多數都是游離型葉黃素,目前從花中提煉的多數是葉黃素酯

2006年美國眼科協會曾針對4000名以上,50-85歲的參與者進行名為 AREDS 2 的實驗計畫,提出有效攝取葉黃素的配方為:

-----廣告,請繼續往下閱讀-----
  • 游離態葉黃素 10 mg+玉米黃素 2 mg+銅 2 mg+Omega-3 1000 mg + 維他命C 500 mg+維他命E 400 IU+鋅 25 mg。

雖然有研究認為,AREDS 2 結果並沒有顯著意義,但後來卻有許多商業產品,直接引用此配方。這群實驗對象和實驗結果,是否能有效代表較年輕的族群和保護眼睛的目的,目前還有許多不同意見。

營養補充品,不是越吃越多越有效

圖/pixabay

比起過去以防止疾病發生為出發點的「每日飲食建議量」 (RDA, Recommended Dietary Allowance) ,現在的營養學界和醫學界,都更重視「每日營養最理想攝取量」 (ODA, Optimum Daily Allowance) 的概念,除了預防疾病之外,也希望能進一步維持健康、降低氧化壓力等。

以上介紹的幾種營養素,多為脂溶性,因此也有許多廠商添加在富含 DHA 的魚油中,促進吸收。

實務上,要針對每個人去設定合理攝取的營養素含量,非常困難。市面上的營養品也會因為原料、劑型、製作方式與共同添加物等因素,有不同的效果。

-----廣告,請繼續往下閱讀-----

除非是極為特殊的飲食方式,一般而言,在做好防曬和避免陽光直射(戴太陽眼鏡)的前提下,適度增加戶外活動、減少近距離長時間聚焦小螢幕以及均衡飲食,是比選擇攝取營養添加物,維持好視力更加重要的習慣。

參考文獻:

  1. Davinelli, S., Nielsen, M., & Scapagnini, G. (2018). Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients, 10(4), 522.
  2. Toden, S., Ravindranathan, P., Gu, J., Cardenas, J., Yuchang, M., & Goel, A. (2018). Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer. Scientific reports8(1), 3335.
  3. 衛生福利部國民健康署——國人膳食營養素參考攝取量
文章難易度
Aaron H._96
25 篇文章 ・ 21 位粉絲
非典型醫學人,既寫作也翻譯,長期沉迷醫療與科技領域。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

1
1

文字

分享

1
1
1
秋天的顏色「楓紅」其實不單指紅色?——《樹葉物語》
時報出版_96
・2023/10/28 ・2202字 ・閱讀時間約 4 分鐘

當秋風吹起,樹木們便開始褪去辛苦製造養分的夏天之綠,露出隱藏在葉片之間的枝頭。楓紅可說是樹木結束一年勞動後展開的慶典。樹木是靠光照生存的生命體,而在入秋後舉行的色彩慶典則是展示這一點的美麗佐證。

秋風一吹,從春天到夏天一路靠光照生存下來的樹木會先結果,雖然結得緩慢,結出來的果實卻比一年中任何時候都飽滿、結實。此時所有樹木都會長出纍纍果實。果實的顏色會根據秋天的腳步快速變化。從黃到紅,或是從晶瑩的紫色到漆黑的黑色,樹木們用各自的色彩結果。儘管大部分尚未熟透的果實多和樹葉一樣呈綠色,但之後會徐徐轉變成美麗又成熟的顏色。

楓紅不是只有紅色

比果實更早改變顏色的是葉子,也就是紅葉。提到「紅葉」,大家最先想起的應該是紅色的楓樹吧。當然,「丹」意指紅色*,但楓紅不是只有紅色,看到變黃的銀杏葉,我們也會說它「染成了紅葉」。歸根結柢,我們稱的「紅葉」泛指在秋天變換的所有顏色,英語國家稱紅葉為「Autumn color」(秋天的顏色),也是基於此因。

隨著秋風透進,倉促之間,葉子上浮出了數不勝數、五花八門的顏色。銀杏葉轉黃,槲櫟葉和栓皮櫟葉呈現明顯的紅褐色,掌葉槭的葉子則變得鮮紅。每種樹各有各的秋色。

也有樹木雖屬同種,紅葉顏色卻各不相同,代表性例子當屬櫸樹。櫸樹就算站在一起,紅葉的顏色也不一樣,這是櫸樹與眾不同的特點。也就是說,有染紅葉的櫸樹,也有以亮褐色度過秋天的櫸樹。

-----廣告,請繼續往下閱讀-----
紅葉的顏色會根據每棵樹的成分有所不同。以櫸樹而言,即便同樣是櫸樹,紅葉的顏色也有很多種。

產生離層進入冬眠

對樹木來說,秋天到底是個忙碌的時期,而且忙碌程度不亞於其他季節,因為必須為冬天這受苦受難的季節做好萬全準備。如果秋天活得太過鬆散,就無法抵擋即將面臨的北風寒雪,甚至可能喪命。為了在冬天放長假,樹木必須做很多事前準備。這是世世代代、戰勝了數千年冬天的樹木的過秋策略。

感受到秋天氣息的樹木本能地最先做的第一件事,就是在連接葉子和樹枝的葉柄基部形成新組織「離層」(因為是葉子掉落的地方,因此也稱「脫落區域」)。離層雖然細微,但能養出結實的體格。之所以用離層阻擋生命的通道,讓水不被拉上來,是因為樹木有信心,就算不再靠光合作用製造養分也能繼續結果實。懷著對一年持續下來的勞動和收尾的自信,樹木如同其他動物,準備進入冬眠。

圖/BuNa

最終,葉柄基部形成的離層會完全阻擋水和養分進出的通道。水本來順著樹皮的管道上下流動,樹皮對於樹身外部的氣溫變化最敏感,離層既然擋住了水的流動通道,水就再也無法從根部上來。這個策略是為了減去殘留在管道裡的水分,若水結成了冰,管道就會爆裂,稍有不慎還可能死亡,因此在氣溫降到攝氏零下之前,樹木必須把水清除乾淨。

落葉的防蟲效果

葉子一片又一片枯萎,需要陽光、二氧化碳與水才能進行的光合作用如今無法運作,負責行光合作用的綠色葉綠素失去活力而倒下,輪到楓紅展開色彩慶典了。

-----廣告,請繼續往下閱讀-----

由於每棵樹成分不同,葉子因之呈現黃色、紅色或褐色等五顏六色的色彩。像銀杏或刺槐一樣轉成強烈黃色的樹木含有類胡蘿蔔素的成分;像掌葉槭或衛矛等染成華麗紅色的樹木是因為內含許多花青素;像美國梧桐或櫟屬類一樣染成褐色的樹木成分中則有許多單寧。樹木們一整年下來不停地製造養分,養活這片土地上的生命,如今它們放下勞動的辛勞,準備進入冬眠。樹葉染上的顏色,是生命在苦日子之後製造出來的絢麗生命慶典。

為了進入冬眠,樹木還剩下一些事情需要收尾,那就是將美豔的紅葉落到地上,用乾枯的紅葉覆蓋根部附近的區域。各種顏色的楓紅當中,由花青素製造出來的紅葉們的策略最令人詫異。掉下來覆蓋住根部土壤的紅色落葉不久後就會變成灰褐色,因先前染到葉子上的紅色花青素滲入了樹根附近的土壤。花青素是一種抗氧化劑,具有強烈的抗氧化效果,在阻擋蚜蟲等害蟲侵襲方面也相當卓越。也就是說,樹木會中斷生命活動,像動物一樣進入冬眠,並在進入冬眠的無防備狀態下,將防治害蟲的成分落到根部附近,進行自我保護。

紅色落葉不久後就會變成灰褐色。圖/pexels

樹木一整年默默的生活就這樣結束,終於來到靜靜睡覺的時候了。樹木必須獨自在風雪交加的原野上戰勝寒風,這是它的宿命。雖然看似寧靜,但這一覺不能有一絲鬆懈。

世上所有生命都有各自的風采和美麗,在那份美麗之中,少不了生存的迫切。花、果實和紅葉,都是樹木做為一個生命,在這塊土地上為了生存而展開的吶喊。到了秋天,我們都應該走進染得紅通通的樹蔭下,久久地傾聽樹木演唱的生命之歌。

-----廣告,請繼續往下閱讀-----

——本文摘自《樹葉物語》,2023 年 5 月,時報出版,未經同意請勿轉載。

所有討論 1
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

5
2

文字

分享

0
5
2
聖派翠克節創意食譜:用紫甘藍汁,染出綠煎蛋
胡中行_96
・2023/03/23 ・2340字 ・閱讀時間約 4 分鐘

2023 年聖派翠克節(3月17日)前後 4 天,雪梨的愛爾蘭人於岩石區(the Rocks)聚集歡慶。最後一天(19日)早上,遊行隊伍由州訂古蹟駐防教堂(Garrison Church)出發,走至第一艦隊公園(First Fleet Park),然後在那裏唱歌、跳舞、辦市集。[1, 2]從表演服飾、面部彩繪、冰涼飲料到周邊商品,滿園綠意。筆者不僅去現場湊熱鬧,也想親手製作應景料理,卻在網路上找到用紫甘藍汁,染出綠煎蛋的非傳統食譜。[3, 4]

2023 年雪梨聖派翠克節慶祝活動。圖/胡中行攝(CC BY-SA 4.0)
愛爾蘭電臺 Newstalk 的 JJ 先生說,海外反而較多人穿綠色過節。(背景為 16 至 18 日的戶外電影活動。)圖/胡中行攝(CC BY-NC-ND 4.0)

花青素

乍看之下,或許難以理解。畢竟多數聖派翠克節創意料理的成份,都是青翠的蔬果或食用色素;極少強調用紫色食材,渲染出綠色效果。秉持著實事求是,追根究柢的精神,筆者在下廚之前,先唸了相關的科學資料,並在此分享摘要:

花青素(anthocyanins)是一種水溶性的醣基化(glycosylated)酚類化合物(phenolic compounds),不僅帶給諸多植物繽紛的色彩,也能作為天然的食用色素。其顏色和穩定度,會受酸鹼值、光線、溫度和化學結構等影響。常見含有花青素的植物,以紅、紫和藍色為主,例如:[5]

  • :紅葡萄、紅扶桑、紅玫瑰、紅菽草、粉紅櫻花,以及鳳梨鼠尾草的紅花等。[5]
  • :黑蘿蔔、黑醋栗、紫薯、紫甘藍、紫羅蘭、薰衣草和紫鼠尾草等。[5]
  • :藍莓、矢車菊,還有菊苣與迷迭香藍色的花等。[5]

酸鹼值

下圖是從紫甘藍萃取出來的花青素,在不同酸鹼值的水溶液中,所呈現的顏色:pH 值介於 1 到 3 之間是為紅色;pH值約 4 至 6 時偏紫色;pH值 7 和 8 差不多都是藍色;到了 pH 值 9 以上,就轉為綠色。換句話說,隨著酸鹼值的改變,顏色會由酸性時的紫,逐漸變成中性,再過渡到鹼性[6]

-----廣告,請繼續往下閱讀-----
從紫甘藍萃取的花青素,在不同pH值下的顏色。圖/參考資料6,Figure 1(CC BY 4.0)

在聖派翠克節的煎蛋食譜中,要利用紫甘藍汁把雞蛋染綠,必須考量到後者的酸鹼值。整體而言,雞的全蛋酸鹼值趨近中性。然而,如果分開來看,蛋白的 pH 值會從雞蛋剛被生下來時的 7.6,隨時間逐漸上升,可達9.2左右。至於蛋黃,則是從6.0,一路增加到6.4至6.9之間。[7]因此製作綠蛋的過程中,得把蛋白與蛋黃分開處理,降低後者阻止花青素變綠的機會。在筆者的實測中,紫甘藍汁與全蛋混合的效果,的確不理想,雖然不曉得是否也與蛋黃本身的顏色有關。

溫度與微波

食材保存、運送與烹調的溫度,也會影響最終的成果。文獻指出,儘管控制 pH 值,花青素若被植物本身的多酚氧化酶(又稱「多酚氧化酵素」;polyphenol oxidase)氧化,顏色仍會轉變。[5]不過,加溫能破壞多酚氧化酶的活性,用 50 至 70°C 之間的溫度煮熱,或是透過 70°C 以上的微波及其電場作用,最為有效。[8]之後花青素的顏色,便不再受氧化改變。[5]所以照著食譜微波,應該多少有助控制顏色。倒是事前冷藏雞蛋,其實會減緩 pH 值的變化[7]這方面筆者還沒有實際比較室溫與冷藏的差別。想說從產地至超市,再到買回家,雞蛋歷經千山萬水,時光流逝,蛋白的 pH 值大概夠高了,就隨手從冰箱抓出來煮。

綠蛋食譜

原理講半天,終於來到重點了。為了減少實驗的變因,這個食譜使用的材料非常陽春。沒有涵蓋到的調味和配料,還請讀者自行發揮。不愛吃蛋或覺得慘綠有礙食慾的人,也能嘗試以少量檸檬汁或小蘇打調節 pH 值,來幫麵條或其他食物染上各種顏色。[9, 10]

材料

洗淨且切成小片的紫甘藍葉 1 小碗、分開蛋白和蛋黃的雞蛋 2 顆,以及任何適於煎蛋的油。

-----廣告,請繼續往下閱讀-----

作法

  1. 將紫甘藍葉微波 1 至 2 分鐘,或是加熱到生出 10 毫升左右的菜汁即可。少量的染色效果就頗強,而且不會害得煎蛋有菜味。
  2. 吃掉菜葉有益健康,留下菜汁放涼備用。等降溫再做下個步驟,不然蛋還沒煮就半熟了。
  3. 均勻混合蛋白和菜汁。打出氣泡的話,會增添稍後成品的詭異感。
  4. 開中火熱油。鍋內的溫度,能使一滴汁液冒泡時,倒入剛才混合的所有汁液。
  5. 趁汁液半熟,趕快把蛋黃放在上面,讓它們在加熱的過程中黏起來。
  6. 轉小火,蓋鍋蓋,持續加熱。依個人喜好決定熟度,然後就起鍋擺盤囉!
紫甘藍汁和蛋白尚未均勻混合的情形。圖/胡中行攝(CC BY-SA 4.0)
筆者初次試做的紫甘藍汁綠煎蛋。圖/胡中行攝(CC BY-SA 4.0)

  

參考資料

  1. Sydney St. Patrick’s Day Parade & Festival’. Sydney St Patrick’s Day Organisation. (Accessed on 19 MAR 2023)
  2. Garrison Anglican Church Precinct’. Heritage NSW. (Accessed on 19 MAR 2023)
  3. Helmenstine AM. (03 JUL 2019) ‘Fried Green Egg Food Science Project’. ThoughtCo.
  4. Mikeasaurus. ‘Real Green Eggs (and Ham)’. Autodesk Instructables. (Accessed on 19 MAR 2023)
  5. Khoo HE, Azlan A, Tang ST, et al. (2017) ‘Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits’. Food & Nutrition Research, 61(1):1361779.
  6. V TV, Dang TH, Chen BH. (2019) ‘Synthesis of Intelligent pH Indicative Films from Chitosan/Poly(vinyl alcohol)/Anthocyanin Extracted from Red Cabbage’. Polymers, 11(7):1088.
  7. American Egg Board. ‘pH Stability’. The Incredible Egg. (Accessed on 19 MAR 2023)
  8. Bulhões Bezerra Cavalcante TA, Santos Funcia ED, Wilhelms Gut JA. (2021) ‘Inactivation of polyphenol oxidase by microwave and conventional heating: Investigation of thermal and non-thermal effects of focused microwaves’. Food Chemistry, 340: 127911.
  9. Helmenstine AM. (24 JAN 2020) “How to Make a Red Cabbage pH Indicator.” ThoughtCo.
  10. Tollette J. (14 JUN 2019) ‘How to make naturally-dyed rainbow pasta’. Thanksgiving & Co.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。