0

0
0

文字

分享

0
0
0

從檢測懷孕到複製人類-《醫學之書》

時報出版_96
・2014/07/09 ・1385字 ・閱讀時間約 2 分鐘 ・SR值 472 ・五年級

西元1928年:兔子死了

坐著的女性等待懷孕檢查的結果/荷蘭畫家斯特恩(Jan Steen),西元1660年左右
坐著的女性等待懷孕檢查的結果/荷蘭畫家斯特恩(Jan Steen),西元1660年左右

數千年來,女性就很想知道「我懷孕了嗎?」她們的家人和醫生也是如此。有許多經由檢查是否懷孕的方法是錯誤的,但是充滿創意。古代埃及女性會把尿液裝到含有小麥和大麥的袋中。如果大麥發芽,就表示懷的是男生,小麥則是女生。如果兩個都沒發芽,就沒有懷孕。比較近代的時候,則是把女性的尿液注射到兔子體內,看看有無懷孕。而「兔子死了」就成為有身的婉轉說法。

現在,許多驗孕方式都是在檢查是否有絨毛膜促性腺素(chorionic gonadotropin),這是一種激素。受精卵在子宮著床後發育而成的早期胚胎(約在排卵之後六至十二天),會分泌絨毛膜促性腺素,後來胎盤也會分泌這種激素。1928 年,德國婦科學家阿許海姆(Selmar Aschheim)和榮戴克(Bernhard Zondek)發明一種驗孕方法。他們將女性的尿液注射到尚未成熟的雌鼠體內,過一陣子後解剖。如果尿液中有絨毛膜促性腺素,雌鼠會出現排卵的跡象,那麼該位女性就會被告知懷孕了。後來是以兔子進行類似的檢測:兔子在注射過尿液之後幾天也會被解剖以檢查卵巢。所以要注意到「兔子死了」是錯誤的說法,因為不論有無懷孕,所有的兔子之前都已經被解剖以檢查卵巢。

後來這種檢驗用青蛙來做,雌蛙接觸到絨毛膜促性腺素後一天就會產卵。到了1970 年代,使用針對絨毛膜促性腺素的抗體來進行檢驗。這可以在家中以驗孕棒進行,如果出現彩色線條或是+記號,就表示懷孕了。

西元2008年:複製人

科學教育學者貝利(Regina Bailey)寫道:「想像一個世界,能夠做出可以治療疾病的細胞,或是用於移植的完整器官⋯⋯人類本身也能複製,或是把去世的愛人一模一樣地複製出來⋯⋯對於未來的人類來說,複製和生物科技是我們這個時代的特色。」

2008 年,美國科學家伍德(Samuel Wood)成為第一個複製自己的人,這個舉動在美國颳起了倫理風暴。 複製人指的是製造出一個在遺傳上和某人完全相同的另一個人。體細胞核轉植技術(somatic cell nuclear transfer, SCNT)讓我們可以辦到這一點。 在這項技術中,成年體細胞的細胞核會轉移到一個已經移除細胞核的卵細胞中。這個細胞移入子宮中可以發育成胚胎。把早期的胚胎切分開來,兩個部分都可以發育成新的個體(同卵雙胞胎就是這樣產生的)。在醫療性人類複製中,胚胎不會植入子宮,而是有其他的用途,例如長成移植之用的新組織。這些從病人衍伸出來的組織不會引起免疫反應。

1996 年,桃莉羊成為首個從成體細胞成功複製出來的哺乳動物。2008年,伍德成功地用自己皮膚細胞的 DNA 製造出五個胚胎,這些胚胎可能成為胚胎幹細胞的來源,將來可用於修補傷口或是治療疾病。胚胎幹細胞可以轉變成身體中任何種類的細胞。基於法律和倫理的理由,這五個胚胎後來被銷毀了。在人類複製的消息傳出之後,一位梵諦岡的代表譴責這「屬於道德上最不適切的行為」。 有不需要複製胚胎就能取得幹細胞的方式,例如皮膚細胞可以重新設定基因活性的程序,轉變成誘導性多功能幹細胞(induced pluripotent stem cell, iPS cell),這個過程不需胚胎。許多退化性疾病所造成的組織損傷,都可能用這種細胞發育成的各種組織來替換。

iPS細胞功能示意圖
iPS細胞功能示意圖

摘自《醫學之書》,由時報出版發行

文章難易度
時報出版_96
154 篇文章 ・ 29 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

4
2

文字

分享

2
4
2
「科學家也需要 Art!」持續破解果蠅大腦神經迴路的李奇鴻
研之有物│中央研究院_96
・2022/04/11 ・6084字 ・閱讀時間約 12 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/歐宇甜、黃曉君、簡克志
  • 美術設計/林洵安、蔡宛潔

神經科學與視覺

我們怎麼「看到」顏色,「察覺」東西在動?大腦如何產生視覺?中央研究院「研之有物」專訪院內細胞與個體生物學研究所所長李奇鴻,他是國際知名的神經科學家,過去長期在美國國家衛生院(National Institutes of Health)做研究,2018 年回到中研院貢獻自己所學。李奇鴻的實驗室主要是以果蠅視覺系統為模型,研究神經元如何在發育過程形成複雜的突觸連結,以及神經迴路如何產生視覺來引導動物行為。

李奇鴻是國際知名的神經科學家,研究神經迴路如何產生視覺來引導動物行為。圖/研之有物

技術帶動神經科學研究

神經系統如何運作?這對以前的科學家來說是黑盒子。由於大腦發生錯誤或出問題時,會直接表現在外在行為上,早期科學家想了解人腦運作機制,只能透過腦部哪裡受傷壞掉或中風等,知道腦部的大概功能區域,但沒辦法進入細胞層次。

「在生物學的發展上,除了需要有智慧的思考,其他都要靠技術去推動。你可能想到一個有趣的題目,但也許要 30 年後,才出現足夠的技術來解決問題。」李奇鴻舉例,從光學顯微鏡、電子顯微鏡、電生理技術、分子生物學到結構生物學發展,每個都在細胞、分子、及系統層次開啟了新的世界。

隨著顯微技術與遺傳工程日益完備,果蠅成為現今熱門的腦科學研究對象。李奇鴻指出,「果蠅的生長速度快,相較老鼠要幾個月成熟,果蠅只要兩週。果蠅的大腦複雜程度介於人和單細胞生物中間,結構跟人高度相似,成果可應用在人身上。」

因此,近 10 幾年來是神經科學大起飛時代,科學家透過遺傳學方法控制果蠅的神經元活性、觀察行為,藉此了解哪些基因會影響大腦發育和運作,逐漸破解神經迴路的奧祕。

「我在選博士後研究時,想到底要做線蟲、老鼠、魚、果蠅或其他模式生物?最後才選果蠅。回想起來,近年剛好碰到果蠅相關技術蓬勃發展,選果蠅是很正確的決定!」李奇鴻笑道。

李奇鴻引用知名神經科學家 David Marr 的三層假說(tri‐level hypothesis),認為大腦運作有三個層次:

  1. Computation level(運算):神經系統在做的事,如分辨顏色、觀察東西移動、辨認物體是圓是方、是蘋果或橘子等。
  2. Algorithm level(程序):神經系統的操作方式、程序怎麼做。 
  3. Implementation level(實行):神經系統如何透過神經元、神經網路來達成這個程序。

李奇鴻表示,「過去多數神經科學家都在討論 computation,再探究 algorithm,卻沒辦法解決 implementation 。現在因為具備技術,科學家終於能找出 implementation,再回推上層問題,甚至發現 algorithm 跟原本想的不一樣。」

視網膜感知系統怎麼運算?

關於神經系統的操作方式(Algorithm level),也有因為技術進步而解決爭議的案例。李奇鴻舉例,以前神經科學家在研究視覺系統感受物體運動的機制,曾出現幾種理論,HR 理論認為神經訊號是用乘法,另一派 BL 理論認為是用減法,爭議了很久。

近年科學家發現,原來視網膜感知系統的運算機制是混合的,一共三種,稱為 HR-BL 混合視覺運動偵測器。過去兩派都只對了一半。

關於視網膜感知系統的運算機制,過去 HR 理論和 BL 理論都只猜對其中一種方向(打勾處)。資料來源/Current Biology

Hassenstein-Reichardt(HR)模型:從昆蟲行為研究而來。

  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,這個信號會被延遲(時間 τ),接著右邊的光感應神經元收到訊號,兩者的訊號會同時到達下游的神經細胞(X),訊號將會相乘,生成運動訊號。
  2. 當有非偏好方向(從右到左)視覺刺激出現,兩個訊號會在不同的時間到達,不會生成運動訊號。

Barlow-Levick(BL)模型:從兔子電生理研究而來。

  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,接著右邊的光感應神經元收到訊號,但它為抑制訊號且會被延遲(時間 τ),左邊的訊號會先到達下游的神經細胞,生成運動訊號。
  2. 當非偏好方向(從右到左)視覺刺激出現,左、右兩個光感應神經元的訊號會在相同時間到達,刺激訊號和抑制訊號互相抵銷,不會生成運動訊號。

持續分析果蠅大腦的神經迴路!

近代電腦的所有運算都能用 and、or、Xor 三個邏輯閘表達,科學家想知道,大腦裡有沒有類似但更高階的神經迴路運作方式?「從感官到行為比較容易觀察和操作,目前在視覺運動方面的神經迴路運作,我們知道的最多。」

李奇鴻近年在做昆蟲視覺與行為研究,發現昆蟲在感受顏色,如綠光和紫外光時,感光細胞的處理方式是先將紫外光跟綠光的強度做比較,把兩個光的強度相減,讓原本兩個訊號變成一個訊號,所謂的「顏色拮抗」。

「這種神經迴路能解析、比較兩個顏色強度的差異性,因為大部分在視覺上最重要的正是對比。拮抗運算模組能在一片訊號裡找出哪裡最強、其他較弱。其他感官機制也一樣,像觸摸物品時有凸出來的部分較重要,聽覺上要找出哪個聲音特別高等,讓最重要的訊號能凸顯出來。」李奇鴻補充道。

2021 年李奇鴻的團隊首次發現果蠅視覺系統堆疊了多套拮抗運算模組,以達成顏色及空間接受域雙拮抗的效果,成果發表在《Current Biology》。這樣的神經迴路可以比較相鄰的顏色,產生色彩區間對比感。「沒這樣的功能,我們就看不出紅配綠很悲劇了!」李奇鴻笑道。

科學家們正努力鑽研果蠅大腦的神經運算迴路,希望逐步整理出基本運算模組。或許有一天,看似複雜的大腦功能,都可能用基礎的迴路來破解!

李奇鴻實驗室所發現的顏色及空間接受域雙拮抗神經迴路。R1-R6 是吸收頻率範圍較廣的光接收器(輸出刺激訊號),R7 是吸收紫外光的光接收器(輸出抑制訊號),R8 是吸收綠光或藍光的光接收器(輸出刺激訊號)。從 R1-R8 接收光,輸出到神經細胞 Dm8 之後,會形成顏色拮抗效果。此外,相鄰的 Dm8 之間透過特殊的氯離子通道 GluClα 中介,會產生側向抑制作用(Lateral inhibition),形成空間拮抗效果。資料來源/Current Biology

老師是怎麼走上研究大腦神經科學這條路呢?

「我滿晚才走上科學研究的道路。我對電腦有興趣、喜歡寫程式,大學上中國醫藥學院醫學系,家裡也希望我當醫生。不過在實習時,我發現自己對治療病人沒興趣,反而對問題或疾病本身更有興趣。跟幾個老師談過之後,我決定不當醫生,跑去清華大學讀生命科學,後來就到中研院。」

因為有醫學背景,一開始比較想做能立刻解決問題的研究,像是用蛋白質跟毒素的綜合體來治療癌症。但後來了解,如果沒有深刻了解致病機制、沒有鑽進基礎科學研究,很難有突破。

後來去美國洛克斐勒大學攻讀博士,在洛克斐勒讀書期間,大家常互相交流,對我有很大的啟發。那時我在鑽研結構生物學,希望了解疾病真正的生理過程,曾解開愛滋病病毒跟人體信號傳遞有關的蛋白質結構。

博士畢業前,我接觸到神經科學,感到很有興趣,就去加州大學洛杉磯分校(UCLA)讀博士後,學神經科學裡的發育學,想了解大腦在發育過程是如何用不同分子在細胞間傳遞訊息。那時我待在很大的實驗室,老師不太管學生,要自己想辦法或跟旁邊的人學習,很多人素質都很高,學習環境很好。

之後我進入美國國家衛生院(National Institutes of Health,NIH)開始開實驗室帶自己的團隊,待了 16 年,算是真正進入神經科學領域,直到現在依然在做相關研究。

每個人的人生選擇,都被以前的經歷主導,如果沒有醫學背景,恐怕我不會去學結構生物學或走入大腦神經科學領域。

老師在美國的研究很順利,那是什麼契機才決定回臺灣呢?回來後是否有不適應之處呢?

「我 26 歲出國,在美國也待 26 年,幾乎完全融入美國生活,實驗室運作得蠻好,連太太也是美國人。但在美國很多年後,內心出現一個很深感覺:我在臺灣待過這麼久,臺灣是我進入科學的起點,也許該回來教教臺灣的子弟。」

剛開始有些想法,曾受邀回臺演講幾次,但沒有下決心。後來出現一個重要轉捩點。中研院分子生物研究所 30 週年慶時邀我回來演講,那時有機會跟歷任所長聊天,這些所長中許多是我過去在中研院碰過的老師。聊了後感觸很深,發現每任所長都要面對分生所的成長或各種問題,每個所長都有獨到的見解和重要貢獻。

我看到分生所運作得很好,覺得非常感動, 內心想:也許我回來能效法他們,也許對中研院細胞與個體生物學研究所的發展能有一點點實質貢獻。

雖然如果待在美國國家衛生院,我也會有這樣一個機會,但還是想帶自己的子弟,把力氣用在自家子弟身上,讓自己的國家和組織進步。我想將在美國國家衛生院學到的經驗,像哪些組織可以運作、哪些不行,嘗試帶回臺灣。

我很清楚可能碰到的問題,像科學研究會受影響,要重新花幾年時間建立實驗室,但那次契機讓我徹底下定信心。我曾跟廖俊智院長開玩笑,就算不給我錢,我大概也會回來。因為真的覺得這是一個很好的機會,自己能為中研院、為臺灣做些事。畢竟中研院也一直都像我的家!

不過,畢竟過去在美國實驗室和家裡都是講英文,只有打電話給媽媽會說臺灣話,因此, 2018 年剛回臺灣時,國語講得不太流利,臺灣話反而比較流利。

老師覺得美國的研究環境有哪些優點?希望將什麼樣的新觀念、新風氣帶進臺灣呢?

「國外最大特點是學術交流很頻繁,雖然國內也蠻頻繁,但他們交流層次更深入。也就是說,我跟參與的老師交流之後,常能改變想法、做事方法或方向,且是正向的改變。」

國外老師受邀演講,會很積極在幾小時內一直談,在一天中完全沉浸其中,不單講出自己在做的東西,也要求聽眾給予批評或建議等,彼此有深度交流,我每次參加都覺得收穫很多並產生合作可能性。

國內我的經驗是,演講結束後比較缺乏機會跟其他老師深度溝通,領完演講費就屁股拍拍坐高鐵回來。這可能是國內的慣有模式,我覺得需要改變。現在所內我也要求大家,既然花錢請老師來,一定要做深度交流,請對方給予建議。

重要的不是形式或邀到諾貝爾獎得主之類,而是在演講結束後、這個人走出我的辦公室、這些人離開後,對我做的事或做事方法,是不是有什麼實質的改變?在其他科學家交談中是否能得到啟發,改變自己的思考或做實驗方式?或聽聽別人告訴你,你還有哪些沒想到的地方?

分享,也是一種很重要的技術,在交流過程中,當我們可以把一件事講清楚,自己也會茅塞頓開,知道問題在哪。

現在所裡的計畫是把老師分成各種不同興趣小組,組內做交流或有跨組活動。其餘像寫計劃、申請經費、經營實驗室或撰寫並發表文章,這些是基本技術問題。

做任何工作,一個是基本的核心技術,如果沒有「技」就無法生存;另一個是 「藝」(Art) , 可以驅動你一直做下去。訓練人才時,除了培養技術,還要訓練 Art。

老師提到工作上需要 Art,科學家的 Art 是指哪些部分?可以說明得更詳細嗎?

「我想在科學裡面,Art 有很多面向。例如,你怎麼選擇一個問題,怎麼找切入點,如何把一個大問題拆成幾個可攻破的部分,一步步去解開,這是一種 Art。尤其在選擇問題和切入點上,要有獨特的見解或洞燭先機才能成功。」

科學家必須創造有用的知識。什麼叫有用的知識呢?就是聽到學到後,會改變你想事情的方向或做事的方法。很多東西都可以研究,只要科學方法夠嚴謹,都可以得到一些知識。但到底要選擇什麼題目呢?什麼叫做有趣的問題呢?評斷這些就是科學的 Art 。

如果說在人類前面是一個黑暗深淵,知識像光照亮我們前面的路,科學家就像站在最前面,要知道如何踏出那一步?怎麼踏出去?這是 Art。

當科學家看到一個問題、問題成形後,最重要的關鍵是如何選擇一個核心問題去解決。就像玩拼圖時,要放下去最核心、最重要的那塊拼圖。

我回到臺灣後,覺得這裡的研究環境很好,儀器不輸人家,老師很優秀。但可能我們多半只是關注自己的研究,沒有花時間認真去思考,最重要的一塊拼圖在哪裡?當我們有更深度的交流,才能找到最核心的那一塊,做出最重要的貢獻。

李奇鴻說,科學家必須創造有用的知識,也就是會改變做事和想事情方法的知識。至於要選擇創造什麼知識,需要用 Art 來判斷。圖/研之有物

老師在國外的實驗室時是如何帶領研究團隊呢?對年輕的科學家有什麼樣的期待嗎?

「在碩士、博士訓練中最重要的關鍵,是從「讀」科學變成真正「做」科學。我們攤開一本教科書,看到裡面講這個、那個,只是讀人家的科學。即使去念了原始文章,仍然是看著科學怎麼被別人做出來而已。」

自己真正做研究才知道,教科書上每一頁、每一句,背後都可能有數千篇文章支持,那時才知道自己很渺小,懂得謙虛,了解自己一生能做的有限。

所以,每次要跨出一小步,要想該怎麼跨最有效率、得到最大效果。我認為,在碩士班或博士班,最重要的就是了解這種感覺。

有些學生可能覺得,反正我很渺小,世界這麼大,即使做一輩子,即使最成功的科學家,也不過是得到教科書上面的一句話而已,我怎麼做都沒關係啊。 但我們必須帶領學生了解,這個計畫不是老師叫你做才做,而是讓學生覺得這個計畫是自己的,有前進和發展的空間,就像自己的小孩,必須負責。

以前在碩、博士班,剛開始學會技術、實驗做出結果,或能像人家一樣發表文章,會很高興,但這很短暫,真正的轉捩點是我知道有什麼事,是全世界任何人都不知道的那種驕傲,才是真的能支持很久的。我還記得在某一天做到早上五點,從實驗室走出來,知道有個東西全世界只有我知道的喜悅!

當學生曾感受這種發現真實的快樂,你不用規定他早上幾點來、晚上幾點走,他自己就有動機做。

當一個人想這東西應該是怎樣,想辦法做實驗證明出來時,那真的是一種快樂。我想,這是任何其他行業都沒辦法比較的!

學生是要培養成未來的科學家、獨當一面,應該讓他自己走。即使在你看得到的地方,也要讓他自己走出來,而且,他自己想到的,比你告訴他來的有用。

其實,我當老師最興奮時,是學生告訴我那些我不知道的事,會覺得很喜悅,學生想到我沒想到的東西,表示他們有進步,比我還厲害,這很棒!

延伸閱讀

所有討論 2
研之有物│中央研究院_96
255 篇文章 ・ 2348 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
從檢測懷孕到複製人類-《醫學之書》
時報出版_96
・2014/07/09 ・1385字 ・閱讀時間約 2 分鐘 ・SR值 472 ・五年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

西元1928年:兔子死了

坐著的女性等待懷孕檢查的結果/荷蘭畫家斯特恩(Jan Steen),西元1660年左右
坐著的女性等待懷孕檢查的結果/荷蘭畫家斯特恩(Jan Steen),西元1660年左右

數千年來,女性就很想知道「我懷孕了嗎?」她們的家人和醫生也是如此。有許多經由檢查是否懷孕的方法是錯誤的,但是充滿創意。古代埃及女性會把尿液裝到含有小麥和大麥的袋中。如果大麥發芽,就表示懷的是男生,小麥則是女生。如果兩個都沒發芽,就沒有懷孕。比較近代的時候,則是把女性的尿液注射到兔子體內,看看有無懷孕。而「兔子死了」就成為有身的婉轉說法。

現在,許多驗孕方式都是在檢查是否有絨毛膜促性腺素(chorionic gonadotropin),這是一種激素。受精卵在子宮著床後發育而成的早期胚胎(約在排卵之後六至十二天),會分泌絨毛膜促性腺素,後來胎盤也會分泌這種激素。1928 年,德國婦科學家阿許海姆(Selmar Aschheim)和榮戴克(Bernhard Zondek)發明一種驗孕方法。他們將女性的尿液注射到尚未成熟的雌鼠體內,過一陣子後解剖。如果尿液中有絨毛膜促性腺素,雌鼠會出現排卵的跡象,那麼該位女性就會被告知懷孕了。後來是以兔子進行類似的檢測:兔子在注射過尿液之後幾天也會被解剖以檢查卵巢。所以要注意到「兔子死了」是錯誤的說法,因為不論有無懷孕,所有的兔子之前都已經被解剖以檢查卵巢。

後來這種檢驗用青蛙來做,雌蛙接觸到絨毛膜促性腺素後一天就會產卵。到了1970 年代,使用針對絨毛膜促性腺素的抗體來進行檢驗。這可以在家中以驗孕棒進行,如果出現彩色線條或是+記號,就表示懷孕了。

西元2008年:複製人

科學教育學者貝利(Regina Bailey)寫道:「想像一個世界,能夠做出可以治療疾病的細胞,或是用於移植的完整器官⋯⋯人類本身也能複製,或是把去世的愛人一模一樣地複製出來⋯⋯對於未來的人類來說,複製和生物科技是我們這個時代的特色。」

2008 年,美國科學家伍德(Samuel Wood)成為第一個複製自己的人,這個舉動在美國颳起了倫理風暴。 複製人指的是製造出一個在遺傳上和某人完全相同的另一個人。體細胞核轉植技術(somatic cell nuclear transfer, SCNT)讓我們可以辦到這一點。 在這項技術中,成年體細胞的細胞核會轉移到一個已經移除細胞核的卵細胞中。這個細胞移入子宮中可以發育成胚胎。把早期的胚胎切分開來,兩個部分都可以發育成新的個體(同卵雙胞胎就是這樣產生的)。在醫療性人類複製中,胚胎不會植入子宮,而是有其他的用途,例如長成移植之用的新組織。這些從病人衍伸出來的組織不會引起免疫反應。

1996 年,桃莉羊成為首個從成體細胞成功複製出來的哺乳動物。2008年,伍德成功地用自己皮膚細胞的 DNA 製造出五個胚胎,這些胚胎可能成為胚胎幹細胞的來源,將來可用於修補傷口或是治療疾病。胚胎幹細胞可以轉變成身體中任何種類的細胞。基於法律和倫理的理由,這五個胚胎後來被銷毀了。在人類複製的消息傳出之後,一位梵諦岡的代表譴責這「屬於道德上最不適切的行為」。 有不需要複製胚胎就能取得幹細胞的方式,例如皮膚細胞可以重新設定基因活性的程序,轉變成誘導性多功能幹細胞(induced pluripotent stem cell, iPS cell),這個過程不需胚胎。許多退化性疾病所造成的組織損傷,都可能用這種細胞發育成的各種組織來替換。

iPS細胞功能示意圖
iPS細胞功能示意圖

摘自《醫學之書》,由時報出版發行

文章難易度
時報出版_96
154 篇文章 ・ 29 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

0
1

文字

分享

0
0
1
一定要有肺才能呼吸?來認識動物們的花式呼吸大法
言蓁
・2020/07/24 ・2369字 ・閱讀時間約 4 分鐘 ・SR值 495 ・六年級

世上動物千奇百怪,如果要找一個共同點,那應該就是──幾乎所有的動物都需要呼吸。

我們這裡要談的「呼吸」,是呼吸運動,也就是吸入氧氣、排出二氧化碳的動作。一提到這個動作,身為人類的你,或許下意識就會想到肺臟、鼻子等等部位。綜觀動物界,在不同的演化脈絡下,動物們賴以呼吸的構造真可說是無奇不有,就連肺臟、鼻孔本身也可能會有各種不同的形態。

現在,就讓我們來看看那些奇妙的呼吸器官吧!

跟我一起「吸,吸,吐──」圖/GIPHY

大象:你的鼻子為甚麼那麼長?

「媽媽說鼻子長才是漂亮~~」大象(象科 Elephantidae)身上最惹眼的部分就是鼻子了!象鼻是牠們賴以聞嗅味道和呼吸的部位,除此之外,它相當靈巧,舉凡取水、拿東西、攜帶物品等等,象鼻都能做到。

除了長長的鼻子之外,大象的呼吸構造裡還有一個特殊之處:牠們是目前已知沒有胸膜腔 (Pleural cavity) 的哺乳類動物!

我們人類賴以呼吸的肺臟緊密包覆著一層臟層胸膜 (pulmonary pleurae),會與包覆著胸腔壁內面的壁層胸膜 (parietal pleura) 組成一個很狹小的空間,就是胸膜腔。內部填充有液體潤滑,可避免臟器和胸壁摩擦損傷。

一般我們呼吸的時候,會由肌肉改變胸腔的空間,製造肺部與外在大氣的壓力差,才能夠吸氣或呼氣:當肺內的壓力大於大氣壓力,則會呼氣;而當肺內的壓力小於大氣壓力,則會吸氣。而夾在此之間的胸膜腔,多數時間會維持一定程度的負壓,讓主要由皮膜組織及彈性纖維組成的肺不致塌縮。所謂的「氣胸」就是胸膜受到破壞,使得胸膜腔無法維持負壓,連帶使著肺部塌縮的胸腔疾病。另外,胸腔膜的壓力當然會隨著呼吸而有所變化。

然而,大象的胸膜腔裡,充滿了許多疏鬆的結締組織──也就是說,原本的「腔」不復存在。該怎麼解釋大象沒有胸膜腔呢?

有個假說認為,這可能跟大象使用長鼻子來「浮潛」有關連。當牠們游泳時,可以將長鼻子舉出水面來呼吸──這是個稍微熟悉大象的人都不意外的畫面。但是成年大象高度可達至少三、四公尺,當游泳使用鼻子呼吸,或是,鼻子端大氣的壓力與位在水下肺部的壓力差距會非常巨大,這時薄薄胸膜腔可能就會頂不住啦,而胸膜腔內的結締組織就有強化的功能。

海豚:我不是跩,只是鼻孔朝天!

海豚(海豚科 Delphinidae)雖然多數生活在海中,少數生活在大河大江中,不過牠們可沒有魚類的鰓,而是用肺呼吸的哺乳類動物。

海豚是從陸生哺乳動物演化而來的,真要說起親緣關係,比起魚類,牠們反而更接近河馬等偶蹄類動物。

大約五千萬年前的始新世時期,陸生哺乳類開始進入水中,在這個過程中,牠們為了適應環境,在形態上產生諸多的改變。為了順利在水中游泳,牠們後肢逐漸退化,形成背鰭及尾鰭,體表變得光滑,身體也變得較偏向流線型。

而海豚的鼻孔更是位移到了頭頂,成為「呼吸孔」,以便在水面呼吸、換氣。此外,為了不讓自己嗆到,海豚的呼吸孔附近還有由肌肉與結締組織形成的鼻栓 (nasal plug),可以將孔緊閉。鯨魚海豚頭頂的呼吸孔是比較接近鼻孔的構造,因此有些卡通裡會出現鯨魚海豚從嘴裡吸入海水,由呼吸孔噴出海水的情節,在真實世界不大可能出現。

呼吸孔長在頭頂的中華白海豚 (Sousa chinensis)。圖/WIKI

水母:我想要呼吸,全身上下都行

水母是一種無脊椎動物,分類上屬於刺胞動物門 (Cnidaria)。從熱帶、溫帶到淡水區,世界各地的水域都找得到水母的蹤影。牠們的外型多呈現鐘型或者傘狀,構造簡單,體內有超過九成都是水,但沒有肺或鰓。

既然沒有肺或腮,牠們又要怎麼呼吸呢?方式很單純,就是透過擴散作用讓氧氣進出細胞膜。

水母的外表傘蓋的組織相當薄透(想想你吃過的海蜇皮),其中分為外層的表皮層 (epidermis) 和內層的胃皮層 (gastrodermis),兩層之間再夾著一種彈性膠狀物質,又輕又薄的狀態更方便外層組織和海水交換氧氣和二氧化碳。

看起來有點兒透明的太平洋黃金水母 (Chrysaora fuscescens) 是透過擴散作用的方式來呼吸的。圖/WIKI

牡蠣:一輩子待在原地,就來用鰓呼吸!

牡蠣 (牡蠣科 Ostreidae)的殼有二枚,形狀相當不規則,左殼比右殼大一點。牠們大多棲息在淺海或潮間帶,以左殼固著在物體上,無法自由移動,所以終其一生只能待在原處開開合合,進行呼吸、攝食、生殖、排泄等等行為。

大多數的雙殼綱,殼的頂部有縫可以流通海水,並且在吸排海水的過程中呼吸。牡蠣並不像蛤蜊一樣自備出、入水管,牠們只有腮腔和腮上腔。牡蠣的鰓分左右各一對的內外鰓,上與唇瓣 (labial palps) 相連,下與外套膜 (mantle) 相接,構成一個腔室,水從鰓流入鰓腔及鰓上腔,在過程中進行氣體交換藉以呼吸、獲得氧氣

牡蠣會用左殼附著在物體上,一輩子都不離開原地,並利用腮來呼吸。圖:WIKI

雖然說都是呼吸,但生活在不同地方的生物用的方式卻大不相同,需要根據所在地來大顯神通,除了上述介紹的動物,你知不知道什麼其他特別的呼吸方式呢?

參考資料

言蓁
7 篇文章 ・ 211 位粉絲
喜歡貓但不敢紮實去摸,像對所有喜愛的事物,嚮往也懼怕。依賴文字,生存於不被看好的文組,走著忽焉變成資訊的雜食動物。