0

0
0

文字

分享

0
0
0

發現北京人頭蓋骨|科學史上的今天:12/2

張瑞棋_96
・2015/12/02 ・1160字 ・閱讀時間約 2 分鐘 ・SR值 545 ・八年級

1929年的今天,前一年才從北京大學地質系畢業的青年裴文中,在北京周口店的龍骨山挖出了一個完整的頭蓋骨,震驚中外。此一發現證實了五十萬年前的北京人(學名為北京直立人)的存在,為達爾文七十年前發表的《物種起源》提供了一個強有力的證據。

展示於中國古動物館得北京人頭骨複製品。Yan Li@wikimedia

其實更早之前當地人就常在此地揀尋骨頭賣給中藥店,他們不知是化石,以為是龍骨,所以地名才叫龍骨山。八國聯軍打到北京時,有人帶了一批回歐洲,被德國一位古生物學家辨認出一顆像是人猿的牙齒,引起學界的注意。1918年,在中國擔任顧問的瑞典地質學家安特生(Johan Gunnar Andersson)耳聞此事,前來周口店進行考察,經過幾年的發掘,終於在1926年宣布發現了兩顆原始人類的牙齒。

經由當時在協和醫院教授解剖學的醫師步達生(Davidson Black)的聯繫,美國洛克斐勒基金會同意贊助經費,才在中方的參與下,於1927年進行系統化的發掘工作。北京直立人這個學名正是由步達生所命名;說實話,僅有幾顆牙齒的化石證據就逕行命名一個新屬種實在太過莽撞,幸而裴文中的發現消弭了一切爭議。隨後發現的加工石器與用火證據更加證明北京人與人類的淵源,也讓三十多年前就發現的爪哇人終於得以正名,因為在此之前並沒有文物遺跡可以證明爪哇人是人,而不是猿。

北京人臉部重建圖。Cicero Moraes@wikimedia

北京人化石的後續發展更是充滿戲劇性。1937年日軍侵華,發掘工作不得不暫停,更重要的是如何安置這些珍貴的化石。留在北京,恐遭日軍掠奪;運到重慶,又不確定能順利抵達;似乎由美軍運回美國暫時保管最為妥當。於是化石裝在兩個木箱中先置於協和醫院,準備搭火車到秦皇島,再乘船前往美國。不過幾天後日軍就占領北京,這兩箱化石就此下落不明。或說已隨船沉入海底、或說被美國人暗槓了、或說被日軍運回日本、或說仍埋在秦皇島某處。至今仍不時有人指證歷歷,但終是流言紛紛。

-----廣告,請繼續往下閱讀-----

當時關於人類的起源猶無定論,因此多少帶著民族的驕傲賦予北京人特殊的意義。其實後來經由粒線體DNA的鑑定追蹤,已經確定現代人類起源於非洲,我們都是二十萬年前某一女性智人的後代。當我們的智人祖先於四萬年前來到亞洲時,北京人與爪哇人這種直立人恐怕早已滅絕久矣。雖然北京人與我們並無淵源,但不同屬種在演化壓力下的興衰總是值得我們研究了解。

延伸閱讀:8月7日──李基誕辰

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 1014 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

5
2

文字

分享

1
5
2
不要只顧呼口號,「適者生存」或許不能代表演化論?
科學月刊_96
・2023/06/23 ・4037字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/許家偉
    • 生物系和微免所畢,從細胞生化到分子病毒學轉入產業界專研蛋白質純化和細胞免疫。
    • 鼓勵人們要讀一點哲學和多接觸邏輯學才能獨立思考,不致於在網路資訊爆炸年代淪為人云亦云的應聲蟲。
  • Take Home Message
    • 適者生存」並非由達爾文提出,而是由崇尚拉馬克主義的史賓賽所發想。
    • 適者生存只談論適應性,過度簡化了演化的意義,而且不一定是最適者(fittest)才能生存下來。
    • 適者生存的說法放大了爭鬥意味,卻忽視了演化上其他作用在個體生存和生殖成就上的篩選力量。

一些短語之所以膾炙人口、廣為人知,就是因為聽起來簡單、說起來順口、想想又覺得合理,「適者生存」(survival of the fittest)就是其中之一。不過,若只使用適者生存描述演化論,或許並不完整。

誰最先提出「適者生存」?

英國博物學家達爾文(Charles  Darwin)《物種起源》(On the Origin of Species)自 1859 年發行第一版以來,第四章的標題一直是〈自然選擇〉(Natural Selection),但到了 1869 年的第五版時,他卻將這一章的標題改為〈自然選擇;或適者生存〉(Natural Selection; or The Survival of the Fittest),並一直沿用到 1872 年的最後一版(第六版)。人們都以為「適者生存」是達爾文說的,但其實不是!

適者生存其實是由達爾文當代最具影響力的英國學者史賓賽(Herbert Spencer,圖一)所創。史賓賽也支持生物演化理論,還曾抨擊當時盛行的生物創造論,可是他崇尚的卻是半個世紀前的拉馬克主義(Lamarckism),也就是以「用進廢退」原則(principle of use and disuse)搭上後天形質遺傳(inheritance of acquired characteristics)的演化理論。

因此史賓賽心目中的演化會帶來進步,而且演化不只在生物上,也可以發生在地質、心理等範疇,他甚至把心目中的進步式演化應用到社會和政治層面,催生出社會達爾文主義(social Darwinism)和優生學(eugenics)。但史賓賽的想法跟達爾文所主張——以後代漸變(descent with modification)為軸心的自然選擇(常譯作天擇)不同,甚至是兩回事。

圖一、(上)38 歲的史賓塞(攝於 1858 年)和(右)六年後出版的《生物學原理》的扉頁。圖/Public Domain, Wikimedia Commons; Public Domain, British Library

史賓賽在 1864 年出版的《生物學原理》(Principles of Biology)中用「survival of the fittest」定義達爾文演化論的自然選擇,這完美地反映出他心目中的進步式演化觀,當中「fittest」是英文「fit」(適合)的形容詞比較級裡的最高級,是「最適合」的意思(survival of the fittest 應當譯為「最適者生存」)。由於史賓賽的影響力,再加上「survival of the fittest」一詞簡潔有力、琅琅上口,立刻像個口號一樣在英語世界裡「夯」起來。

其實達爾文理應察覺到史賓賽的演化觀跟他所主張的無固定方向、沒有進步趨勢的演化機制南轅北徹,但另一位英國博物學家華萊士(Alfred Wallace)在 1866 年寫給達爾文的書信中卻建議達爾文採用史賓賽的說法。華萊士認為適者生存不只易懂,也可避免自然選擇把「自然」比作育種者去「選擇」的擬人化比喻,因為在某程度上「選擇」帶有刻意和消減這類不正確的涵意。

達爾文看到適者生存那麼流行,於是接受華萊士的勸說,也就在 1868 年出版的《育種變異》(Variation Under Domestication,又譯《人工培育》)裡首次引用史賓賽的說法表達自然選擇的意涵,並在次年出版的《物種起源》第五版時修改第四章的標題。但達爾文萬萬沒料到,他可能已親手種下一個對演化論的謬誤。

「適者生存」的問題

表面上,自然選擇和適者生存都清晰地告訴我們一個原則:在任何族群裡,個體如果擁有適合於環境、有利於生存的性狀(trait),就能通過演化的考驗存活下來。反之,若是個體的性狀不適合環境的話就會消亡。那麼,「適者生存」的問題出在哪呢?

1. 生存

生存當然重要,但是站在演化的立場,個體不只是要取得生活資源(生存),還要傳遞基因(生殖),若「適者」只會生存卻無法繁衍,在演化上其實沒有意義。因為子代數目才是衡量適者的指標,所以活著就得繁衍下一代,這也就是演化裡常提到的生殖成就(reproductive success)。生存只不過是一種策略和手段,演化的目標並非只要適者「生存」而已,而是要傳遞基因、使生殖成就達到最大,才是生物的終極目標。不然如何解釋有些生物只要春風一度後就一命嗚呼?如果一個基因能夠增加個體的生殖機會,即便會使個體的壽命縮短也能得到自然選擇的青睞。

對於演化生物學家而言,「適應」(adaptation)一詞含有繁殖成功的意義,可見「適者『生存』」這個說法過度簡化,只談論生存(適應性)卻忽視繁衍(生殖成就),沒有涵蓋物種演化的真諦。

2. 適者

適者生存一詞中的「適者」對於演化而言,是指個體有能力應付所在環境,那麼適者這個詞就成功地反映出物種的適應性。但無論是達爾文、史賓賽或華萊士(或任何一位生物學家),都沒有說明(其實也無法說明)適者擁有何種性狀能讓個體存活下來面對選擇壓力,因為那些適者只是符合某種當時、當地的標準去通過自然選擇的篩選,而不是馬後炮地基於存活的事實而回頭來追認某種性狀的能耐。

面對複雜多變的世界,沒有單一性狀可以保證個體在任何情況下都能存活,而這種性狀不僅指個體身上看得見的特徵,也包括無形的戰術(例如生殖策略)。那麼「適者」就要視「時、地、人」——你生在何時?體態豐腴的楊玉環生在唐朝是她的福氣;你身處何處?住在火山口下的羅馬古城跟生活在熱帶雨林裡的村莊風險不同;你是誰?皇室貴冑的四阿哥面對奪嫡之爭的風起雲湧、販夫走卒韋小寶在街頭廝混的求生策略,不能同日而語。

其實也沒有必要那麼極端地將適者視為「fittest」(最適者),因為對於演化過程來說,只要具備能適應的基因就可以過關了,不必要挑選「最」適應者。因此很多演化學者就指出,這個適者只要「fitter」(較適者)就可以了,即「survival of the fitter」(較適者生存)。

3. 將「適者」和「生存」湊在一起

「生存」當然是適者的「結果」,但我們卻不可以將「生存」作為適者的「定義」,原因在於生存下來的不一定是適者:

一、不見得所有適應性都是自然選擇的結果,因為自然選擇不是演化的唯一機制,還有人工選擇(artificial selection,人擇)、性徵選擇(sexual selection,性擇)、遺傳漂變(genetic drift)等機制,所以物種的演化有時候跟適應無關。

二、有些性狀並不是因為適應而留下,可能只是另一項適應性狀的副產物,其中也不能否認幸運與機遇也有微妙的作用,即是「幸者生存」(survival of the luckiest)。美國科普雜誌《科學美國人》(Scientific American)在2008年就有一篇以「幸者生存」為題的文章討論恐龍的滅絕。

三、很多導致生理疾病的基因也會在世代中被保留下去,也就是「病者生存」(survival of the sickest)。2007年就有一本以「病者生存」為書名的科普書籍,以演化醫學(evolutionary medicine)的角度討論各種人類疾病的演化意義,該書繁體中文版為《最衰者生存》(Survival of the Sickest)。

4. 「適者生存」是否能代表整套演化論?

達爾文的演化理論是要解釋兩個淺而易見卻經常被忽視的生命現象:適應和多樣性(diversity)。前者解答物種如何順利地生存和繁衍下去,後者則解答物種的起源和多元化。對於宏觀的達爾文演化論來說,適者生存字面上只有半套演化論的內涵,不足以代表整個學說。不時會讀到一些文章提及適者生存的不是,所以演化論就不對。其實這根本捉錯了把柄,因為適者生存本來就不能代表演化論。

如何解套?演化的完整表述方式

因此對於演化較完整的表述方式,就是「生存和生殖差異率」(differential rate of survival and reproduction)——經統計分析比較兩組群體間,哪一組能夠留下多少後代才最為適合,完整地涵蓋自然選擇定義中關於物種之間或世代之間的生存和生殖差異。

專長於生物學和哲學的邁爾(Ernst Mayr)早在1963年就將自然選擇定義為「非隨機的生殖成就差異」(nonrandom differential reproductive success),這當然沒有「適者生存」那麼順口,但可以避免因過度簡化而造成人們對演化論的誤解,而且「差異性」才是生存競爭的核心。

「適者生存」在表面上沒有錯,使用在職場、商界、外交等方面或許都言之成理,但若光用「適者生存」說明演化,涵義就不精確。這不只是一個過度簡化的口號,更糟的是它放大了爭鬥意味,完全忽視了微小差異作用在個體生存和生殖成就上的篩選力量。演化論四尖兵之一的赫胥黎(Thomas Huxley)在1893年的著作裡就批評「適者生存」這種說法語意曖昧,果然真知灼見。

適者生存一詞鏗鏘有力、乾淨利落,堪稱是演化最大眾化的詮釋,但聽久了卻變成陳腔濫調,且字裡行間未免有去蕪存菁、汰弱留強、優勝劣汰的意味,這就會出現「強」與「弱」之分。試問當各個物種在生存競爭時披荊斬棘、乘風破浪之際,什麼是「強」什麼是「弱」?誰是「強」誰是「弱」?沒有人能夠說清楚。


適者 vs. 強者

英文的最高級形容詞 fittest 跟名詞 fitness(適應度)發音相似,而偏偏 fitness 的另一個字義跟身體健壯有關,例如 fitness center(健身中心)、fitness equipment(健身器材),那麼就有人將 survival of the fittest(最適者生存)揶揄成 survival of the fitness(健壯者生存)。人們也潛意識地認同強者理當會生存下來,這就給演化論蒙上難以洗脫的不白之冤。


  • 〈本文選自《科學月刊》2023 年 6 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Gould, S. J. (1973). Ever Since Darwin: Reflections in Natural History. WW Norton & Co.
  2. 許家偉(2017)。壓力舆差異的成就——自然選擇三步曲,科學月刊576,950–953。
  3. 許家偉(2020)。自然選擇不是演化的唯一機制,科學月刊605,68–71。
所有討論 1
科學月刊_96
249 篇文章 ・ 3693 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。