Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

曬傷敷蘆薈有效嗎?簡易六步驟急救你曬傷的皮膚!

MedPartner_96
・2019/07/06 ・3473字 ・閱讀時間約 7 分鐘 ・SR值 500 ・六年級

-----廣告,請繼續往下閱讀-----

曬傷是許多人都有過的經驗,在歐洲的文獻回顧中發現有 20%-70% 的人在一年內有過不同程度曬傷的經驗(台灣應該比較少,但還是不少人曬傷),和中暑一樣,都是炎炎夏日中常會遇到的問題。

但大家對於曬傷的處理知識都正確嗎?在我們不科學隨機抽問了一小群網友後,發現大家的曬傷處理概念多數都不完整,在關鍵 6 步驟中平均只答對了 2.8 個⋯⋯ 因此我們決定從曬傷的機轉、處理以及預防完整濃縮成一篇知識文分享給大家。如同先前的文章,我們不太希望大家用「硬背」把步驟記下來,而是完整理解曬傷相關的成因和相關變化,一但發生的時候,才能隨機應變,用最接近正確的方式處理曬傷問題。

廢話不多說,我們開始上課囉!

急救之前,先了解「曬傷」是怎麼產生的?

曬傷其實跟灼傷是一樣的概念,主要是皮膚接受過量的紫外線照射後產生了熱傷害。紫外線中波長較長且能量較低的 UVA 容易造成曬黑、曬老,而波長較短且能量較強的 UVB 容易造成曬紅、曬傷。所以如果擔心曬傷的話,主要必須防護的目標是 UVB 為主。但多數人也擔心曬黑、曬老的問題,所以涵蓋 UVA 波段的完整防曬就很重要了。常見的曬傷依照嚴重的程度可以分為兩種:

  1. 較輕微、侷限在表皮層的曬傷。會呈現發紅脫皮的反應。屬於一度灼傷
  2. 較嚴重的曬傷,紫外線已經傷害到真皮層,可能觀察到出現水泡伴隨劇烈疼痛。屬於淺二度灼傷

怕大家沒辦法分辨,附上同一人,兩種不同程度曬傷的照片給大家參考:起水泡的區域就是曬傷至真皮層導致淺二度灼傷,而單純發紅的區域就是曬傷侷限於表皮的一度灼傷。

-----廣告,請繼續往下閱讀-----
沒擦防曬乳曬傷後三天的皮膚變化,發紅的一度灼傷與起水泡的淺二度灼傷。 圖/Axelv and available via CC BY-SA 3.0

但曬傷其實是一連串的皮膚病理變化,在剛開始的幾小時內,皮膚內的發炎細胞會開始作用,讓血管通透性增加,出現發炎的紅、腫、熱、痛反應。變紅的情形常在曬傷後即刻、或於曬後的 3-4 小時左右出現,通常在曬傷後 12-24 小時達到高峰。黑色素細胞也會因為紫外線的刺激,開始分泌黑色素,作為一種自衛機制,所以曬黑可以是很快的事,等到曬傷的紅色退了之後,曬黑的情況會在曬後的第二、三天左右最明顯。因曬傷而受損的表皮會接著開始脫落,這個階段會感覺自己跟一條蛇一樣,不停掉下皮屑。等到皮屑掉完,整個曬傷的急性期就差不多結束,留下的就是比以前黝黑的肌膚,要隨著時間才會慢慢淡化到原本的膚色了。

但不要以為曬傷只有這麼簡單,其實曬傷還有許多長期的問題,例如皮膚的老化長皺紋皮膚癌角質異常增厚,眼睛也可能因為過度日曬導致白內障。另外曬傷之後的皮膚,看起來似乎已經完全復原,不過一旦嚴重曬傷之後,該區域的皮膚即使復原了,也會變得比較脆弱、以後也可能更容易長斑。所以醫師才會這麼苦口婆心,整天在提醒大家要注意防曬,這不只是為了美麗的考量,更是健康的考量啊!

這邊插播曬傷的番外篇:如果觀察力很敏銳的話,你可能會發現通常皮膚顏色越白的人越容易曬傷,而皮膚越黑的人就越不容易曬傷。這主要跟皮膚內的黑色素分布密度有關,有興趣的朋友可以回去參考美白全攻略的這篇文章。其實黑色素雖然讓你看起來黑,但也同時具有吸收紫外線、清除自由基、保護膠原蛋白跟 DNA 的功能喔!

雖然多數的曬傷可以在曬後的三天左右逐漸自癒,但曬傷的急性期處理觀念還是很重要。以下我們依照美國皮膚科醫學會有關曬傷處置的建議,依照台灣環境微調,給大家曬傷處理的關鍵步驟建議。

-----廣告,請繼續往下閱讀-----

曬傷處理六步驟:降溫、保濕、止痛、補水、避免感染、加強遮蔽

【冷水降溫】最簡單的做法是沖冷水澡,或者用毛巾沾冷水覆蓋在曬傷處,但建議避免用冰塊冰敷。因為冰敷雖有不錯的降溫效果,但曬傷受損的皮膚也較容易被凍傷。這跟灼傷急救的第一步概念完全一樣。

【保濕】沖完澡後,用毛巾輕輕拍乾身體,但不必完全擦乾,保留一些水分在皮膚上。並且擦上成分單純、無香精、無色素或其他刺激物質的保濕產品。防曬後鎮定用的蘆薈產品是可以考慮選用,但要注意的是,能夠產生鎮定效果的只有蘆薈裡面的蘆薈膠,它應該是透明無色的。如果你買的產品是綠色的,必定是添加了其他物質或色素,那就不建議使用。如果有人好心拿了整條蘆薈要給你用,請不要傻傻就整條抹得很開心。別忘了蘆薈的綠色外皮以及汁液是有刺激性的,只有中間透明的蘆薈膠才有用啊!

為了避免大家犯傻,貼上蘆薈玉照一張。外面那層綠色的,還有流出來的黃色汁液都是有刺激性的,只能用中間完全透明的那塊喔!有些網友會想用小黃瓜或西瓜皮這類東西來保濕,這不會不行,但僅限於輕微發紅的曬傷,如果有開放性傷口就不宜使用,而且其實效果不是很強啦⋯⋯

外面那層綠色的,還有流出來的黃色汁液都是有刺激性的,只能用中間完全透明的!圖/Max Pixel

止痛】如果皮膚真的很痛,可以考慮使用局部外用低濃度類固醇藥膏,但如果有破皮的區域就不能使用不能使用局部麻醉效果的藥膏以避免刺激或產生過敏反應。如果還是很痛,可考慮使用口服阿斯匹靈 (Aspirin)、Ibuprophen 、乙醯胺酚 (Acetaminophen) 等非類固醇止痛藥,但不建議使用口服類固醇止痛。

-----廣告,請繼續往下閱讀-----

千萬不要去抹什麼牙膏、醬油這些怪東西,那不但沒幫助還增加感染風險!

補充水分】曬傷會導致角質層鎖水的能力下降,因此體內的水分容易流失。補充充足的水分可以降低脫水的風險,也能緩減其他劇烈曝曬後的不適,例如中暑。至於補水的方式,直接飲水就可以,有些人會想去打點滴,在多數狀況下沒有必要。

不要戳破水泡】假如曬傷嚴重到起水泡的話,應該讓水泡自己消掉、癒合。刻意弄破水泡會增加感染的風險。如果水泡不小心破了,請用生理食鹽水沖乾淨後就醫。如果水泡面積很大,那代表曬傷嚴重,應該要直接就醫。

加強物理性防曬】在曬傷復原期間,儘量用衣物、傘、帽遮蔽的方式儘量防曬。這時候受損的皮膚已經不適合塗抹防曬產品了,只能儘量避免曝曬,不得已要出門時,就用物理性的方式加強遮蔽,避免已經受傷的皮膚繼續受到紫外線的傷害。

依照上面的 6 點關鍵操作,就可以有效控制曬傷的情形不要惡化,讓皮膚儘速復原。另外要提醒的是,如果有嚴重的大片曬傷合併水泡,或有其他嚴重熱傷害的症狀例如:體溫上升發燒、劇烈頭痛、意識狀態不清、噁心、嘔吐、視力模糊或昏迷的情況,請務必直接就醫不要拖延喔!

-----廣告,請繼續往下閱讀-----

與其事後急救,不如加強防曬觀念吧!

不過大家都知道,預防重於治療,與其曬傷之後來想怎麼處理,不如一開始就好好預防曬傷發生。接下來跟大家分享預防曬傷的關鍵。

最簡單的方式就是避免在上午 10 點至下午 3 點這段紫外線最猛烈的時間出門。如果不得已要出門,請搭配使用防曬的帽子、長袖深色衣物、外套、陽傘、太陽眼鏡等等。有關防曬衣物的選用,可以參考這篇有關UPF的介紹文章。這些儘量都能做到後,再搭配防曬乳使用。需要特別注意的是,許多曬傷都是在海邊發生,關鍵原因常是因為沒有補擦防曬產品。如果要下水,請務必注意你選的防曬產品的抗水能力,至於要怎麼看,請回去複習這篇文章

以上的這些重點都能做到,相信大家一定可以安心度過這個夏天啦!

  1. American Academy of Dermatology : How to treat sunburn?
  2. Uptodate: Patient education: Sunburn (Beyond the Basics)
  3. Uptodate: Sunburn
  4. Cosmeceuticals, 3rd edition
  5. 台灣藥粧品學研習專業小組討論講義(邱品齊醫師提供)
  6. 衛生福利部疾病管制署

-----廣告,請繼續往下閱讀-----
文章難易度
MedPartner_96
49 篇文章 ・ 18 位粉絲
一位醫師用一年時間和100萬,夢想用正確醫美和保養知識扭轉亂象的過程。 Med,是Medicine,醫學的縮解。Med 唸起來也是「美的」。我們希望用醫學專業,分享更多美的知識。Partner則是我們對彼此關係的想像。我們認為醫師和求診者不只是醫病關係,更應該是夥伴關係。 如果您也認同我們的理想,歡迎和我們一起傳播更多正確的醫美知識。 我們的內容製作,完全由MedPartner專業醫療團隊負責,拒絕任何業配。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
0

文字

分享

0
4
0
榨完果汁,手起水泡?!——植物性感光性皮膚炎
胡中行_96
・2023/04/10 ・1826字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

有個澳洲男童的雙臂,長了些大水泡。第一家醫院的醫師,認為是接觸性皮膚炎(contact dermatitis)。可是 8 歲小孩成天摸東摸西,誰曉得他到底碰了什麼玩意兒。母親眼見病況持續惡化,又帶他去第二家醫院求助。正巧在那裏任職的某護理人員,不久前遇過雷同的病例。她鐵口直斷,說這是英文俗稱瑪格麗特灼傷(margarita burn)的植物性感光性皮膚炎(phytophotodermatitis)。[1]

圖/Estúdio Bloom on Unsplash

植物性感光性皮膚炎

男童的住家旁有棵萊姆樹,他先前採了果子榨汁。[1]在戶外享用瑪格麗特調酒會惹來的毛病,[2]就這麼找上滿手果汁的男童,[1]罪魁禍首正是萊姆。為了抵禦外侮,萊姆檸檬柳橙葡萄柚無花果芫荽香芹(又稱「荷蘭芹」或「巴西里」)、西洋芹胡蘿蔔歐防風等蔬果,都有含量不一的呋喃香豆素(furocoumarins)。[1, 3, 4]在人工育種的過程中,人類多半期望加強有利農作物存活的特質。然而,當它們自我防衛的能力過於卓越,自作孽的人類就難免受害。[3]

男孩榨果汁的時候,正值南半球的夏季,艷陽高照。[1]陽光下,呋喃香豆素會破壞皮膚:一方面被紫外線活化後,與細胞內的核酸結合;另方面直接損傷細胞膜並導致水腫。總之,雙管齊下,殺死了細胞,皮膚於是出現一連串的症狀。[2]此時,若再加上流汗、高溫和潮溼等因素,則情況會更加嚴峻。因此,酒保、超市雇員、農業工作者,以及熱帶地區的居民與遊客,都是高危險群。[3]

有別於某些表徵相似的皮膚問題,植物性感光性皮膚炎雖然會痛,但不會非常癢,而且主要侷限於手掌手臂嘴唇等接觸到病源的部位。這些特徵多少有助於鑑別診斷。[3]不過話說回來,偶爾也有特例,比方《美國家庭醫學委員會期刊》(Journal of the American Board of Family Medicine),就曾報導一名26歲的女性,其患部為下腹和大腿上半截。[2]不曉得是不是泳池派對上,衣物遮蔽範圍較小,而潑濺到萊姆汁的緣故。

-----廣告,請繼續往下閱讀-----

植物性感光性皮膚炎的症狀,通常不會立刻出現。該名女子是在用萊姆汁調酒後 7 小時發作;而澳洲男童則有間隔幾天。一般病程由冒出紅色的疹子或斑塊開始;接著變成燙傷般的水泡;最終色素還會過度沉澱。[2]從發病到康復,前後1、2 週至數月不等,有時候延續幾年。[3]沉澱的黑色素,則會在幾個月後消失。[2]

接觸萊姆後:上下兩排,從左到右,為(非本文案例)第 2 到 10 天的皮膚情形。圖/Katykidk on Wikimedia Commons(CC BY-SA 4.0)

預防

遠離病源當然是預防疾病的最佳方法,只是生活中很難完全不碰含有呋喃香豆素的食物和飲料。非得接觸不可時,必要30 分鐘至 2 小時內,將皮膚清洗乾淨,以減少吸收。[2, 3]另外,防曬油或許有助於減少色素沉澱,卻不見得能杜絕發炎。[3]

治療

植物性感光性皮膚炎儘管症狀看起來可怕,其實基本上會自行恢復,而且沒有長遠的後遺症。除非患部超過身體總表面積的 30%,或是有嚴重的發炎、壞死,得要專業的傷口療護,不然無需特別考慮就醫。針對暫時性的不適,輕微的情況可以採用濕潤的傷口敷料[2]至於hydrocortisone一類的短效皮質類固醇,或者抗組織胺,則適用於疼痛難耐的中度症狀。[2, 3]另外,如果不想依賴藥物,冰敷也是一種止痛的方法。[3]最重要的是,病患絕對要避免陽光照射,並且不得接觸光敏感物質,[2]例如:上述的蔬果和某些特定藥物(下圖)。[5]

光毒性:高劑量可能影響任何人的曝曬部位;光過敏性:低劑量就使過敏者皮膚發炎,或會超過光照範圍。圖/參考資料 5(CC BY-SA 3.0)

  

-----廣告,請繼續往下閱讀-----
  1. MacKenzie B, Herbert B. (07 FEB 2023) ‘Byron Shire boy hospitalised with ‘margarita burns’ after juicing limes and going in the sun’. ABC News.
  2. Maniam G, Light KM, Wilson J. (2021) ‘Margarita Burn: Recognition and Treatment of Phytophotodermatitis’. Journal of the American Board of Family Medicine, 34(2):398-401.
  3. Johnson-Arbor K. ‘Lime Juice + Sun Can Cause Skin Rashes’. Poison Control by U.S. National Capital Poison Center. (Accessed on 08 FEB 2023)
  4. Melough MM, Lee SG, Cho E. (2017) ‘Identification and Quantitation of Furocoumarin Contents in Popularly Consumed Foods in the U.S. using UPLC-MS/MS’. Federation of American Societies for Experimental Biology, 31(S1):790.15.
  5. 注意光敏感藥物 不慎恐引發曬傷及皮膚炎」(10 SEP 2018)財團法人藥害救濟基金會
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。