Loading [MathJax]/extensions/tex2jax.js

0

3
1

文字

分享

0
3
1

炎熱的夏天為什麼總覺得馬路上有水?海市蜃樓的原理——《跟著網紅老師玩科學》

時報出版_96
・2019/08/25 ・3039字 ・閱讀時間約 6 分鐘 ・SR值 519 ・六年級

不知道大家在炎熱的夏天,有沒有看過這樣一個現象:

在不遠的前方,路面上好像有一灘水,還映出了前車的倒影,但我們走近一看,其實路面上根本沒有水。

你並沒有出現幻覺,這是一種光的折射和全反射現象,通常稱為「海市蜃樓」。

馬路上似乎有著前方車子的水中倒影。圖/《跟著網紅老師玩科學》提供

原來,這是因為光線會轉彎

我們說過光在不同介質間傳播的時候,方向通常會發生變化。例如一束光從空氣斜射進入水中,會向下偏折。出現折射的原因是因為光在不同介質中的傳播速度不同。人們用折射率 n 表示光在不同介質中傳播速度的不同,折射率 n 等於真空中光速 c 與介質中光速 v 的比: n = cv ,也就是說,介質的折射率 n 愈大,光在介質中傳播的速度 v 愈小。

顯然,真空中光速 v = c ,折射率 n = 1。空氣中光速接近於真空中光速,因此,其他介質中光速都小於真空中光速,折射率 n>1 。

-----廣告,請繼續往下閱讀-----
介質 折射率
空氣 1.0003
1.309
水(20℃) 1.333
普通酒精 1.360
麵粉 1.434
玻璃 1.500
翡翠 1.570
紅寶石 1.770
水晶 2.000
鑽石 2.471

折射率主要由介質材料所決定,但是與光的波長也有一定關係,這就是上述的色散現象,上表中的折射率指的是這種材料對光的平均折射率。

光線在折射率不同的兩種材料中傳播時,角度的關係滿足司乃爾定律,用荷蘭物理學家威理博.司乃爾的名字命名。

在司乃爾定律裡,當光由介質1傳播到介質2,兩種介質的折射率n及與法線的夾角θ關係為:n1sinθ1=n2sinθ2。圖/《跟著網紅老師玩科學》提供

其中 n 是折射率, θ 是介質中光線與法線的夾角, sinθ 是正弦函數,在 0 ~ 90° 的區間內是一個遞增函數,也就是說,角度 θ 愈大, sinθ 也會愈大。透過這個公式我們就會發現,如果材料的折射率 n 比較大,介質中的角度 θ 就小,這種介質就稱為「光密介質」;如果材料的折射率 n 比較小,介質中的角度 θ 就大,這種介質就稱為「光疏介質」。

例如空氣相對於水就是光疏介質,水相對於空氣就是光密介質。光從空氣射入水中,折射率變大,折射角小於入射角,因此光線向法線偏折。

-----廣告,請繼續往下閱讀-----

走出不去的光:全反射現象

如果光線從水中射入空氣中,情況又是如何呢?由於水是光密介質,角度較小,空氣是光疏介質,角度較大,因此光線會向水面偏折。如果增大水中光線的入射角,空氣中的折射角也會增大,在某個時刻,空氣中的折射角達到 90° ,此時就稱為「掠出射」。如果繼續增大入射角,折射光線無論折射向哪裡都不合理。此時會出現一種奇特的現象,折射光線消失,只剩下反射光線,這種現象就稱為「全反射」。

虛線箭頭為「掠出射」,此時折射角到達了 90°,而灰色箭頭則是「全反射」,此時光線被反射回水裡。圖/《跟著網紅老師玩科學》提供

全反射在生活中有很多應用,例如光纖就是利用光線在內芯和外套之間反覆全反射傳播訊號。

光纖即是運用全反射的原理,讓光快速的傳播。圖/《跟著網紅老師玩科學》提供

所謂的海市蜃樓,究竟從何而來呢?

現在我們就可以解釋「海市蜃樓」了,先說說什麼叫「蜃」呢?

古老的傳說裡,龍有眾多的子嗣,蜃則是其中一個大有來頭的兒子。圖/《跟著網紅老師玩科學》提供

龍生九子,各不相同,其中有一個兒子就叫蜃,蜃喜歡吞雲吐霧,在海上把東西都吞到肚子裡,一會兒又吐出來,這時人們就可以看到有些東西浮在海平面上。這只是一種神話傳說,「海市蜃樓」實際上是一種光的折射現象,在海洋和沙漠中都可能出現。

-----廣告,請繼續往下閱讀-----
傳說蜃會在海上把所有東西吞到肚子裡,再吐出來,讓人們看到各式各樣不可思議的事物漂浮在海面上。圖/《跟著網紅老師玩科學》提供

在海洋上,海水比熱更大,也就是說,在接受太陽照射時,海水不容易升溫。在強烈的太陽照射下,靠近海水的地方,空氣溫度比較低,密度較大,折射率較大,屬於光密介質;高層空氣溫度較高,空氣受熱膨脹,密度較小,折射率較小,是光疏介質。光線從光密介質射向光疏介質,就像從水中射向空氣一樣,折射角變大,光線會趨於水準。假如海面上有一艘船,這艘船反射出的光線向上射,就會在各個不同的空氣層之間發生折射,發生彎折。

當光線從密度大逐漸傳播至密度小的介質,再全反射回密度大的介質。圖/《跟著網紅老師玩科學》提供

如果在還沒有發生全反射時,光線就進入人眼,就會以為物體在遠方的高處,形成正立的蜃景;如果光線在傳播過程中發生全反射,人們逆著光線看去,就會看到倒立的蜃景。

以海面上的海市蜃樓為例,光線的傳播路徑如實線所示,虛線則是人們以為物體所在的地方。圖/《跟著網紅老師玩科學》提供

沙漠中的海市蜃樓成因剛好與海洋上相反,沙子的比熱很小,所以靠近沙漠的地方,空氣溫度比較高。空氣受熱膨脹,密度較小,折射率較小,是光疏介質;上層的空氣距離沙子較遠,溫度相對較低,空氣密度相對較大,折射率較大,也就形成了光密介質。光線從上向下照射時,從光密介質進入光疏介質,相當於從水射向空氣,折射角變大,光線偏向水準。當折射角增大到一定程度時,就會發生全反射而向上照射。

當光線從密度大逐漸傳播至密度小的介質,再全反射回密度大的介質。圖/《跟著網紅老師玩科學》提供

例如有一朵雲彩飄在空中,反射的光線經過折射和全反射被地面上的人觀察到。大腦會認為光線依然是直線傳播,因此判定雲彩在地下。雲彩不會在地下,所以人們會認為地面上有一個可以反射光線的物質,那就是水,這就是沙漠中海市蜃樓的原理。由於沙漠中沙子的溫度非常高,形成蜃景的光線在靠近沙子時一定會發生全反射,所以在沙漠中的海市蜃樓都是倒像。

-----廣告,請繼續往下閱讀-----
在沙漠的海市蜃樓裡,光線的傳播路徑如實線所示,虛線則是人們以為物體所在的地方。圖/《跟著網紅老師玩科學》提供

炎熱的夏天,馬路上的溫度也非常高,形成的效果與沙漠相同。在靠近地面的位置,光線很容易發生全反射,映出車輛的倒影,所以就會讓人們誤以為地面上有水。下次再遇到這種現象,別再被你的眼睛欺騙了哦!

——本文摘自《跟著網紅老師玩科學》,2019 年 4 月,時報出版

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

10
3

文字

分享

0
10
3
水面艦如何找到潛水艇?潛水艇如何隱藏自己?——潛艦與反潛的捉迷藏
PanSci_96
・2023/11/25 ・5953字 ・閱讀時間約 12 分鐘

潛水艇到底有多重要?

最近關於潛水艇的新聞可不少,首艘國造潛艦「海鯤號」下水典禮、中國 093 潛艇「疑似」失事、前陣子還有烏克蘭使用導彈與無人機成功襲擊俄羅斯基洛級潛艇的新聞,潛水艇的關注度一時間高了不少。

但是你一定好奇,潛水艇對國防來說,真的很重要嗎?還有,現代觀測技術那麼發達,在這些儀器的眼皮之下,潛艇真的還能保持隱形嗎?

反潛方怎麼找到藏匿海中的潛艦?

潛水艇以安靜、隱蔽著稱,有著極重要的戰略價值,不僅可以水下布雷、隱蔽投送兵力與物資;它難以被發現的特性,更是打擊水面艦的刺客,往往能讓敵人不敢越雷池一步。

-----廣告,請繼續往下閱讀-----

當然,要造一艘能潛在水下的潛艇肯定不簡單,畢竟如果在水面下出事了,很難立即取得救援,安全的要求遠高於其他載具。另一方面,以隱蔽為最高原則的潛艦,從引擎、外型、武器到主動聲納,都需要新科技的改進,來讓自己發出的聲音降到最低。

但潛艦與反潛就像臥虎捉藏龍,如果能隨時掌握這隻水中蛟龍的動向,潛艦的威懾力就會大幅降低,甚至能將其一網打盡。因此相對地,隱蔽的技術進步時,反潛的技術也有所突破,透過光學、聲學、磁場等技術,要讓潛艦原形畢露。

潛艦與反潛就像臥虎捉藏龍。圖/imdb

既然我們知道潛艦的隱蔽性是最高考量,現在我們就站在反潛方,來看看如何抓出一艘潛水艇。
主動偵查其實跟「通訊」很像,都是傳送一個訊息到目標物,再接收傳回來的訊號。只是通訊的訊號是對方主動回傳回來的。主動偵查呢,則是訊號碰到目標物再反射回來被我們接收。沒錯,這跟蝙蝠的回聲定位很像,只是一個在水面上,一個在水裡。

為什麼水中使用的是「聲納」而非「雷達」?

現代遠距無線傳輸的方式主要有兩種,電磁波通訊與聲波通訊。在水面以上,我們通常以電磁波傳輸,因為在空氣中這麼做最有效率,因此不論是無線通訊還是手機微波訊號,多是以電磁波的形式在傳輸。
可惜這個方法到水中就不管用了,為什麼呢?電磁波穿過水的時候會因為兩個原因,讓強度快速衰減。一是電磁波容易被水吸收,二是電磁波與水分子碰撞會產生散射,舉例來說,太陽光也是電磁波的一種,而太陽光就會因為在海水中散射,而讓海看起來是藍色。

-----廣告,請繼續往下閱讀-----
太陽光就會因為在海水中散射,而讓海看起來是藍色。圖/unsplash

這種電磁波衰減的程度有多少呢?具體來說,在最清澈的海水中,可見光每前進 1 公尺,亮度就會衰減 4% 。如果想使用無線電通訊,以一個頻率 1000 赫茲的電磁波來說,每向前進一千碼(大約 900 公尺),訊號強度就會減少 1300 分貝。這邊說明一下,「分貝 dB 」不只是聲音音量的單位,而是可以用在各種需要表達強度比例的單位。

電磁波每減少 10 分貝,就意味能量減小 10 倍。圖/PanSci YouTube

舉例來說,電磁波每減少 10 分貝,就意味能量減小 10 倍。在前進一千碼時減少 1300 分貝,就意味能量會衰退 10 的 130 次方倍,小到等於沒有。在實務上,通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,如果從電磁波換成低頻聲波,每一千碼的損失約為 0.01 分貝,跟電磁波相比起來可以說是幾乎沒有損失。

通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,低頻聲波可以說是幾乎沒有損失。圖/PanSci YouTube

因此在水中,大家聽到的不會是什麼「雷達」,因為雷達(RADAR)的全名是 Radio Detection and Ranging ,是使用電磁波偵查的技術。在水裡我們用的是「聲納」,是利用聲音當傳輸訊息與探知物體的手段。

此時蝙蝠的回聲定位使漆黑水底頓時明亮起來,聲波在海裡的傳播速度約為每秒 1500 公尺,只要計算我們發出的聲波與接收到聲波的時間差,我們就能辨別物體的距離。例如我們在聲波發出後的 10 秒後接收到反彈的訊號,就代表聲波來回走了 10 秒共 1 萬 5 千公尺的距離,我們和目標物就是這個距離的一半,也就是 7 千 5 百公尺。

-----廣告,請繼續往下閱讀-----

聲納裝載潛水艇上可以成為潛水艇的眼睛,裝在水面艦上,可以成為抓出潛水艇的掃描儀。潛水艇沒有聲納,姑且可以靠海圖小心航行,水面艦沒有聲納,面對潛水艇就只能海底撈針。

潛艦與反潛技術的發展

潛水艇在第一次世界大戰中開始展現出重要的戰略價值,其中最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。當時德國的對手英國是個島國,因此便想到利用潛艦封鎖英國,無論是軍艦或商船一律擊沉,希望能拖垮英國的經濟。雖然德國最後未取得戰爭勝利,但潛水艇也確實擊沉了多艘協約國的船艦,立下的戰績是有目共睹。

最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。圖/wikipedia

有鑑於此,反潛聲納的技術由此萌芽。第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。 1915 年,第一個潛艇探測器「ASDIC」開始在英國海軍的艦艇上被運用。 1931 年,美國也發明了潛艇偵測裝置,並稱它為「SONAR」,顯然這名字取得比較好,也成為現在最常稱呼這種技術的名稱,聲納。

第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。圖/PanSci YouTube

至此,水面艦就像開了白眼一樣,潛水艇終於無所遁形⋯⋯真的嗎?聲納既然已經發明了百年,為何潛水艇至今似乎仍保有隱蔽優勢呢?在科技發達的現代,聲納為何還是無法抓出所有潛艇?

-----廣告,請繼續往下閱讀-----

很可惜,事情沒有那麼簡單。當大家帶著最新科技和設備準備挑戰潛水艇這個可敬對手,卻突然被隱藏 BOSS 跳出來狠狠地打了臉,他就是:物理。

什麼是「陰影區」?潛艦能夠躲藏的位置?

讓我們回到大家都做過的實驗,準備一個透明杯子裝水,把筷子插入水中。因為光線在穿過不同介質的介面時,會因為速度改變而轉彎,所以筷子插到水杯中會出現偏折,水面上跟下呈現不同角度,看起來就像是被折彎了。

光線在穿過不同介質的介面時,會因為速度改變而轉彎,聲音也是。圖/wikipedia

聲音跟光一樣都是「波」的一種,因此在穿過不同密度的介質時也會產生折射,路徑出現偏折。你說道理我都懂,但海裡面只有水,哪來的不同介質?

還真的有,那就是隨著經緯度與深度變化,鹽分、水溫、密度都不同的海水。鹽分、水溫、密度的升高,都會導致聲速變快。而這三者在海中的各處都不會是固定的。例如在不同深度的海水中,深度 1000 公尺內上層海域的斜溫層,當深度越深離海面越遠,海水越得不到太陽的加溫,因此海溫快速驟減,而海溫的降低也會導致聲速降低。深度超過 1000 公尺以後的深海等溫層,溫度、鹽分的變化趨緩,此時壓力會隨著深度增加而增加,海水密度開始小幅度上升,因此聲速緩慢增加。

-----廣告,請繼續往下閱讀-----
每一處海水根據鹽分、水溫、密度不同,都會影響聲速。圖/PanSci YouTube

每一層有不同聲速的海水,就等於是不同的介質,聲波會在不同層的海水之間產生折射。類似的現象也發生在空氣中。在炙熱的沙漠或是天氣熱的柏油路面,偶而會因為空氣的密度分布不均,光線在不同密度的空氣間產生偏折,出現影像在空中出現的錯覺,也就是海市蜃樓的現象。

重點來了,在海裡的折射會是怎麼樣的呢?假設我們有一艘潛的足夠深的潛艇,海面附近的聲納發出一道聲音斜向海洋深處前進,根據決定折射角度的斯乃爾定律,當聲速上升,聲音會偏離介面的法線,偏向兩個液體的交界面。在海中的實際表現,就是聲音產生偏折,漸漸與海平面平行,當偏折的角度超過 90 度,最後甚至會向上偏折,產生全反射。

而斯乃爾定律也告訴我們,偏折的程度跟入射角有關,當角度超過臨界角時,才會產生全反射。根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。如果潛艇躲藏在這個位置,那麼水面上的敵人就永遠也無法透過主動聲納發現你。

根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。圖/PanSci YouTube

除此之外,從聲納路徑圖可以看得出來,在水中聲納走的路徑像是 U 字型一樣,會不斷在海面反射,在海中全反射。而線與線之間的空白處,是聲波不會經過的地方,也屬於陰影區。因此實際從水面偵測潛艦時,只有在碰到這些線的時候會收到該點的訊號,如果要抓出敵人,就要在獲知訊號時抓緊時間。

-----廣告,請繼續往下閱讀-----

如何減少陰影區範圍?

為了減少這些陰影區死角的範圍,也有一些有趣但複雜的想法,例如使用拖曳式陣列聲納,一個點不夠,那我就拉一排,減少盲區。或是透過小角度的海底反射,來覆蓋近距離內的更多範圍。然而這也不會只是畫一張圖那麼簡單,平常聲納就要過濾來自自身引擎的噪音,或是因為海底等非目標物的環境反射。多一次反射,就意味會多一道訊號反射到聲納中,要如何將這些訊號區分開來,判斷哪些是海床訊號,哪些是敵艦訊號,就各憑本事。

沒錯,就算有了聲納系統還不夠,海底資訊的掌握度和後期運算更是兵家相爭的關鍵。你想想,就算你知道聲音會隨著密度轉彎,但你知道眼前海域每個深度的實際密度嗎?如果你不知道這些資料,就算接收到訊號,你真的算得出敵艦的位置嗎?

舉例來說,冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。當你在不同緯度,不同海域作戰時,所需要的資料也不相同。

冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。圖/PanSci YouTube

台灣冬夏兩季分別受東北季風與西南季風吹拂,周圍又有黑潮、中國沿岸流等洋流影響,各層水溫隨季節變化影響劇烈,台灣海峽又因地形原因海流複雜,被稱為黑水溝。在此之上,能掌握好周圍的海流活動,除了能兼顧潛艦的航行安全外,也有助於提升潛艦的隱蔽性。

-----廣告,請繼續往下閱讀-----

潛艦與反潛的無數過招?

海洋的複雜性,構成了潛艦至今仍能維持隱蔽優勢的原因。而這場臥虎捉藏龍的對決到此還沒有結束,我們只介紹了第一招,後面大概還有 99 種招式等待要過招。例如潛艦關掉主動聲納後,如何靠被動聲納安全航行並鎖定目標?

除了透過聲納,搭載磁性探測儀的反潛機怎麼從異常磁場訊號中辨別海底的金屬潛艇?又或是水面上的聲納會被全反射,那麼改變深度的話是不是就能解決了?實際上,既然在海面上聽不見,反過來把聲納放進海中,放在海水密度最低的「深海聲道通道軸」這個如同光纖般的區域,就能清楚聽到來自遠方的聲音。

諸如此類的軍事科技對弈,就像其他科技一樣,對決永遠不會結束。如果你還有那些想了解的面向,不論是潛艦或是其他軍事科技,也歡迎留言告訴我們。

最後也想問問大家,你覺得潛水艇最大的戰略價值是什麼呢?

  1. 多一種隱蔽武器,多一種威嚇,提升敵人的作戰成本
  2. 突破封鎖線,在關鍵時刻打擊敵人的大型艦艇
  3. 間諜作戰,深入敵後蒐集電訊號與艦艇聲譜特徵,偷偷獲取情報

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----