0

0
1

文字

分享

0
0
1

2018《Science》年度十大科學突破

活躍星系核_96
・2018/12/29 ・5818字 ・閱讀時間約 12 分鐘 ・SR值 537 ・八年級

  • 本文由旻諭、馨香共同寫作

每年《Science》的編輯和記者們都會選出「年度十大科學突破」,再讓大夥們一起投票選出當年度最最最重大的科學研究。當然,今年也不例外!廢話不多說,就讓我們直接從最受歡迎的票選冠軍談起吧!

圖/截圖自Video: 2018’s Breakthrough of the Year and runners-up

關鍵技術「三部曲」:追蹤受精卵裡的每、一、個細胞

你是否曾經疑惑過:人體的器官明明都是從同一顆受精卵不斷分裂而來,為甚麼卻可以長出心臟、肺臟、頭腦、手腳等等不同的器官跟組織?

其實這個問題也困擾生物學家很久了,從古希臘時代的醫生希波克拉底開始,生物學家一直很想了解:人類如何從單一細胞,發育成一個具有不同器官和數十億細胞的個體?

現在,出現了新的技術,讓我們很可能即將解開這個秘密!只要透過結合三個關鍵技術(合稱為 Single-cell RNA-seq),就能以「單一細胞」的超細微尺度,來追蹤每個細胞如何分化。這個技術組合可以大大促進基礎研究和藥物研究的發展,因此榮登 2018 年度最重大的科學突破!

-----廣告,請繼續往下閱讀-----

如何進行呢?

  1. 從活體中分離出上千個完整細胞
  2. 為每一個細胞進行基因定序,得到每個細胞的基因表達情形
  3. 以電腦模擬或標籤 (labeling) 細胞的方式,重建細胞之間的時間與空間關係
透過結合三個關鍵技術(合稱為 Single-cell RNA-seq),就能以「單一細胞」的超細微尺度,來追蹤每個細胞如何分化。圖/NIH Image Gallery @flickr

從上千個細胞的基因定序結果,研究人員可以一窺個別細胞在特定時間點有製造哪些 RNA ,對應到細胞的最終分化型態,藉以了解對某種細胞而言,哪些基因表現是重要的。如此一來,我們可以便能了解器官與組織的發育過程,也能研究畸形或是特定疾病的發生,究竟是在發育過程的哪一步出了差錯。

來自遙遠星系的好消息:成功定位微中子

電磁波、重力波等訊號,就像是由遠~方捎來消息的信使,讓科學家得以理解億萬光年外的宇宙發生了什麼事。在今年,科學家首度成功定位出高能微中子的來源,讓微中子也加入了信使的行列。

位於南極冰川底下深約 1.5-2.5 公里處的「冰立方」(IceCube),是由 5160 個光感測器組成的微中子觀測站,總體積大約有一立方公里。2017 年 9 月,冰立方偵測到一顆撞擊冰分子的高能微中子,透過分析反推出微中子的入射方向,並即時向全球天文台發出通告。數天後,NASA 的費米伽瑪射線太空望遠鏡團隊指出,他們日前觀測到一顆正處於活耀期的耀變體 (blazar),其方位和冰立方指出的高能微中子來源是相符的。

今年 7 月,數千位研究者共同發表了正式報告,確定此高能微中子就是來自這一顆距離地球 57 億光年遠、正在發出強光的耀變體。耀變體會製造伽瑪射線和微中子,也很有可能噴射如質子、氦原子核等其他高能粒子,這表示,每天轟炸地球的宇宙射線有可能就是來自那裡。

南極的「冰立方(IceCube)」微中子天文台。圖/截圖自 youtube

以電子束掃描,快速鑑定分子結構

以前,想要確認有機化合物分子結構,可能要花上個好幾天、好幾週,甚至好幾個月。不過,就在今年 10 月,剛好有兩個研究團隊同時發表論文,這個新的掃描方法只要花短短幾分鐘就能確定小型有機化合物分子結構!

-----廣告,請繼續往下閱讀-----

過去幾十年來,科學家們都是用「X 射線晶體學」的方法來確認分子的結構:將一個個分子排排站形成一個 3D 晶體結構之後,以各種角度發射 X 射線,再從 X 射線繞射的結果來推估電子密度分布,最後依這個電子密度分布解讀判定分子結構。

過去我們都是用「X 射線晶體學」的方法來定義分子的結構。圖/By Thomas Splettstoesser @wikimedia commons

但要讓目標的物質(通常是蛋白質)形成足夠大的晶體並不是那麼容易的事,因此往往成為確認晶體結構最大的門檻。新方法以「電子束」取代 前述方法中的「X 射線」,對著 3D 結構的晶體發射電子束,追蹤每一個微小角度變化的電子束繞射結果,就能在幾分鐘內推敲出分子結構。而更重要的則是,這個新方法所需的晶體大小僅需舊方法的十億分之一!

  • 編按:原版誤植所須晶體大小比例,2017/12/31修正。

能夠確認分子結構,可以幫助科學家更了解該分子的特性,這對新藥合成、分子探針設計和疾病追蹤等都有很深遠的影響。

發現格陵蘭冰川下的巨大火山坑

今年十一月,科學家透過飛機雷達發現,在一萬三千年前,有顆小行星砸在格陵蘭島西北部的海華沙冰川 (Hiawatha Glacier) ,不僅立刻蒸發了岩石,還在北極上空發出衝擊波,產生一個寬 31 公里的隕石坑(幾乎跟臺北市一樣大)。

-----廣告,請繼續往下閱讀-----

海華沙隕石坑 (Hiawatha crater) 長年深埋在一公里厚的冰川之下,是地球上最大的 25 個隕石坑之一。雖然這次隕石撞擊地球的影響程度,沒有 6600 萬年前造成恐龍滅絕那次來得可怕,但海華沙隕石坑的形成可能對全球氣候產生巨大影響:當小行星撞擊海華沙冰川,其產生的衝擊導致融水湧入北大西洋,可能阻礙了通往歐洲西北部的暖流,使得溫度驟降。這項發現或許可以解釋具爭議性的新仙女木事件 (Younger Dryas)。

#MeToo STEM 運動發燒!拒絕科學界性騷擾

「我們必須改變這個繼續允許性騷擾的文化和環境。」──美國國家醫學院主席 Victor Dzau @華盛頓「預防性騷擾工作坊」(2018.11)

一直以來,科學界的性騷擾一直被低估、忽視。不過在今年六月,美國國家科學院、工程和醫學院發布了一份關於科學、工程學和醫學領域女性遭性騷擾的關鍵報告。報告指出,超過 50% 的女教職員工以及 20%-50% 的學生皆曾遭受性騷擾,其中最常見的形式包含語言及非語言的性別歧視。

今年,幾個機構開始採取行動,如美國科學促進會 (AAAS) 在九月通過了一項相關政策,說明美國科學促進會研究員一旦被確認是性騷擾者,將遭到終生剝奪名譽。美國國家學院主席也在五月承諾研究人員若被確定為性騷擾者,將從榮譽排行榜中被剔除。

幾位評論家認為改變的速度可能還不夠快。美國田納西州范德比大學的神經科學家 BethAnn McLaughlin 在今年成立倡導組織 #metooSTEM,她特別提到美國衛生研究院 (NIH) 並沒有通過任何防治性騷擾的政策或採取任何相關行動。McLaughlin 以 46 秒的沉默作為公開談話的開場,她說:「每一秒代表美國衛生研究院提供資金、卻不過問研究員是否違反性擾法規的每一年。」(1 second for every year that NIH has given money to scientists and doctors and not asked if they have violated Title IX)

-----廣告,請繼續往下閱讀-----
  • 註:Title IX 第九條是 1972 年美國禁止對學生進行性騷擾的法規。
超過 50% 的女教職員工以及 20%-50% 的學生皆曾遭受性騷擾,其中最常見的形式包含語言及非語言的性別歧視。圖/surdumihail @pixabay

發現擁有尼安德塔媽媽、丹尼索瓦爸爸的混血中二少女

2012 年,研究人員在西伯利亞的一個洞穴中找到一塊來自五萬多年前女性的骨頭碎片,並從 DNA 的比對結果發現,她居然是尼安德塔媽媽與丹尼索瓦爸爸愛的結晶!這件出土的化石被命名為「Denisova 11」,長度 2.47 公分,且從皮質骨密度推估她去世時至少已有 13 歲(因此叫她中二少女應該不過份(笑)。

這塊骨頭的基因定序結果,顯示其 X 染色體片段數目與體染色體一樣多,表示她是女生。(不論男女,一對體染色體都是兩條,而性染色體女性有兩條 X,男性只有一條 X。)且她的粒線體 DNA,也就是完全遺傳於母親的 DNA 是尼安德塔型,因此可以確定母親為尼安德塔人,爸爸為丹尼索瓦人。如果細看她的基因體,可以發現她爸其實本來就混了一些尼安德塔血統。

在這之前,研究人員知道尼安德特人、丹尼索瓦人和現代人類,偶爾會在冰河時代的歐洲和亞洲進行雜交,卻未曾確切發現過他們的後代。

這次的發現還帶來了另一個驚人的研究結果:尼媽的血緣比較接近克羅埃西亞的人類,而和同在丹尼索瓦洞穴的同類血緣比較疏遠,代表尼媽這群尼安德塔人時常遷徙於歐洲和西伯利亞兩地之間。這項研究成果可說是提供更多人類的演化史線索!

-----廣告,請繼續往下閱讀-----
Credit: Thomas Higham/University of Oxford

偵破懸案新星:「鑑識系譜學」時代來臨

今年四月,美國警方宣布他們成功破解了史上最撲朔迷離的懸案──金州殺人案 (Golden State Killer) ,逮捕了其中一位嫌疑人。

  • 註:金州殺人案是 1970 到 1980 年代在加州的一系列強姦與謀殺案。

警方利用從犯罪現場蒐集到的 DNA 樣本,比對公共家譜 DNA 資料庫 (public genealogy DNA database),進而鎖定嫌疑人的家屬。執法單位已經利用「鑑識系譜學 (Forensic genealogy)」成功偵破其他 20 件懸案,讓鑑識系譜學成為當代功不可沒的鑑識界新星。

在金州殺人案中,當局使用一個叫「GEDMatch」的公共線上 DNA 資料庫。GEDMatch 資料庫是由兩位德克薩斯州和弗羅里達州的業餘系譜學家負責經營,每個人都可以提交自己的 DNA 定序結果到這個資料庫中。調查人員把從犯罪現場蒐集到的 DNA 樣本資訊,上傳到 GEDMatch 資料庫之後,便可找到嫌疑犯的遠房親戚,進而確定嫌疑犯身分。

藥品新招!RNAi 藥物在歐美獲准上市

核糖核酸干擾 (RNA interference, RNAi) 是一種可以讓基因沉默(或者說把某個基因「關掉」) 的技術。理論上透過這個技術,我們可以用 RNA 分子「關掉壞基因」、讓疾病不會發生。RNAi 這項技術早在 20 多年前就已經發明,但因為 RNA 分子實在太脆弱,很難讓 RNA 分子在抵達正確的組織前不受破壞,因此這項技術一直都無法實際應用於藥物設計。

-----廣告,請繼續往下閱讀-----

直到 2008 年,這項難題終於有解方!美國麻薩諸塞州劍橋市的 Alnylam Pharmaceuticals 公司提出解套方法:利用一種「脂質奈米顆粒」來保護基因沉默 RNA (gene-silencing RNA),確保這段 RNA 可以成功被送達目的地。

Alnylam 設計出的 RNAi 藥物「Onpattro」可用來治療遺傳性轉甲狀腺素介導的類澱粉變性 (hereditary transthyretin-mediated amyloidosis, hATTR) 所引起的多發性神經病變 (polyneuropathy)。當「Onpattro」和脂質奈米顆粒結合,並運送至肝臟之後,可以阻止摺疊錯誤的蛋白質產生,也就能避免因為蛋白持累積形成的心臟與神經損傷。

RNAi 藥物「Onpattro」在今年 8 月通過美國食品和藥物管理局 (FDA) 和歐洲藥品管理局的批准,並以每年 45 萬美元的定價進入市場。

從分子痕跡一窺五億年前的世界:世上最早的動物在這裡!

今年科學家偵測到了來自超過五億年前生物的分子痕跡,讓人們對於地球早期的動物有更進一步的了解。

-----廣告,請繼續往下閱讀-----

九月,位於坎培拉的澳洲國立大學研究團隊試圖從一些特殊的古老化石上找尋有機分子。這些來自俄羅斯白海懸崖邊的化石,沒有經過高溫高壓,且上面有一層看起來由有機物質構成薄膜。研究團隊猜想或許能找到未被摧殘的有機分子,因此他們取下化石上的薄膜、溶解它,並以氣相層析法和質譜法分析。研究結果發現,他們在埃迪卡拉紀(據今 5.42 億至 6.35 億年前)的狄更遜水母 (Dickinsonia) 化石中找到類膽固醇的分子,由於類膽固醇分子是動物的象徵,代表某些埃迪卡拉紀生物很可能是地球上最早的動物之一。

狄更遜水母 (Dickinsonia) 化石。圖/wikipedia

而在今年十月,另一個研究團隊從距今 6.6 億到6.35億年前的岩層裡,發現一種只有海綿動物會製造的分子。這代表「海綿」這種型態的動物,可能比目前已知最古老的化石還早出現了一億年。

維持細胞運作的秘訣:形成「液滴」

細胞內的眾多蛋白質、RNA 是如何在茫茫大海中找到彼此,在正確的時間與地點行使功能呢?近年來,科學家逐漸理解到,答案在於這些物質形成的「液滴」(liquid droplets) 結構。

自 2009 年開始,研究者發現很多蛋白質可以分離、聚集形成一顆顆液滴。此現象類似於「液-液相分離」(liquid-liquid phase separation),如同水和油是分離的,在水中的兩顆油滴碰在一起時,可自然融合為一。愈來愈多證據顯示,細胞內蛋白質、RNA 構成的液滴是生化反應的關鍵,組織了維持細胞運作的工作秩序。

2017 年有研究發現,細胞核中有液滴會幫助染色質濃縮,使位於該區域的基因無法表現。今年,有三篇刊登於《科學》期刊的論文指出,促進 DNA 轉錄為 RNA 的蛋白質,會聚集成液滴附著在 DNA 上。雖然運作的細節還有待繼續研究,然而 DNA 轉錄為 RNA 是製造新蛋白質的第一步,這些研究透露了液相分離在「如何選擇性地表達基因」這個生命的重要謎團扮演一定的角色。

  • 如果想了解更多,歡迎參閱《Science》精心製作的影片

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

8
1

文字

分享

1
8
1
侏羅紀公園的場景可能真實發生?生物複製技術有哪些發展?複製人要出現了嗎?
PanSci_96
・2024/06/15 ・5062字 ・閱讀時間約 10 分鐘

如果用我們的基因製造複製人,可以代替我們上班上課嗎?想像一下,如果世界上每個人都有一個雙胞胎分身?或者,如果我們可以克隆出已故的名人?甚至複製已故的寵物或親人?

當然,這些都是幻想,但複製生物技術的發展正在讓這個幻想漸漸變為現實⋯⋯

科幻小說的故事照進現實,在技術層面上有哪些困難?道德上又會引發哪些問題呢?

讓我們一起探索這項驚人技術的曲折歷程吧!

-----廣告,請繼續往下閱讀-----

今天的文章將會回答以下問題:

  1. 複製生物技術的早期實驗有哪些?又帶來什麼影響?
  2. 基因複製技術最大的困難是什麼?
  3. 複製技術面臨哪些主要挑戰和倫理道德問題呢?
  4. 複製生物技術除了複製生物還能有哪些應用?

克隆實驗早期的探索與突破?

複製生物技術的發展是一個漫長而曲折的過程,從 19 世紀末的早期實驗,到 20 世紀中葉的技術突破,再到 21 世紀的應用與挑戰。

胚胎實驗的歷史可以追溯到 19 世紀末,當時德國生物學家杜里舒(Hans Driesch,1867-1941)進行了一項開創性的實驗。他通過搖晃的方式將四個海膽胚胎細胞分離,並觀察到每個分離的細胞都能發育成完整的幼體,儘管體型較小。這一實驗證明了早期胚胎細胞具有全能性(totipotency),即早期胚胎的每個細胞都能發展成完整個體,這為後來的細胞核移植技術奠定了基礎。

圖/giphy

在 20 世紀初,植物學家發現通過嫁接和分裂植物組織可以產生與母體相同的植物。奧地利植物學家戈特利・哈伯蘭特(Gottlieb Haberlandt,1854-1945)提出了「植物細胞全能性」(totipotency)的概念,即每個植物細胞都具有發育成完整植物的潛力。哈伯蘭特的實驗主要是通過無菌技術培養植物細胞,雖然當時他並未成功培育出完整的植物,但他的理論和研究為後來的植物組織培養和克隆技術奠定了基礎。

-----廣告,請繼續往下閱讀-----

1914 年,德國生物學家漢斯・斯佩(Hans Speman,1869-1941)進行了另一個具有里程碑意義的實驗。他利用了一根嬰兒頭髮製作的環狀結,將其繫在受精的蠑螈卵細胞上,並將細胞核推到一側。當細胞核所在的一側開始分裂成多個細胞後,他鬆開結讓一個細胞核滑回未分裂的細胞一側,從而產生了兩個獨立的細胞群,這些細胞群最後發育成了兩個完整的胚胎。這是最早的核移植(nuclear transfer)實驗,顯示了細胞核在胚胎發育中的重要性​。

20 世紀中葉,科學家們進一步推動了克隆技術的發展。1952 年,美國科學家羅伯特・布里格斯(Robert Briggs,1911-1983)和湯瑪斯・金恩(Thomas Joseph King,1921-2000)首次成功地將青蛙胚胎細胞的細胞核移植到去核的卵細胞中,並培育出蝌蚪,雖然這些克隆青蛙無法存活至成年,但這實驗證明了細胞核可以在去核卵母細胞中重新編程,進而發育成新個體。

圖/giphy

桃莉羊的誕生:克隆技術的重要里程碑

克隆技術的重大突破出現在 1996 年,當時英國羅斯林研究所的伊恩・威爾穆特(Ian Wilmut,1944-2023)和基思·坎貝爾(Keith Campbell,1954-2012)成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。他們使用的是一隻成年綿羊的乳腺細胞核,將其移植到一個去核的卵細胞中,最終培育出桃莉。這一成就震驚了全世界,因為它證明了成體細胞的基因信息可以被重置為胚胎狀態,並成功發育成為一個完整的生物體,標誌著克隆技術的一個重要里程碑​。

1996 年,成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。圖/wikipedia

桃莉羊的誕生引發了廣泛的科學和倫理討論。一方面,科學家看到了複製技術在醫學研究、保護瀕危物種以及農業中的潛力。另一方面,社會各界對複製技術的倫理問題表示擔憂,特別是人類複製的可能性。

-----廣告,請繼續往下閱讀-----

桃莉羊的成功開啟了克隆技術的新篇章,此後,小鼠、牛、山羊等多種哺乳動物相繼被成功複製,展示了這一技術的廣泛應用潛力。同時,科學家們將目光投向了更為複雜的靈長類動物。

靈長類動物的複製技術在 21 世紀取得了進一步的突破。2018年,中國科學家成功利用與桃莉羊相同的「體細胞核轉植」技術複製出兩隻有相同基因的長尾彌猴「中中」和「華華」,標誌著克隆技術的又一個突破​。2020年中國又成功複製了恆河猴,並取名為「ReTro」,不同於印象中印象中複製動物壽命都很短或是飽受疾病之苦,ReTro 在今年(2024年)已經要滿四歲了,是首隻平安長大成年的複製恆河猴。

複製技術的挑戰?

儘管克隆技術在基因層面上已經相對成熟,但要複製出健康的個體仍然面臨巨大挑戰。許多克隆動物都表現出健康問題,如免疫系統缺陷、心血管問題、早衰、壽命縮短或在在肝、腎、肺、大腦、關節等地方產生發育上的缺陷,也有部分出現體型異常巨大的問題​​。例如綿羊的正常壽命約在 12 年左右,但桃莉羊在 6 歲時,就因關節炎與肺部感染而去世。

這主要是因為,細胞核在卵細胞中的重新啟動過程容易出現問題,導致克隆個體可能存在基因表達異常。即便是中國科學院成功複製的 ReTro 也只是難得成功的個案。

-----廣告,請繼續往下閱讀-----

基因複製出的人類會和本人完全一模一樣嗎?

克隆技術,特別是克隆人類,涉及複雜的倫理和道德問題。一方面,克隆技術可能會被用來治療某些疾病,或是用於治療遺傳疾病和器官移植,甚至延長壽命;但另一方面,它也可能被濫用,導致倫理危機。例如,克隆人類可能引發身份認同問題,並挑戰現有的社會和家庭結構​,反對者擔心擔心這樣的技術會對社會和人類本質造成不可預見的影響。

如果突破細胞核重新啟動的困境,複製出來的克隆人會和本人完全一樣嗎?

答案是:「不會」。

圖/imdb

美國演化生物學家阿亞拉(Francisco J. Ayala,1934-2023)在《美國國家科學院院刊》上提出,我們目前進行的生物複製實驗複製的只是「基因型」而非「表現型」。基因型指的是基因組成;而表現型指的是包含個體外表、解剖結構、生理機能以及智力、道德觀、審美、宗教價值觀等行為傾向和屬性,還有透過經驗、模仿、學習所獲得的特徵。表現型是基因與環境間複雜作用下的產物。基因型的複製就像是同卵雙胞胎,就算長得再像,他們怎麼樣都不會是「同一個人」。透過生物複製技術基因複製出的克隆人,其實也只不過是跟你擁有相同基因的雙胞胎而已。

-----廣告,請繼續往下閱讀-----

不過目前世界上也存在一種能複製表現型的技術,那就是——「AI」。

隨著人工智能技術的進步,模擬人類個性和行為變得越來越現實。例如,AI 可以通過學習大量數據來模擬特定個體的行為模式,甚至在某些情況下,AI 克隆可能會比生物克隆更具實用性。然而,這也帶來了新的風險,包括隱私泄露、數據濫用等​​。

複製技術在生物醫學領域來能有哪些應用?

複製技術的應用範圍廣泛,涵蓋了醫學研究、農業、生態保護等多個領域。

複製技術在生物醫學領域具有巨大的潛力。幹細胞治療可以利用克隆技術培育出患者自身的幹細胞,從而避免免疫排斥反應。製藥公司可以利用克隆動物來進行藥物測試,提高藥物研發的效率和準確性​。科學家也可以生產出大量具有相同基因組的細胞,用於研究疾病機制和開發新藥。克隆技術被用於創建動物模型,這些模型有助於研究人類疾病的機制和治療方法。例如,科學家利用克隆技術創建了患有阿爾茨海默症和帕金森症的動物模型,這些模型為藥物開發和治療策略的研究提供了重要的工具。

-----廣告,請繼續往下閱讀-----

在農業領域,複製技術被用於繁殖優良品種,增加牲畜的生產力和抗病能力。通過克隆優秀的畜禽個體,農民可以提高產量,降低疾病風險,從而提高農業生產的效益。

此外,複製技術在生態保護方面也有重要的應用。許多瀕危物種由於種群數量減少,面臨滅絕的危險。科學家們利用複製技術試圖保護這些物種,例如,已經有研究成功克隆了瀕危的野生動物,為保護生物多樣性提供了新的方法。

圖/imdb

結論

總結而言,複製生物技術的發展歷程充滿了挑戰和機遇。從早期的胚胎細胞分離實驗,到 20 世紀中葉的核移植技術,再到 1996 年桃莉羊的成功,科學家們在不斷探索和突破。儘管技術上取得了許多進展,但複製健康個體的挑戰仍然存在。此外,倫理和道德問題也不容忽視。未來,隨著技術的不斷進步,克隆技術在生物醫學領域的應用將更加廣泛,但我們也必須謹慎對待其可能帶來的社會和倫理影響,我們需要謹慎管理這項強大的技術,在發揮其潛力的同時,避免可能帶來的社會和倫理風險。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 1