0

0
0

文字

分享

0
0
0

發現北京人頭蓋骨|科學史上的今天:12/2

張瑞棋_96
・2015/12/02 ・1160字 ・閱讀時間約 2 分鐘 ・SR值 545 ・八年級

-----廣告,請繼續往下閱讀-----

1929年的今天,前一年才從北京大學地質系畢業的青年裴文中,在北京周口店的龍骨山挖出了一個完整的頭蓋骨,震驚中外。此一發現證實了五十萬年前的北京人(學名為北京直立人)的存在,為達爾文七十年前發表的《物種起源》提供了一個強有力的證據。

展示於中國古動物館得北京人頭骨複製品。Yan Li@wikimedia

其實更早之前當地人就常在此地揀尋骨頭賣給中藥店,他們不知是化石,以為是龍骨,所以地名才叫龍骨山。八國聯軍打到北京時,有人帶了一批回歐洲,被德國一位古生物學家辨認出一顆像是人猿的牙齒,引起學界的注意。1918年,在中國擔任顧問的瑞典地質學家安特生(Johan Gunnar Andersson)耳聞此事,前來周口店進行考察,經過幾年的發掘,終於在1926年宣布發現了兩顆原始人類的牙齒。

經由當時在協和醫院教授解剖學的醫師步達生(Davidson Black)的聯繫,美國洛克斐勒基金會同意贊助經費,才在中方的參與下,於1927年進行系統化的發掘工作。北京直立人這個學名正是由步達生所命名;說實話,僅有幾顆牙齒的化石證據就逕行命名一個新屬種實在太過莽撞,幸而裴文中的發現消弭了一切爭議。隨後發現的加工石器與用火證據更加證明北京人與人類的淵源,也讓三十多年前就發現的爪哇人終於得以正名,因為在此之前並沒有文物遺跡可以證明爪哇人是人,而不是猿。

北京人臉部重建圖。Cicero Moraes@wikimedia

北京人化石的後續發展更是充滿戲劇性。1937年日軍侵華,發掘工作不得不暫停,更重要的是如何安置這些珍貴的化石。留在北京,恐遭日軍掠奪;運到重慶,又不確定能順利抵達;似乎由美軍運回美國暫時保管最為妥當。於是化石裝在兩個木箱中先置於協和醫院,準備搭火車到秦皇島,再乘船前往美國。不過幾天後日軍就占領北京,這兩箱化石就此下落不明。或說已隨船沉入海底、或說被美國人暗槓了、或說被日軍運回日本、或說仍埋在秦皇島某處。至今仍不時有人指證歷歷,但終是流言紛紛。

-----廣告,請繼續往下閱讀-----

當時關於人類的起源猶無定論,因此多少帶著民族的驕傲賦予北京人特殊的意義。其實後來經由粒線體DNA的鑑定追蹤,已經確定現代人類起源於非洲,我們都是二十萬年前某一女性智人的後代。當我們的智人祖先於四萬年前來到亞洲時,北京人與爪哇人這種直立人恐怕早已滅絕久矣。雖然北京人與我們並無淵源,但不同屬種在演化壓力下的興衰總是值得我們研究了解。

延伸閱讀:8月7日──李基誕辰

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1019 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

5
2

文字

分享

1
5
2
不要只顧呼口號,「適者生存」或許不能代表演化論?
科學月刊_96
・2023/06/23 ・4037字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/許家偉
    • 生物系和微免所畢,從細胞生化到分子病毒學轉入產業界專研蛋白質純化和細胞免疫。
    • 鼓勵人們要讀一點哲學和多接觸邏輯學才能獨立思考,不致於在網路資訊爆炸年代淪為人云亦云的應聲蟲。
  • Take Home Message
    • 適者生存」並非由達爾文提出,而是由崇尚拉馬克主義的史賓賽所發想。
    • 適者生存只談論適應性,過度簡化了演化的意義,而且不一定是最適者(fittest)才能生存下來。
    • 適者生存的說法放大了爭鬥意味,卻忽視了演化上其他作用在個體生存和生殖成就上的篩選力量。

一些短語之所以膾炙人口、廣為人知,就是因為聽起來簡單、說起來順口、想想又覺得合理,「適者生存」(survival of the fittest)就是其中之一。不過,若只使用適者生存描述演化論,或許並不完整。

誰最先提出「適者生存」?

英國博物學家達爾文(Charles  Darwin)《物種起源》(On the Origin of Species)自 1859 年發行第一版以來,第四章的標題一直是〈自然選擇〉(Natural Selection),但到了 1869 年的第五版時,他卻將這一章的標題改為〈自然選擇;或適者生存〉(Natural Selection; or The Survival of the Fittest),並一直沿用到 1872 年的最後一版(第六版)。人們都以為「適者生存」是達爾文說的,但其實不是!

適者生存其實是由達爾文當代最具影響力的英國學者史賓賽(Herbert Spencer,圖一)所創。史賓賽也支持生物演化理論,還曾抨擊當時盛行的生物創造論,可是他崇尚的卻是半個世紀前的拉馬克主義(Lamarckism),也就是以「用進廢退」原則(principle of use and disuse)搭上後天形質遺傳(inheritance of acquired characteristics)的演化理論。

因此史賓賽心目中的演化會帶來進步,而且演化不只在生物上,也可以發生在地質、心理等範疇,他甚至把心目中的進步式演化應用到社會和政治層面,催生出社會達爾文主義(social Darwinism)和優生學(eugenics)。但史賓賽的想法跟達爾文所主張——以後代漸變(descent with modification)為軸心的自然選擇(常譯作天擇)不同,甚至是兩回事。

-----廣告,請繼續往下閱讀-----
圖一、(上)38 歲的史賓塞(攝於 1858 年)和(右)六年後出版的《生物學原理》的扉頁。圖/Public Domain, Wikimedia Commons; Public Domain, British Library

史賓賽在 1864 年出版的《生物學原理》(Principles of Biology)中用「survival of the fittest」定義達爾文演化論的自然選擇,這完美地反映出他心目中的進步式演化觀,當中「fittest」是英文「fit」(適合)的形容詞比較級裡的最高級,是「最適合」的意思(survival of the fittest 應當譯為「最適者生存」)。由於史賓賽的影響力,再加上「survival of the fittest」一詞簡潔有力、琅琅上口,立刻像個口號一樣在英語世界裡「夯」起來。

其實達爾文理應察覺到史賓賽的演化觀跟他所主張的無固定方向、沒有進步趨勢的演化機制南轅北徹,但另一位英國博物學家華萊士(Alfred Wallace)在 1866 年寫給達爾文的書信中卻建議達爾文採用史賓賽的說法。華萊士認為適者生存不只易懂,也可避免自然選擇把「自然」比作育種者去「選擇」的擬人化比喻,因為在某程度上「選擇」帶有刻意和消減這類不正確的涵意。

達爾文看到適者生存那麼流行,於是接受華萊士的勸說,也就在 1868 年出版的《育種變異》(Variation Under Domestication,又譯《人工培育》)裡首次引用史賓賽的說法表達自然選擇的意涵,並在次年出版的《物種起源》第五版時修改第四章的標題。但達爾文萬萬沒料到,他可能已親手種下一個對演化論的謬誤。

「適者生存」的問題

表面上,自然選擇和適者生存都清晰地告訴我們一個原則:在任何族群裡,個體如果擁有適合於環境、有利於生存的性狀(trait),就能通過演化的考驗存活下來。反之,若是個體的性狀不適合環境的話就會消亡。那麼,「適者生存」的問題出在哪呢?

1. 生存

生存當然重要,但是站在演化的立場,個體不只是要取得生活資源(生存),還要傳遞基因(生殖),若「適者」只會生存卻無法繁衍,在演化上其實沒有意義。因為子代數目才是衡量適者的指標,所以活著就得繁衍下一代,這也就是演化裡常提到的生殖成就(reproductive success)。生存只不過是一種策略和手段,演化的目標並非只要適者「生存」而已,而是要傳遞基因、使生殖成就達到最大,才是生物的終極目標。不然如何解釋有些生物只要春風一度後就一命嗚呼?如果一個基因能夠增加個體的生殖機會,即便會使個體的壽命縮短也能得到自然選擇的青睞。

-----廣告,請繼續往下閱讀-----

對於演化生物學家而言,「適應」(adaptation)一詞含有繁殖成功的意義,可見「適者『生存』」這個說法過度簡化,只談論生存(適應性)卻忽視繁衍(生殖成就),沒有涵蓋物種演化的真諦。

2. 適者

適者生存一詞中的「適者」對於演化而言,是指個體有能力應付所在環境,那麼適者這個詞就成功地反映出物種的適應性。但無論是達爾文、史賓賽或華萊士(或任何一位生物學家),都沒有說明(其實也無法說明)適者擁有何種性狀能讓個體存活下來面對選擇壓力,因為那些適者只是符合某種當時、當地的標準去通過自然選擇的篩選,而不是馬後炮地基於存活的事實而回頭來追認某種性狀的能耐。

面對複雜多變的世界,沒有單一性狀可以保證個體在任何情況下都能存活,而這種性狀不僅指個體身上看得見的特徵,也包括無形的戰術(例如生殖策略)。那麼「適者」就要視「時、地、人」——你生在何時?體態豐腴的楊玉環生在唐朝是她的福氣;你身處何處?住在火山口下的羅馬古城跟生活在熱帶雨林裡的村莊風險不同;你是誰?皇室貴冑的四阿哥面對奪嫡之爭的風起雲湧、販夫走卒韋小寶在街頭廝混的求生策略,不能同日而語。

其實也沒有必要那麼極端地將適者視為「fittest」(最適者),因為對於演化過程來說,只要具備能適應的基因就可以過關了,不必要挑選「最」適應者。因此很多演化學者就指出,這個適者只要「fitter」(較適者)就可以了,即「survival of the fitter」(較適者生存)。

-----廣告,請繼續往下閱讀-----

3. 將「適者」和「生存」湊在一起

「生存」當然是適者的「結果」,但我們卻不可以將「生存」作為適者的「定義」,原因在於生存下來的不一定是適者:

一、不見得所有適應性都是自然選擇的結果,因為自然選擇不是演化的唯一機制,還有人工選擇(artificial selection,人擇)、性徵選擇(sexual selection,性擇)、遺傳漂變(genetic drift)等機制,所以物種的演化有時候跟適應無關。

二、有些性狀並不是因為適應而留下,可能只是另一項適應性狀的副產物,其中也不能否認幸運與機遇也有微妙的作用,即是「幸者生存」(survival of the luckiest)。美國科普雜誌《科學美國人》(Scientific American)在2008年就有一篇以「幸者生存」為題的文章討論恐龍的滅絕。

三、很多導致生理疾病的基因也會在世代中被保留下去,也就是「病者生存」(survival of the sickest)。2007年就有一本以「病者生存」為書名的科普書籍,以演化醫學(evolutionary medicine)的角度討論各種人類疾病的演化意義,該書繁體中文版為《最衰者生存》(Survival of the Sickest)。

-----廣告,請繼續往下閱讀-----

4. 「適者生存」是否能代表整套演化論?

達爾文的演化理論是要解釋兩個淺而易見卻經常被忽視的生命現象:適應和多樣性(diversity)。前者解答物種如何順利地生存和繁衍下去,後者則解答物種的起源和多元化。對於宏觀的達爾文演化論來說,適者生存字面上只有半套演化論的內涵,不足以代表整個學說。不時會讀到一些文章提及適者生存的不是,所以演化論就不對。其實這根本捉錯了把柄,因為適者生存本來就不能代表演化論。

如何解套?演化的完整表述方式

因此對於演化較完整的表述方式,就是「生存和生殖差異率」(differential rate of survival and reproduction)——經統計分析比較兩組群體間,哪一組能夠留下多少後代才最為適合,完整地涵蓋自然選擇定義中關於物種之間或世代之間的生存和生殖差異。

專長於生物學和哲學的邁爾(Ernst Mayr)早在1963年就將自然選擇定義為「非隨機的生殖成就差異」(nonrandom differential reproductive success),這當然沒有「適者生存」那麼順口,但可以避免因過度簡化而造成人們對演化論的誤解,而且「差異性」才是生存競爭的核心。

「適者生存」在表面上沒有錯,使用在職場、商界、外交等方面或許都言之成理,但若光用「適者生存」說明演化,涵義就不精確。這不只是一個過度簡化的口號,更糟的是它放大了爭鬥意味,完全忽視了微小差異作用在個體生存和生殖成就上的篩選力量。演化論四尖兵之一的赫胥黎(Thomas Huxley)在1893年的著作裡就批評「適者生存」這種說法語意曖昧,果然真知灼見。

-----廣告,請繼續往下閱讀-----

適者生存一詞鏗鏘有力、乾淨利落,堪稱是演化最大眾化的詮釋,但聽久了卻變成陳腔濫調,且字裡行間未免有去蕪存菁、汰弱留強、優勝劣汰的意味,這就會出現「強」與「弱」之分。試問當各個物種在生存競爭時披荊斬棘、乘風破浪之際,什麼是「強」什麼是「弱」?誰是「強」誰是「弱」?沒有人能夠說清楚。


適者 vs. 強者

英文的最高級形容詞 fittest 跟名詞 fitness(適應度)發音相似,而偏偏 fitness 的另一個字義跟身體健壯有關,例如 fitness center(健身中心)、fitness equipment(健身器材),那麼就有人將 survival of the fittest(最適者生存)揶揄成 survival of the fitness(健壯者生存)。人們也潛意識地認同強者理當會生存下來,這就給演化論蒙上難以洗脫的不白之冤。


  • 〈本文選自《科學月刊》2023 年 6 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Gould, S. J. (1973). Ever Since Darwin: Reflections in Natural History. WW Norton & Co.
  2. 許家偉(2017)。壓力舆差異的成就——自然選擇三步曲,科學月刊576,950–953。
  3. 許家偉(2020)。自然選擇不是演化的唯一機制,科學月刊605,68–71。
-----廣告,請繼續往下閱讀-----
所有討論 1
科學月刊_96
249 篇文章 ・ 3719 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。