0

0
1

文字

分享

0
0
1

是光,還是粒子?終結宇宙線大辯論的熊子璥--《物理雙月刊》

物理雙月刊_96
・2017/11/24 ・7456字 ・閱讀時間約 15 分鐘 ・SR值 588 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/熊克儉、黃明輝

1911~1912 年間,維克爾·海斯(Victor Hess)從數次的高空氣球飛行發現了來自地球以外的輻射源[1][2]。初期海斯仍不了解此種輻射的本質是粒子還是伽瑪射線,只知道其穿透力遠勝於伽瑪射線,故稱之為「超伽瑪射線」(Ultra-gamma-ray),現代的通稱是宇宙線(cosmic ray)。名稱從電磁波的輻射變換成粒子的輻射,這就涉及到三十年代在物理學史上的一場有關宇宙射線的本質的精彩大辯論[3][4]。

1930年代是宇宙線本質的大辯論時代。 圖/pixabay

宇宙線的大辯論時代

辯論的一方是當時任教於加州理工學院的羅伯特·密立根(Robert Millikan),他因在基本電荷和光電效應方面的成就,獲得 1923 年度諾貝爾物理學獎。辯論的另一方就是亞瑟·康普頓(Arthur C. Campton)。由於辯論的雙方都是獲得諾貝爾物理學獎的著名的物理學家,因而格外引起世人注目。

密立根認為宇宙射線是來自宇宙,而非起源於地球或低層大氣,是由光子組成,而組成光子的過程實際上是一種造物主還在創生的過程[4]。這在當時造成很大的轟動[3]。但從 1931 年秋季起,他的假說受到物理學家們的挑戰。

1931 年在羅馬的核物理會議中,義大利物理學家布魯諾·羅西(Bruno Benedetto Rossi)對著台下的密立根與康普頓,提出理論認為宇宙線所帶電性可以經由地磁場的篩選而確定[5],這就是著名的東西效應[1]。

從 1932 年起,康普頓組織了 6 個遠征隊,到世界各地的高山、赤道附近低緯度區等進行了廣泛測量,以便對初始的宇宙射線到底是光子還是帶電粒子作出合理的判斷。他的研究證實了1927年由荷蘭物理學家克萊(Jay Clay)所觀察到的緯度效應對宇宙射線的影響,從而康普頓認定宇宙射線是由帶電粒子組成,而非密立根所認為是光子組成。

-----廣告,請繼續往下閱讀-----

1932 年 12 月底,美國物理學會在新澤西州大西洋城(Atlantic City)召開會議,密立根和康普頓進行了激烈的爭論。康普頓在會議上報告:不同緯度處宇宙射線強度有明顯不同,說明初始宇宙射線有帶電粒子的特徵,並提出了支援這種觀點的三種實驗。密立根在大西洋會議上宣讀了由加州理工學院另一位物理學家內赫(H. V. Neher)跨越赤道航行的測量結果,沒有發現緯度效應。由於雙方都宣稱自己有實驗為證,無法統一思想,但大多數物理學家已經開始轉向承認康普頓的觀點。後續的研究證實內赫測量的區域的磁場變化不大,因此看不出顯著的緯度效應。

直到 1934 年6月的美國物理學會第 193 屆大會上,這個大辯論的結論由第一位發表者畫下句點。發表者就是華裔學者熊子璥(圖1),他可說是第一位華裔宇宙線物理學家。

圖1. 熊子璥於1932年攝于美國芝加哥大學。圖/作者提供

熊子璥,何許人也?

熊子璥(David S. Hsiung,1896-1979),字思鈺,生於湖南省岳陽城陵磯。1922 年獲美國海德堡大學學士學位,1924 年獲賓夕法尼亞大學碩士學位。而後返國,先任家鄉岳陽湖濱大學數理教授,1927-1932 年任金陵女子大學教授兼數理系主任。1932 年 9 月,熊子璥在洛克菲勒基金會(Rockefeller Foundation)的贊助下,赴芝加哥大學(University of Chicago)物理系攻讀博士學位。

芝加哥大學位於美國北部風景秀麗的密西根湖畔,是由石油大王約翰·洛克菲勒(John D. Rockefeller)於1890年捐資創辦,後以「美國現代大學先驅」的歷史地位而為人稱道,成為美國最富盛名的私立大學之一。

-----廣告,請繼續往下閱讀-----

芝加哥大學的物理系在二十世紀三十年代名列全世界之首,也是其在歷史上最重要和最輝煌的時代。到了三十年代末,芝大物理系已現出八位諾貝爾物理學獎得主:阿爾伯特·邁克耳孫(Albert A. Michelson)、羅伯特·密立根(Robert A. Millikan)、詹姆斯·弗蘭克(James Franck)、亞瑟·康普頓(Arthur H. Compton)、沃納·海森堡(Werner Heisenberg)、哈樂德·尤里(Harold C. Urey)、克林頓·大衛遜(Clinton. J. Davisson)和恩里科·費米(Enrico Fermi) 。

芝加哥大學物理系與中國早年的科學界也有過密切的關係。中國現代物理學界的許多物理學家青年時代都曾在此求過學,如李耀邦(1903-1915年)、饒毓泰(1913-1917年)、葉企孫(1918-1920年)、周培源(1924-1926年)、吳有訓(1922-1926年)、謝玉銘(1924-1926年)及魏學仁(1925-1928年)。後來的五位華裔諾貝爾物理學獎得主中,有三位源出自芝加哥大學物理系:楊振寧(1945-1948年)、李政道(1946-1950年)和崔琦(1958-1967年)。

師承物理學大師.康普頓

熊子璥於 1932 年 9 月抵達芝加哥,攻讀博士學位,在這裡他非常幸運地成為當時已享有盛名的物理學大師亞瑟·康普頓教授(圖2)的學生。康普頓曾於 1922 年發現 X 射線對自由電子發生散射時,光子的能量減少,而波長變大,這一發現被稱為「康普頓效應」。1927年康普頓因發明「康普頓效應」而獲得諾貝爾物理學獎。康普頓一生的研究主要有三大方面:(一)20年代的X-射線,即「康普頓效應」。(二)30年代,康普頓的主要興趣實際是在核子物理研究,因為他預見到核能會給人類帶來巨大的利益,為了充分利用核能,康普頓決定先研究宇宙射線,同時好奇於密立根所謂的高能 γ 射線的宇宙射線是否會與和電子相互作用產生「康普頓效應」。他因此領導了從 1930 至 1940 年代長達 10 年的全球性對宇宙射線的研究。(三)40年代第二次世界大戰時,康普頓參與領導了有關原子彈的「曼哈頓工程」。

圖2. 亞瑟·康普頓(1892-1962)。圖/作者提供

芝加哥大學實行學季制(Quarter System),一學年共有 4 個學季,每個學季要求在學生在 10 週之內將每個學期制(Semester System)18 週的課程學完。在大師雲集的芝加哥大學物理系裡,躊躇滿志的熊子璥,開始了繁重的極具挑戰的求學之路。從 1932 年 9月開始的秋季和 1933 年的冬季的兩個學季內,除了選修了康普頓的「X-射線與電子學」外,還選修了山謬爾·艾立遜(Samuel K. Allison)的「原子結構」,以及理學院院長兼物理系系主任亨利·蓋爾(Henry G. Gale)的「物理光學」、「線性光譜」等課程,並積極準備德語和法語考試。到了1933年12月,熊子璥已完成博士學位前段所要求的 15 門課。根據導師康普頓的安排,熊子璥從 1933 年開始提前進入博士學位的研究項目中。至此熊子璥在芝加哥大學開始了跟隨康普頓從事宇宙射線的研究工作。

-----廣告,請繼續往下閱讀-----

在芝加哥大學期間,熊子璥是被安排住在較舒適的國際學生公寓(International House),但在那段時間為了完成實驗,他日以繼夜的工作,除了上課外,常常連續幾個月睡在芝加哥大學物理系的 Ryerson 物理實驗室裡(圖4-1),和數學系的 Eckhart 大樓地下室(圖4-2)。

圖3. 熊子璥於1933年攝於美國

 

圖4-1. 1930年代的芝加哥大學Ryerson物理實驗室

 

圖4-2. 1930年代的芝加哥大學Eckhart大樓

1933 年在高空氣球上的宇宙線實驗

1933年5月為紀念芝加哥建市一百周年,以「世紀的進步」為主題的世界博覽會(Century of Progress International Exposition)在芝加哥召開。芝加哥世博會的展品集中展示了科學在工業生產中的成果。其中瑞士出生的比利時物理學家奧古斯特·皮卡德(Auguste Piccard)教授,說服芝加哥世博會舉行了一場「世紀的進步高空氣球飛行」演示。

皮卡德同時也是一位高空氣球探險家。1932年他在歐洲創下了高空氣球升空16,201公尺,成為第一個到達這一高度的人類的記錄。這一次,他獲得美國國家廣播公司(National Broadcasting Company)和《芝加哥每日新聞》(Chicago Daily News)的贊助。固特異(Goodyear)提供氣球,陶氏化學(Dow Chemical)提供吊籃,聯合碳化物公司(Union Carbide)提供氫氣。美國海軍還將選派了其唯一一位全天侯飛行員,被稱為「比空氣還輕」的海軍少校Thomas G. W. (Tex) Settle來操作。

高空氣球升空還有進行宇宙射線研究的任務,康普頓擔任汽球飛行的科學總監(Scientific Director)。康普頓還和當時已任教於加利福尼亞理工學院的羅伯特·密立根教授為高空氣球飛行提供用於研究的設備,熊子璥也參加了此次研究任務,並被康普頓指派去負責為皮卡德準備高空氣球升空的各種實驗儀器[6]。

-----廣告,請繼續往下閱讀-----

1933 年 8 月 4 日晚是世博會一個重大時刻,近四萬人湧入芝加哥戰士體育場,觀看芝加哥世博會「世紀的進步高空氣球飛行」(圖5)。高空氣球當時是世界上最大的,有 60 萬立方英尺。升空前的慶祝儀式進行了 7 個小時,有士兵和水手的遊行,有大型樂隊表演,體育場的大喇叭裡還有康普頓從紐約曼哈頓傳來的聲音,他祝福升空能夠打破皮卡德的記錄,並收集到宇宙射線和紫外線的資料。淩晨兩點,105 英尺直徑的高空氣球升入雲端,可惜這次升空飛行在 15 分鐘後就以失敗告終,飛行高度只有 5 千英尺。

圖5. 1933 年 8 月 4 日晚第一次「世紀的進步高空氣球飛行」[6]
一個多月後,1933 年 9 月 30 日,蘇聯的 USSR-1 高空氣球成功升到了 6 萬 2230 英尺(18.9公里)的高空。當時雖然由於蘇聯不是國際航空聯合會(FAI)的會員,那一紀錄不被正式承認,但這新的高度卻成為了皮卡德的一個挑戰。

1933 年 11 月 20 日來自芝加哥大學以康普頓領導的科學家們又將各種實驗儀器、望遠鏡、照相機等放入皮卡德的高空氣球內,進行第二次「世紀的進步氣球」飛行(圖6)。這一次,為了避免第一次飛行失敗的窘境重演,升空飛行低調地移至固特異在俄亥俄州的阿克隆市(Akron, Ohio)為建造齊柏林飛艇的基地,並由陸軍少校 Chester L. Fordney 與 Settle 少校一齊操作。

第二次的高空氣球升空成功。高空氣球升到了 18665 公尺的同溫層高空,飛行長達 8 小時,進行 10 多項有關宇宙射線的實驗,最後降落在新澤西州的布里季敦市(Bridgeton, New Jersey) [7]。

-----廣告,請繼續往下閱讀-----

熊氏蓋革-彌勒計數器法

熊子璥不僅參與第二次飛行的各種實驗儀器準備,並由此產生了一個新的實驗計畫:在同溫層的高緯度重複「博思-考爾赫斯特實驗」(Bothe-Kohlhorster experiment) [7],來證實宇宙射線是由帶電粒子構成。

博思-考爾赫斯特實驗是德國核子物理學和宇宙射線物理學研究的先驅沃爾瑟·博思(Walther Bothe)和另一位德國物理學家沃納·考爾赫斯特(Werner Kolhorster)用一種研究宇宙射線的方法--符合計數法(coincident counting),來顯示宇宙射線的軌跡。符合計數法在宇宙線的研究中得到了廣泛應用。1930年前後,宇宙射線領域裡的一些重要發現幾乎都和符合計數法分不開。符合計數法的發明也為核子物理、α射線和超聲波等方面的研究提供了有效工具。博思因提出符合計數法以及由此取得的發現,而獲得 1954 年度諾貝爾物理學獎。

然而在最後一刻,熊子璥所計畫的實驗卻無法在高空氣球上進行[7]。由於無法在同溫層高空做博思-考爾赫斯特實驗,熊子璥只能另劈蹊徑,重新構思;經過摸索,他又發明了新的實驗方法。這就是後人以熊子璥之姓氏命名的「熊氏蓋革-彌勒計數器法」。

有別於用兩個蓋革-彌勒計數器(Geiger-Muller Counter)重疊放置的博思-考爾赫斯特實驗,熊子璥的實驗是用了三個蓋革-彌勒計數器,如圖7所示[9]。圖中1、2、3標依次垂直地放著,最下面一個 3 是用 2.5 cm 鉛板圍護,三個計數器的垂直距離雖然固定,但在不附加 20 cm 厚鉛板[ 圖7 (a) ] 和放置鉛板於上面與中間計數器之間[ 圖7 (b) ] 及放置鉛板於上面計數器之上[ 圖7 (c) ] 的情況下進行測量,他巧妙地測量了不同安置狀況下的計數,記錄了上面二計數器雙符合計數和三個計數器的三重符合計數 [9]。

-----廣告,請繼續往下閱讀-----

熊子璥的多次實驗結果說明,符合計數是由於有穿透力的帶電粒子而非由滲透過鉛的光子而產生的次級粒子所形成,其計算的吸收係數符合並驗證了以前用電離室得到的資料。

圖7. 熊氏蓋革-彌勒計數器安置簡圖(側視圖),圓圈為蓋革-彌勒計數器,斜線區為阻隔用的鉛板 [9]。

終結宇宙線大辯論的「熊氏宣講」

1934 年 6 月 28 日至 30 日美國物理學會第193屆大會在密西根大學召開,熊子璥被康普頓派往大會宣讀他的研究成果。大會在密西根大學法學院剛落成不久的 Hutchins 大樓召開(圖8),那是一次物理界群英相聚的大會。與會學者有250人之多,由當年擔任美國物理學會會長的康普頓,芝加哥大學化學家和物理學家、後因研究化學鍵和分子中的電子軌道方面的貢獻而獲得1966年諾貝爾化學獎的羅伯特·馬利肯(Robert S. Mulliken),以及密西根大學物理系教授、微波光譜學創始人內爾·威廉姆(Neal H. Williams)三人共同主持。

大會共有 45 篇論文交流宣讀,宣讀者中包括後來參與原子彈研製的核子物理學家羅伯特·巴查(Robert Bacher);世界著名物理學家和天文學家,科普界一代宗師喬治·伽莫夫(George Gamow);脈衝雷達理論的建立者喬治·布賴特(Gregory Breit);因發現測定原子核磁性的共振方法而獲得了 1944 年度諾貝爾物理學獎的伊西多·以撒·拉比(Isidor Isaac Rabi)等。

圖8. 密西根大學Hutchins大樓,1934年6月28日至30日美國物理學會第193屆大會在此召開

熊子璥在 1933 年的實驗為康普頓的宇宙射線是由帶電粒子構成的假說提供了又一充分論證,他大膽創新的設想和勤奮嚴謹的工作換來豐碩的成果。他的論文被排在第一位宣讀,報告的題目為「宇宙射線為粒子假說的符合計數的測試」。6月30日當地報紙密西根日報(The Michigan Daily)以「熊氏宣講」(Hsiung Speaks)為題報導大會情況。

-----廣告,請繼續往下閱讀-----

熊子璥的論文發表後,立刻引起關注。華盛頓卡耐基研究所在1934年6月期出版的年鑒(Carnegie Institute of Washington Yearbook) 立即就專門有介紹說:「熊子璥應用蓋革-彌勒計數器發明了一種新的實驗方法,用於測試粒子性質的符合計數[10]。他的實驗證實了博思,考爾赫斯特和羅西以前的實驗,從而證實了宇宙射線由帶電粒子組成」--證實了義大利物理學家羅西在1931年提出從海平面觀察到的宇宙線,本質上是由能量非常高的帶電粒子組成的學說。密立根在1932年進行了多次實驗,後來的論文也證實原始宇宙線是帶電粒子。從此終結了宇宙線是粒子(羅西、康普頓等人所主張)或是電磁波(密立根)之大辯論。

熊子璥的殊榮

1934 年 8 月熊子璥獲得物理學哲學博士學位,成為芝加哥大學物理系自 1897 年授于哲學博士學位以來,繼李耀邦 (1915年) 、吳有訓 (1925年) 、謝玉銘 (1926年) 及魏學仁 (1928年) 以來第五個獲得此殊榮的中國人。

1934年10月被全球物理學界公認為最具權威的美國物理學期刊《物理評論》(Physical Review) 刊登了熊子璥的這一論文(圖9)[9]。因此熊子璥成為1920~30年代不僅能夠僅用兩年時間取得博士學位,也能夠在《物理評論》上發表論文的少數中國科學家。

在自此後的十二年間,在美國,德國和法國就有近三十篇有關宇宙射線的文章引用了熊子璥當年的實驗結果,僅在《物理評論》上就有十四篇。甚至由近代中國歷史上第一個民間綜合性科學團體--中國科學社所創辦的《科學》雜誌,在1939年第23期,也報導了熊子璥的論文[11]。他的實驗方法後被稱為「熊氏方法」(Hsiung’s Type),而這種裝置稱為「熊氏裝置」(Hsiung Apparatus)。

熊子璥是康普頓繼吳有訓之後所收的第二位中國博士生。一開始康普頓對這位中國學生還不瞭解。然而不久熊子璥所顯示的能力卻超出康普頓的預期。使康普頓感到印象深刻的是熊子璥對工作巨大熱情以及對無線電設備的熟悉[6]。鑒於熊子璥對芝加哥世博會高空氣球的飛行實驗中傑出表現,儘管實驗沒有成功,康普頓在1934年《美國科學院院刊》第一期上介紹第二次「世紀的進步高空氣球飛行」的文章中[7],還是提及了熊子璥所計畫的實驗專案。甚至到了1939年,當康普頓在向美國哲學會報告高空氣球飛行進展時,雖然熊子璥早在1934年已回到中國,他仍將熊子璥列為自己的團隊名單。

圖9. 1934年10月期美國《物理評論》(Physical Review) 上熊子璥論文的第一頁[9]。

在熊子璥的論文發表後,康普頓本人在1936年就有兩篇文章評及熊子璥的實驗。在由美國物理學會1936年2月出版的《科學儀器評論》(Review of Scientific Instruments)上一篇題為「宇宙射線最新發展」的文章中[12],康普頓指出:「熊子璥的實驗得出在海平面穿透射線是由高速帶電粒子組成的必然結論。」在《物理評論》1936年12月期上一篇題為「作為帶電粒子的宇宙射線」文章中[13],康普頓說:「熊子璥用不同的實驗方法顯示這些穿透粒子不是在海平面上產生的次級粒子,必定是來自遠於實驗裝置的(粒子) 。」

由於熊子璥的重大貢獻,他被美國 Sigma Xi 科學榮譽學會第176次會議選為會員(圖10),並獲得金鑰匙獎。Sigma Xi 是美國大學給予研究生的最高榮譽。當年與熊子璥一同被選入 Sigma Xi 的還有同樣來自芝加哥大學物理系,當時也在康普頓指導下攻讀碩士學位的路易士·阿爾瓦雷斯(L. W. Alvarez)。阿爾瓦雷斯因對基本粒子物理學的決定性的貢獻而獲1968年度諾貝爾物理學獎。二十世紀是現代物理學發展的繁榮時期,熊子璥能與那麼多的大師們同台共舞實屬有幸。

圖10. Sigma Xi科學榮譽學會第176次會議選出包括熊子璥在內的新會員名單

在熊子璥發表論文的 60 年後的 1994 年,芝加哥大學物理系的康普頓傳記撰寫人辛普森(J. A. Simpson)教授在代表芝加哥大學物理系對熊子璥的研究成果有這樣一番評價:

「熊子璥在1932-34年間進行了一項第一流水準的實驗。這個實驗令人信服地確證了在大氣深處存在著具有極強穿透力的帶電粒子,其結果對大氣中次級宇宙線性質的確立,以及以後介子成分的發現極具重要性。」(圖11)

1947年,英國物理學家塞西爾·弗蘭克·鮑威爾(Powell)等人從宇宙射線中發現了日本物理學家湯川秀樹1930年所預言的 π 介子。湯川秀樹與鮑威爾因此分別於1949年和1950年而獲得諾貝爾物理學獎。

熊子璥在回到中國後,並沒有忘記自己的恩師。在吳有訓、熊子璥等推動下,中國物理學會在1944年6月9日授與康普頓中國物理學會名譽會員。10月31日,康普頓在回函中除了致以高度謝意外,並說「美國科學家們看到中國的同行們在困難情況下還能堅持科學工作,感到非常鼓舞。」[14]

圖11 芝加哥大學物理系辛普森(J. A. Simpson) 教授在1994年的康普頓傳記中提到對熊子璥的評價[14]。

參考資料

  1. 黃明輝,(2011/8),宇宙線的世紀探索,臺北星空(天文館期刊),53: 16-22
  2. 蕭先雄,20世紀初的極限運動:發現宇宙線,物理雙月刊33:266-270
  3. 楊建鄴(1998) 。驕傲帶來的苦果:密立根與康普頓關於宇宙射線本質的爭論,自然辯證法通訊。199804:47-57。
  4. Millikan said “The Creator is still on the job.” Reported by Time Magazine, “Science: Creation & Destruction “, Oct. 15, 1934
  5. Bruno Rossi, “On the Magnetic Deflection of Cosmic Rays”, Phys. Rev. 36: 606, 1930
  6. Arthur H. Compton康普頓1933年給洛克菲勒基金會的報告
  7.  Arthur H. Compton, “Scientific Work in the “Century of Progress” Stratosphere Balloon”,Proceedings of the National Academy of Sciences,78~81,Jan. 1934
  8. 魏榮爵(1995/11) 。追憶物理學家熊子璥教授.。物理24:700-702
  9. David S. Hsiung, (1934) A coincidence test of the corpuscular hypothesis of cosmic rays, Phys. Review, 46: 653; DOI: 10.1103/PhysRev.46.653
  10. Carnegie Institute of Washington 1934, “Year Book”,V.33:320~321,1934
  11. 科學新聞(1939) Science New, Science, No.8/9《科學》雜誌V23: P457
  12. Arthur H. Compton (1936/02) “Recent Development in Cosmic Rays”,Review of Scientific Instruments”,February,7:71-81; DOI:10.1063/1.1752085
  13. Arthur H. Compton (1936) “Cosmic Rays as Electrical Particles”,Physical Review,50:1119-1130; DOI:10.1103/PhysRev.50.1119
  14. 康普頓1944年10月31日給中國駐美使館一等秘書T.L. Tsui的回函

作者簡介

  • 熊克儉(Steve Hsiung)
    熊子璥博士嫡孫。現任職於美國矽谷一家高科技公司擔任主管工程師,曾發表過10餘篇論文並持有4項美國專利。聯繫方法:stevehsi@yahoo.com。
  • 黃明輝副教授
    任職於聯合大學能源工程學系,專長領域是粒子天文物理與太陽能系統。E-mail: mahuang@nuu.edu.tw

後記與致謝

為紀念維克爾·海斯(Victor Hess)發現宇宙線100週年,2011年八月號的物理雙月刊便以宇宙線為主題,由筆者(黃明輝)主編,另外邀請三位學者撰文,說明宇宙線研究的歷史、研究現況與衍生的科學。其中由蕭先雄教授撰寫的文章中[2],由筆者建議加入一段有關熊子璥教授的貢獻。多年之後,熊子璥教授的嫡孫熊克儉先生閱讀到此文,才跟蕭先雄教授聯繫上。筆者感謝蕭教授轉告。熊克儉先生主動提出本文,更詳細地說明熊子璥教授的一些歷史軼事。經過筆者潤飾後,兩人共同發表本文。

 

本文轉載自《物理雙月刊》39 卷 6 月號 ,更多文章請見物理雙月刊網站

文章難易度
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

0

3
2

文字

分享

0
3
2
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3639字 ・閱讀時間約 7 分鐘

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!