0

2
1

文字

分享

0
2
1

炎熱的夏天為什麼總覺得馬路上有水?海市蜃樓的原理——《跟著網紅老師玩科學》

時報出版_96
・2019/08/25 ・3039字 ・閱讀時間約 6 分鐘 ・SR值 519 ・六年級

不知道大家在炎熱的夏天,有沒有看過這樣一個現象:

在不遠的前方,路面上好像有一灘水,還映出了前車的倒影,但我們走近一看,其實路面上根本沒有水。

你並沒有出現幻覺,這是一種光的折射和全反射現象,通常稱為「海市蜃樓」。

馬路上似乎有著前方車子的水中倒影。圖/《跟著網紅老師玩科學》提供

原來,這是因為光線會轉彎

我們說過光在不同介質間傳播的時候,方向通常會發生變化。例如一束光從空氣斜射進入水中,會向下偏折。出現折射的原因是因為光在不同介質中的傳播速度不同。人們用折射率 n 表示光在不同介質中傳播速度的不同,折射率 n 等於真空中光速 c 與介質中光速 v 的比: n = cv ,也就是說,介質的折射率 n 愈大,光在介質中傳播的速度 v 愈小。

顯然,真空中光速 v = c ,折射率 n = 1。空氣中光速接近於真空中光速,因此,其他介質中光速都小於真空中光速,折射率 n>1 。

-----廣告,請繼續往下閱讀-----
介質 折射率
空氣 1.0003
1.309
水(20℃) 1.333
普通酒精 1.360
麵粉 1.434
玻璃 1.500
翡翠 1.570
紅寶石 1.770
水晶 2.000
鑽石 2.471

折射率主要由介質材料所決定,但是與光的波長也有一定關係,這就是上述的色散現象,上表中的折射率指的是這種材料對光的平均折射率。

光線在折射率不同的兩種材料中傳播時,角度的關係滿足司乃爾定律,用荷蘭物理學家威理博.司乃爾的名字命名。

在司乃爾定律裡,當光由介質1傳播到介質2,兩種介質的折射率n及與法線的夾角θ關係為:n1sinθ1=n2sinθ2。圖/《跟著網紅老師玩科學》提供

其中 n 是折射率, θ 是介質中光線與法線的夾角, sinθ 是正弦函數,在 0 ~ 90° 的區間內是一個遞增函數,也就是說,角度 θ 愈大, sinθ 也會愈大。透過這個公式我們就會發現,如果材料的折射率 n 比較大,介質中的角度 θ 就小,這種介質就稱為「光密介質」;如果材料的折射率 n 比較小,介質中的角度 θ 就大,這種介質就稱為「光疏介質」。

例如空氣相對於水就是光疏介質,水相對於空氣就是光密介質。光從空氣射入水中,折射率變大,折射角小於入射角,因此光線向法線偏折。

-----廣告,請繼續往下閱讀-----

走出不去的光:全反射現象

如果光線從水中射入空氣中,情況又是如何呢?由於水是光密介質,角度較小,空氣是光疏介質,角度較大,因此光線會向水面偏折。如果增大水中光線的入射角,空氣中的折射角也會增大,在某個時刻,空氣中的折射角達到 90° ,此時就稱為「掠出射」。如果繼續增大入射角,折射光線無論折射向哪裡都不合理。此時會出現一種奇特的現象,折射光線消失,只剩下反射光線,這種現象就稱為「全反射」。

虛線箭頭為「掠出射」,此時折射角到達了 90°,而灰色箭頭則是「全反射」,此時光線被反射回水裡。圖/《跟著網紅老師玩科學》提供

全反射在生活中有很多應用,例如光纖就是利用光線在內芯和外套之間反覆全反射傳播訊號。

光纖即是運用全反射的原理,讓光快速的傳播。圖/《跟著網紅老師玩科學》提供

所謂的海市蜃樓,究竟從何而來呢?

現在我們就可以解釋「海市蜃樓」了,先說說什麼叫「蜃」呢?

古老的傳說裡,龍有眾多的子嗣,蜃則是其中一個大有來頭的兒子。圖/《跟著網紅老師玩科學》提供

龍生九子,各不相同,其中有一個兒子就叫蜃,蜃喜歡吞雲吐霧,在海上把東西都吞到肚子裡,一會兒又吐出來,這時人們就可以看到有些東西浮在海平面上。這只是一種神話傳說,「海市蜃樓」實際上是一種光的折射現象,在海洋和沙漠中都可能出現。

-----廣告,請繼續往下閱讀-----
傳說蜃會在海上把所有東西吞到肚子裡,再吐出來,讓人們看到各式各樣不可思議的事物漂浮在海面上。圖/《跟著網紅老師玩科學》提供

在海洋上,海水比熱更大,也就是說,在接受太陽照射時,海水不容易升溫。在強烈的太陽照射下,靠近海水的地方,空氣溫度比較低,密度較大,折射率較大,屬於光密介質;高層空氣溫度較高,空氣受熱膨脹,密度較小,折射率較小,是光疏介質。光線從光密介質射向光疏介質,就像從水中射向空氣一樣,折射角變大,光線會趨於水準。假如海面上有一艘船,這艘船反射出的光線向上射,就會在各個不同的空氣層之間發生折射,發生彎折。

當光線從密度大逐漸傳播至密度小的介質,再全反射回密度大的介質。圖/《跟著網紅老師玩科學》提供

如果在還沒有發生全反射時,光線就進入人眼,就會以為物體在遠方的高處,形成正立的蜃景;如果光線在傳播過程中發生全反射,人們逆著光線看去,就會看到倒立的蜃景。

以海面上的海市蜃樓為例,光線的傳播路徑如實線所示,虛線則是人們以為物體所在的地方。圖/《跟著網紅老師玩科學》提供

沙漠中的海市蜃樓成因剛好與海洋上相反,沙子的比熱很小,所以靠近沙漠的地方,空氣溫度比較高。空氣受熱膨脹,密度較小,折射率較小,是光疏介質;上層的空氣距離沙子較遠,溫度相對較低,空氣密度相對較大,折射率較大,也就形成了光密介質。光線從上向下照射時,從光密介質進入光疏介質,相當於從水射向空氣,折射角變大,光線偏向水準。當折射角增大到一定程度時,就會發生全反射而向上照射。

當光線從密度大逐漸傳播至密度小的介質,再全反射回密度大的介質。圖/《跟著網紅老師玩科學》提供

例如有一朵雲彩飄在空中,反射的光線經過折射和全反射被地面上的人觀察到。大腦會認為光線依然是直線傳播,因此判定雲彩在地下。雲彩不會在地下,所以人們會認為地面上有一個可以反射光線的物質,那就是水,這就是沙漠中海市蜃樓的原理。由於沙漠中沙子的溫度非常高,形成蜃景的光線在靠近沙子時一定會發生全反射,所以在沙漠中的海市蜃樓都是倒像。

-----廣告,請繼續往下閱讀-----
在沙漠的海市蜃樓裡,光線的傳播路徑如實線所示,虛線則是人們以為物體所在的地方。圖/《跟著網紅老師玩科學》提供

炎熱的夏天,馬路上的溫度也非常高,形成的效果與沙漠相同。在靠近地面的位置,光線很容易發生全反射,映出車輛的倒影,所以就會讓人們誤以為地面上有水。下次再遇到這種現象,別再被你的眼睛欺騙了哦!

——本文摘自《跟著網紅老師玩科學》,2019 年 4 月,時報出版

文章難易度
時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

3

10
2

文字

分享

3
10
2
水面艦如何找到潛水艇?潛水艇如何隱藏自己?——潛艦與反潛的捉迷藏
PanSci_96
・2023/11/25 ・5953字 ・閱讀時間約 12 分鐘

潛水艇到底有多重要?

最近關於潛水艇的新聞可不少,首艘國造潛艦「海鯤號」下水典禮、中國 093 潛艇「疑似」失事、前陣子還有烏克蘭使用導彈與無人機成功襲擊俄羅斯基洛級潛艇的新聞,潛水艇的關注度一時間高了不少。

但是你一定好奇,潛水艇對國防來說,真的很重要嗎?還有,現代觀測技術那麼發達,在這些儀器的眼皮之下,潛艇真的還能保持隱形嗎?

反潛方怎麼找到藏匿海中的潛艦?

潛水艇以安靜、隱蔽著稱,有著極重要的戰略價值,不僅可以水下布雷、隱蔽投送兵力與物資;它難以被發現的特性,更是打擊水面艦的刺客,往往能讓敵人不敢越雷池一步。

-----廣告,請繼續往下閱讀-----

當然,要造一艘能潛在水下的潛艇肯定不簡單,畢竟如果在水面下出事了,很難立即取得救援,安全的要求遠高於其他載具。另一方面,以隱蔽為最高原則的潛艦,從引擎、外型、武器到主動聲納,都需要新科技的改進,來讓自己發出的聲音降到最低。

但潛艦與反潛就像臥虎捉藏龍,如果能隨時掌握這隻水中蛟龍的動向,潛艦的威懾力就會大幅降低,甚至能將其一網打盡。因此相對地,隱蔽的技術進步時,反潛的技術也有所突破,透過光學、聲學、磁場等技術,要讓潛艦原形畢露。

潛艦與反潛就像臥虎捉藏龍。圖/imdb

既然我們知道潛艦的隱蔽性是最高考量,現在我們就站在反潛方,來看看如何抓出一艘潛水艇。
主動偵查其實跟「通訊」很像,都是傳送一個訊息到目標物,再接收傳回來的訊號。只是通訊的訊號是對方主動回傳回來的。主動偵查呢,則是訊號碰到目標物再反射回來被我們接收。沒錯,這跟蝙蝠的回聲定位很像,只是一個在水面上,一個在水裡。

為什麼水中使用的是「聲納」而非「雷達」?

現代遠距無線傳輸的方式主要有兩種,電磁波通訊與聲波通訊。在水面以上,我們通常以電磁波傳輸,因為在空氣中這麼做最有效率,因此不論是無線通訊還是手機微波訊號,多是以電磁波的形式在傳輸。
可惜這個方法到水中就不管用了,為什麼呢?電磁波穿過水的時候會因為兩個原因,讓強度快速衰減。一是電磁波容易被水吸收,二是電磁波與水分子碰撞會產生散射,舉例來說,太陽光也是電磁波的一種,而太陽光就會因為在海水中散射,而讓海看起來是藍色。

-----廣告,請繼續往下閱讀-----
太陽光就會因為在海水中散射,而讓海看起來是藍色。圖/unsplash

這種電磁波衰減的程度有多少呢?具體來說,在最清澈的海水中,可見光每前進 1 公尺,亮度就會衰減 4% 。如果想使用無線電通訊,以一個頻率 1000 赫茲的電磁波來說,每向前進一千碼(大約 900 公尺),訊號強度就會減少 1300 分貝。這邊說明一下,「分貝 dB 」不只是聲音音量的單位,而是可以用在各種需要表達強度比例的單位。

電磁波每減少 10 分貝,就意味能量減小 10 倍。圖/PanSci YouTube

舉例來說,電磁波每減少 10 分貝,就意味能量減小 10 倍。在前進一千碼時減少 1300 分貝,就意味能量會衰退 10 的 130 次方倍,小到等於沒有。在實務上,通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,如果從電磁波換成低頻聲波,每一千碼的損失約為 0.01 分貝,跟電磁波相比起來可以說是幾乎沒有損失。

通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,低頻聲波可以說是幾乎沒有損失。圖/PanSci YouTube

因此在水中,大家聽到的不會是什麼「雷達」,因為雷達(RADAR)的全名是 Radio Detection and Ranging ,是使用電磁波偵查的技術。在水裡我們用的是「聲納」,是利用聲音當傳輸訊息與探知物體的手段。

此時蝙蝠的回聲定位使漆黑水底頓時明亮起來,聲波在海裡的傳播速度約為每秒 1500 公尺,只要計算我們發出的聲波與接收到聲波的時間差,我們就能辨別物體的距離。例如我們在聲波發出後的 10 秒後接收到反彈的訊號,就代表聲波來回走了 10 秒共 1 萬 5 千公尺的距離,我們和目標物就是這個距離的一半,也就是 7 千 5 百公尺。

-----廣告,請繼續往下閱讀-----

聲納裝載潛水艇上可以成為潛水艇的眼睛,裝在水面艦上,可以成為抓出潛水艇的掃描儀。潛水艇沒有聲納,姑且可以靠海圖小心航行,水面艦沒有聲納,面對潛水艇就只能海底撈針。

潛艦與反潛技術的發展

潛水艇在第一次世界大戰中開始展現出重要的戰略價值,其中最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。當時德國的對手英國是個島國,因此便想到利用潛艦封鎖英國,無論是軍艦或商船一律擊沉,希望能拖垮英國的經濟。雖然德國最後未取得戰爭勝利,但潛水艇也確實擊沉了多艘協約國的船艦,立下的戰績是有目共睹。

最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。圖/wikipedia

有鑑於此,反潛聲納的技術由此萌芽。第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。 1915 年,第一個潛艇探測器「ASDIC」開始在英國海軍的艦艇上被運用。 1931 年,美國也發明了潛艇偵測裝置,並稱它為「SONAR」,顯然這名字取得比較好,也成為現在最常稱呼這種技術的名稱,聲納。

第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。圖/PanSci YouTube

至此,水面艦就像開了白眼一樣,潛水艇終於無所遁形⋯⋯真的嗎?聲納既然已經發明了百年,為何潛水艇至今似乎仍保有隱蔽優勢呢?在科技發達的現代,聲納為何還是無法抓出所有潛艇?

-----廣告,請繼續往下閱讀-----

很可惜,事情沒有那麼簡單。當大家帶著最新科技和設備準備挑戰潛水艇這個可敬對手,卻突然被隱藏 BOSS 跳出來狠狠地打了臉,他就是:物理。

什麼是「陰影區」?潛艦能夠躲藏的位置?

讓我們回到大家都做過的實驗,準備一個透明杯子裝水,把筷子插入水中。因為光線在穿過不同介質的介面時,會因為速度改變而轉彎,所以筷子插到水杯中會出現偏折,水面上跟下呈現不同角度,看起來就像是被折彎了。

光線在穿過不同介質的介面時,會因為速度改變而轉彎,聲音也是。圖/wikipedia

聲音跟光一樣都是「波」的一種,因此在穿過不同密度的介質時也會產生折射,路徑出現偏折。你說道理我都懂,但海裡面只有水,哪來的不同介質?

還真的有,那就是隨著經緯度與深度變化,鹽分、水溫、密度都不同的海水。鹽分、水溫、密度的升高,都會導致聲速變快。而這三者在海中的各處都不會是固定的。例如在不同深度的海水中,深度 1000 公尺內上層海域的斜溫層,當深度越深離海面越遠,海水越得不到太陽的加溫,因此海溫快速驟減,而海溫的降低也會導致聲速降低。深度超過 1000 公尺以後的深海等溫層,溫度、鹽分的變化趨緩,此時壓力會隨著深度增加而增加,海水密度開始小幅度上升,因此聲速緩慢增加。

-----廣告,請繼續往下閱讀-----
每一處海水根據鹽分、水溫、密度不同,都會影響聲速。圖/PanSci YouTube

每一層有不同聲速的海水,就等於是不同的介質,聲波會在不同層的海水之間產生折射。類似的現象也發生在空氣中。在炙熱的沙漠或是天氣熱的柏油路面,偶而會因為空氣的密度分布不均,光線在不同密度的空氣間產生偏折,出現影像在空中出現的錯覺,也就是海市蜃樓的現象。

重點來了,在海裡的折射會是怎麼樣的呢?假設我們有一艘潛的足夠深的潛艇,海面附近的聲納發出一道聲音斜向海洋深處前進,根據決定折射角度的斯乃爾定律,當聲速上升,聲音會偏離介面的法線,偏向兩個液體的交界面。在海中的實際表現,就是聲音產生偏折,漸漸與海平面平行,當偏折的角度超過 90 度,最後甚至會向上偏折,產生全反射。

而斯乃爾定律也告訴我們,偏折的程度跟入射角有關,當角度超過臨界角時,才會產生全反射。根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。如果潛艇躲藏在這個位置,那麼水面上的敵人就永遠也無法透過主動聲納發現你。

根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。圖/PanSci YouTube

除此之外,從聲納路徑圖可以看得出來,在水中聲納走的路徑像是 U 字型一樣,會不斷在海面反射,在海中全反射。而線與線之間的空白處,是聲波不會經過的地方,也屬於陰影區。因此實際從水面偵測潛艦時,只有在碰到這些線的時候會收到該點的訊號,如果要抓出敵人,就要在獲知訊號時抓緊時間。

-----廣告,請繼續往下閱讀-----

如何減少陰影區範圍?

為了減少這些陰影區死角的範圍,也有一些有趣但複雜的想法,例如使用拖曳式陣列聲納,一個點不夠,那我就拉一排,減少盲區。或是透過小角度的海底反射,來覆蓋近距離內的更多範圍。然而這也不會只是畫一張圖那麼簡單,平常聲納就要過濾來自自身引擎的噪音,或是因為海底等非目標物的環境反射。多一次反射,就意味會多一道訊號反射到聲納中,要如何將這些訊號區分開來,判斷哪些是海床訊號,哪些是敵艦訊號,就各憑本事。

沒錯,就算有了聲納系統還不夠,海底資訊的掌握度和後期運算更是兵家相爭的關鍵。你想想,就算你知道聲音會隨著密度轉彎,但你知道眼前海域每個深度的實際密度嗎?如果你不知道這些資料,就算接收到訊號,你真的算得出敵艦的位置嗎?

舉例來說,冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。當你在不同緯度,不同海域作戰時,所需要的資料也不相同。

冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。圖/PanSci YouTube

台灣冬夏兩季分別受東北季風與西南季風吹拂,周圍又有黑潮、中國沿岸流等洋流影響,各層水溫隨季節變化影響劇烈,台灣海峽又因地形原因海流複雜,被稱為黑水溝。在此之上,能掌握好周圍的海流活動,除了能兼顧潛艦的航行安全外,也有助於提升潛艦的隱蔽性。

-----廣告,請繼續往下閱讀-----

潛艦與反潛的無數過招?

海洋的複雜性,構成了潛艦至今仍能維持隱蔽優勢的原因。而這場臥虎捉藏龍的對決到此還沒有結束,我們只介紹了第一招,後面大概還有 99 種招式等待要過招。例如潛艦關掉主動聲納後,如何靠被動聲納安全航行並鎖定目標?

除了透過聲納,搭載磁性探測儀的反潛機怎麼從異常磁場訊號中辨別海底的金屬潛艇?又或是水面上的聲納會被全反射,那麼改變深度的話是不是就能解決了?實際上,既然在海面上聽不見,反過來把聲納放進海中,放在海水密度最低的「深海聲道通道軸」這個如同光纖般的區域,就能清楚聽到來自遠方的聲音。

諸如此類的軍事科技對弈,就像其他科技一樣,對決永遠不會結束。如果你還有那些想了解的面向,不論是潛艦或是其他軍事科技,也歡迎留言告訴我們。

最後也想問問大家,你覺得潛水艇最大的戰略價值是什麼呢?

  1. 多一種隱蔽武器,多一種威嚇,提升敵人的作戰成本
  2. 突破封鎖線,在關鍵時刻打擊敵人的大型艦艇
  3. 間諜作戰,深入敵後蒐集電訊號與艦艇聲譜特徵,偷偷獲取情報

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 3
PanSci_96
1219 篇文章 ・ 2195 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

4
2

文字

分享

1
4
2
舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎
PanSci_96
・2023/09/30 ・3674字 ・閱讀時間約 7 分鐘

J……J 個是!這顆石頭一接觸到我的舌頭,它就像火一樣燃燒,同時留下苦澀和尿味的味道,在這之後還留下了一點甜味。

圖/Youtube

這,這一顆石頭不一樣,它有酸辣味和硫酸鹽味,卻同時給我一種難以形容的愉悅感!就像在品嘗紅酒的酸味一樣!

圖/Youtube

等等,我並沒有壞掉,我現在做的事是某些地質學家和古生物學家真的會做的事,而且這件事還得了諾貝爾獎!只是是搞笑諾貝爾獎。

搞笑歸搞笑,舔石頭卻真的是再實用不過的方法。因為,舌頭真的是太好用了!

-----廣告,請繼續往下閱讀-----

地質地科系祖傳秘招——舔石大法!

2023 年的搞笑諾貝爾獎的化學與地質獎頒給了地質學家揚.扎拉謝維奇,得獎的原因不是因為特定研究,而是它整理了地質學家和古生物學家「品嘗」岩石和化石的「研究史」。

有在跟我們直播的泛糰肯定知道,在今年搞笑諾貝爾獎頒發的隔週,上個月的 9 月 18 日,我們在 YouTube 官方舉辦的 2023 YouTube Festival 活動中,辦了一個實體見面會。在見面會中我們介紹了今年其中三個搞笑諾貝爾獎,其中就包含這則「地質學家為什麼要舔石頭」。另外兩個獎項分別是操縱死靈蜘蛛,和研究為什麼上課為什麼會令人感到無聊。這場見面會也有同時開直播,連結放在右上角的資訊卡,裡面提到不少有趣的觀點,歡迎去直播存檔複習。

當天,除了就像開場演繹的,不同岩石真的嚐起來味道不一樣以外,有一個地科系的觀眾,現場分享了另一個有趣的觀點。但先說聲抱歉,那時候觀眾手持的麥克風訊號沒有進到我們的混音器,所以在線上收聽的朋友沒有聽到前半段。

我們這邊重新轉述一下,這位觀眾說早在這個獎項頒發前,就知道用舔石頭來辨識種類的這種方法了,因為他的老師就是這麼教他的!沒想到,這竟然是地科與地質系祖傳的秘技嗎!

-----廣告,請繼續往下閱讀-----

舌頭比手指還好用?

但除了味道外,觀眾還分享了一個這次搞諾沒有提到的原因,就是舌頭的觸覺可能比手還靈敏。某些岩石例如砂岩跟頁岩,可能用手摸不出差別;用舌頭舔,竟然就能分別出差別。

什麼,舌頭真的這麼厲害嗎?想想好像也是,我們吃東西的時候會用舌頭去感受食物的形狀,這些觸感甚至也是我們品嘗食物時,了解食物的重要一環。除此之外,我們還可以找出食物中的魚刺,或是卡在牙縫中的菜渣,有些人還能幫櫻桃梗打結呢。

圖/Giphy

但好像從來沒有人拿舌頭和手去做比較,因為只要講到觸覺,我們第一時間就會認為手指更加靈敏。

其實,還真的找到有人研究過,一群俄亥俄州立大學食品科技系的實驗團隊,就研究了這個問題。他們準備了幾個形狀極為相似的樣品,樣品的長度、厚度、缺口的大小都一樣,只有缺口處的傾角不同。

-----廣告,請繼續往下閱讀-----

傾角從 45 度到 90 度都有,每塊的角度以 5 度為間隔。受試者必須拿起兩塊樣品,並在蒙眼的情況下,分別用摸或舔的方式來分辨出兩者分別為哪一塊。其中一塊始終是 90 度,另一塊則是從 65 度開始角度遞增。

這次的實驗有 30 位受試者,結果表明,使用手指來分辨兩塊樣品,平均要兩塊的角度差超過 19.81 度時,才能分辨出差異。如果用舌頭舔呢?只要兩者的角度差超過 12.75 度,就能分辨出差異!比用手摸的角度差小了許多,也就是舌頭真的比較靈敏。

實驗結果數據,JND(Just Noticeable Difference)表受試者在樣品相差幾度時能感受到差異。圖/Comparison of The Tactile Sensitivity of Tongue and Fingertip Using a Pure-Tactile Task

當然,這個實驗還有兩個方向值得討論,一是這只針對物體邊緣形狀的靈敏作分析,但觸覺有許多不同感受,例如紋理、粗糙程度等,所以可能每種觸覺做出來的實驗結果會不同。這個實驗看起來不難做,各位可以準備一些能放入嘴的材料,例如請朋友直接將比較硬的芭樂切成不同形狀來舔舔看差別,就能簡單復刻這個實驗甚至更改參數,有實際測試的觀眾也不要忘記留言告訴我們。我們這邊也同步徵求花京院來協助我們實驗。

而另一點是,關於舌頭為什麼有跟手指同等,甚至更強觸覺的生理機制,本篇研究僅止於現象探討,還未有深入研究。

-----廣告,請繼續往下閱讀-----
圖/Giphy

濕濕的石頭更好觀察?

除了味覺和觸覺外,舔石頭還有另一個重要的原因,就是濕潤的石頭紋理更清楚,更方便研究。

這應該大家都有經驗,在學校的大理石地板拖地,或是海邊的鵝卵石,沾到水之後,石頭的紋理都更加清楚,看起來也更漂亮。但這又是為什麼呢?

影響的原因有很多,但影響最大的,就是濕潤的表面讓石頭更「平」,產生類似拋光的效果。但為什麼磨平拋光,顏色就更好看呢?

我們知道光線照到鏡子會產生反射,但鏡子很平整,如果現在照射到的是一個凹凸不平的表面,光線就會往四處反射,這種現象稱為漫反射。當我們只想看石頭上的其中一點時,旁邊的光卻會雜亂的跑進我們的眼睛,影響到對比度。並且各種顏色的色光聚在一起會形成白光,因此這些漫反射而來的光線,就會以白光的形式被我們看到。白話文就是,物體的對比下降了,但是整體的亮度提高,變成我們常看到灰白色的石頭表面。

-----廣告,請繼續往下閱讀-----

直到石頭被拋光,或是因為濕潤產生拋光的效果,這些漫反射就會減少,石頭整體變得比較暗沉,但是斑紋之間的對比度提高了。這就是為什麼粗糙的石頭顯得灰白,浸濕之後卻呈現深沉而圖樣明顯的原因。

還沒完,薄薄一層水還會造成更多影響。例如,這層折射率介於空氣與石頭之間的介質,可以幫助光線稍微穿透岩石的表層後再反射出來,提供視覺上更多的紋理細節。如果將水換成木工中常使用的亮光漆,除了反射與折射外,亮光漆中的分子,還足以讓光線產生散射,讓你在上不同厚度的亮光漆時,能產生不同的顏色變化。

簡單來說,不論是水還是漆,這薄薄的一層介質,能像相機的鏡片一樣,透過光學調校,將更清楚、細節更多的影像送進相機的感光元件,也就是我們的眼睛上。而替換不同的鏡片,就能改變我們看到的樣子。

有介質存在於空氣與觀測物間時,光會產生折射,造成不同視覺效果。圖/askamathematician.com

這個看似玩笑的舔石頭研究,確實好像又有幾分認真的道理,我們自己在研究的時候,最開始也覺得超ㄎㄧㄤ,後來又發現能學到不少冷知識。

-----廣告,請繼續往下閱讀-----

最後也想調查一下,除了舔石頭以外,大家還對哪一則搞笑諾貝爾獎有興趣,希望我們也來講講呢?

  1. 帶電的筷子,能讓食物更好吃?
  2. 哪些人有倒著說話的特殊能力?
  3. 要多少人抬頭看天空,才會吸引路人跟著抬頭?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1219 篇文章 ・ 2195 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

3
0

文字

分享

1
3
0
【成語科學】海市蜃樓:「空中樓閣」和「沙漠綠洲」其實是不同的成像原理!
張之傑_96
・2023/07/14 ・1746字 ・閱讀時間約 3 分鐘

西元前 108 年,司馬遷成為史官,決定寫一部縱貫古今的史書。10 年後,他因故觸怒了漢武帝,遭到宮刑,羞憤之餘,更加努力,大約在西元前 91 年,也就是他 55 歲那年,完成了曠世巨著《史記》。

《史記》約 60 萬字,當時還沒有紙,是用竹簡寫的,這是多麼大的工程啊!《史記》的內容,由本紀、表、書、世家、列傳等 5 部份構成。本紀、世家和列傳,都是人物傳記。表是年表。書的內容較雜,「天官書」以記載天象為主,其中有段話,大意是說,海中有種巨蛤(蜃),牠吐出的氣,會化為樓台、宮殿等景象。成語「海市蜃樓」和「空中樓閣」,就是從這段話演變而來的。

古人早已意識到,海市蜃樓是虛幻的,人們便用來比喻虛幻的事物。讓我們造兩個句吧。

他的想法虛幻不實,宛如海市蜃樓,根本無法實現。

我們築夢吧,即使是海市蜃樓,空歡喜一場又有何妨。

話題回到《史記》天官書的那段話,海市蜃樓果真是海中巨蛤吐氣形成的嗎?當然不是,它是個光學現象,稱為蜃景

-----廣告,請繼續往下閱讀-----

沙漠綠洲

冷空氣的密度較大,折射率也較大。當地面空氣的溫度和高空空氣的溫度差異甚大,光線從暖空氣層進入冷空氣層產生折射,就會出現景物的倒影。在沙漠地區,白天地面曬得很熱,最容易產生這種現象。由於看到的是景物的倒影,所以稱為下蜃景

「下蜃景」的成像原理。當大氣垂直方向的溫度差異很大,且「上冷下暖」時,由於冷空氣折射率較暖空氣大,光線由冷空氣進入暖空氣時會向冷空氣的方向偏折,最終光線會彎曲形成「凹向上」的軌跡(如圖中 b),大腦收到光線後,視覺皮層會將光線解讀成直線前進抵達眼睛(如圖中 c),產生地面上的倒影。圖/維基百科
在春天的莫哈維沙漠出現的「下蜃景」,路面上的「假水」,實際上是地面上方的「藍天」折射到地面的鏡像。圖/維基百科

許多沙漠探險的書中都說,探險家看到倒垂的樹影,還以為遠處有座湖泊呢!其實是下蜃景。夏季在空曠的高速公路上,常會看到遠處水汪汪一片,其實是折射到地面上的藍天,這是最常見的下蜃景。

空中樓閣

如果地面空氣較高空空氣的溫度低,會不會產生海市蜃樓現象?會的。海水的溫度較為恆定,即使夏日炎炎,也不容易曬熱。如果有冷水流過,水溫更低。下層空氣受到水溫的影響,有時溫度會比上層的空氣低,形成下冷上暖的反常現象。這時如因折射產生蜃景,會高出海面一些,所以稱為上蜃景

上蜃景(左)與下蜃景(右)的成像原理比較。上蜃景中,空氣「上暖下冷」,由上方暖空氣層進入下方冷空氣層的光線,會往冷空氣側偏折,光線最終形成彎曲且「凹向下」的軌跡(如左圖 1)。光線進入眼睛後,被大腦解讀成直線前進,產生空中的成像(如左圖 2)。圖/wikimedia
在日本富山縣魚津市拍攝到的「上蜃景」,原本地平線下的景物,被折射到地平線上方。圖/維基百科

海市蜃樓和地理位置、氣象條件等多種因素有關。近海岸處的海市蜃樓,通常出現在平靜無風的夏季。就全中國來說,山東蓬萊可能是出現最多的地方。2008 年 6 月 14 日在蓬萊所拍的一張照片,海面上浮現出當地名勝蓬萊閣的蜃景。注意看,它是不是較海平面高出一些?

-----廣告,請繼續往下閱讀-----
山東省蓬萊市海面拍攝到的上蜃景。圖/維基百科
所有討論 1
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。