57

67
5

文字

分享

57
67
5

你的一舉一動源自骨子裏的「内建程式」,還是代代相傳的學習?——從演化論談人類行爲研究

葉多涵_96
・2021/02/04 ・5582字 ・閱讀時間約 11 分鐘 ・SR值 538 ・八年級

「人類天生就超八卦!從八卦找出值得追的完美情人!」

「夫妻注定越來越像?同步的行為帶來親密感,有利集體生存!」

「焦慮是天生的!焦慮才能激發具體行動,讓你好好活下去」

「常常覺得有人在盯著你?為了躲避老虎,祖先遺傳下來的警覺本能!」

人類跟動物一樣,擁有助於繁衍的「本能」?

「嬰兒怎麼那麼可愛!人類內建『愛嬰兒』基因,讓你著迷於繁衍」這樣的科普文章,你大概也有讀過。圖/pixabay

你大概讀過上面這樣的演化心理學報導或科普文章,就算沒有點進去,至少也看過擁有相同概念的標題,不外乎是「人有某種天性,因為這種天性有助我們的祖先生存和繁衍」。

這類論述大約在 1970 年代開始成形。當時,許多受生物學影響的研究者開始主張,人類的行為並不像人文社會學科所認為的自成一套體系,而是演化的產物,人類的行為的目的是好好在當前環境下生存和生殖,和其他動物並無不同

威爾森(E. O. Wilson)提出「社會生物學」,認為人的行為就像鳥會飛、老鼠會打洞一樣,是透過基因遺傳,從而受到天擇演化影響。

畢竟許多生物如魚群、蜜蜂、羊群都懂得合作,這些生物也會用各種方式通訊,社會生物學由此推斷,人類行為只不過是其中一個特例。

-----廣告,請繼續往下閱讀-----

然而,人們的行為如果都是直接被基因調控,人們又是如何「在不同的情境下輕易轉變行為」,見人說人話、見鬼說鬼話、入境隨俗呢?

許多人認為人類的的行為無法被基因直接調控,因此轉向「演化心理學」。

演化心理學:人類擁有一套演化而來的「內建程式」

在加州大學聖塔芭芭拉分校的托比(John Tooby)和科斯米德斯(Leda Cosmides)夫婦領導下,演化心理學認為:基因決定的是我們的大腦中的「認知模組」,這些認知模組可以想像成「大腦中的程式」。

當這個內建程式被輸入特定的刺激時,就會輸出特定的行為反應,有的程式負責逃避天敵、有的負責防詐騙、有的負責找食物、有的負責找伴侶……等。

演化心理學認為這些認知模組是我們祖先在遊獵採集社會中演化出來的,寫死在我們基因和腦袋中,世上每人都受制於它們。

-----廣告,請繼續往下閱讀-----

雖然人類已經生在充滿高科技的現代社會,但我們的大腦因為「演化延遲」來不及適應,仍停留在石器時代,所以身處在現代社會時,會做出演化上不適應的行為。

舉例而言,即使香煙有害健康、保險套阻止人類繁衍,但卻因為祖先並沒有碰過香煙和保險套, 現今人類來不及演化出對這些東西的抗拒。

以前活在部落社會中,左鄰右舍都是親戚、而且食物缺乏,所以現代人會為國捐軀、嗜吃高熱量的甜食和油炸物。

我們的大腦因「演化延遲」,來不及演化出對各種誘惑如高熱量食物的抗拒。圖/pexel

演化心理學是一種適應主義(adaptationist)的觀點。適應主義認為所有的性狀背後都(曾經)有重要的適應功能,而演化心理學對於認知模組也是採取這樣的看法。

-----廣告,請繼續往下閱讀-----

反對方:這些「內建程式」可能不是為了適應環境呀!

有不少演化生物學家反對適應主義,最有名的反對論點是古爾德(Steven J. Gould)和李文丁(Richard Lewontin)提出的拱肩(spandrel),也就是建築物圓拱門和垂直牆角間必須存在的那塊大致呈三角形的構造;拱肩會存在只是因為門是圓的、牆角是方的,不是因為它有重要的功能,就算建築師把拱肩裝飾得很美,這個裝飾性的功能仍不是它存在的原因。

建築物圓拱門和垂直牆角間必須存在的那塊呈三角形的構造即爲拱肩(spandrel)。圖/pixabay

對應到生物上的例子,人會有下巴只是因為我們直立行走,造成頭和脖子的連接角度和其他動物不同;下巴本身沒有任何演化上的適應功能。或者,我們閉上眼睛時會看到黑暗,只是因為不透明的眼皮在保護眼睛的同時會擋住光,而不是因為「看見黑暗」有利於我們適應環境。

同理,我們擁有某些認知模組可能不是因為這能適應某些環境,而是因為演化了其他特徵而發生的副作用。

大多數科學哲學家也反對演化心理學,認為演化心理學的研究方法只能瞎編出一些無法驗證的故事來解釋人的行為,或許有些解釋沒錯,但根本證明不了。

-----廣告,請繼續往下閱讀-----

想用演化心理學解釋人類行為?反對方提出三個條件!

例如去年有篇否定演化心理學的研究,美國新罕布夏大學的 Subrena Smith 教授指出,演化心理學要能完整解釋某個行為,必須證明以下三點:

  1. 證明現代人的各種行為是受制於特定的認知模組而形成
  2. 證明這個認知模組在古代的環境下能產生某種有利生存、適應的功能
  3. 證明這個認知模組是透過基因遺傳自古人

第一點或許可以用心理學實驗研究,觀察現代人的行為傾向或用功能性磁振造影來推論我們有哪些認知模組。

第二點或許可以用演化模型和各種間接資訊來推論,例如從人的生理構造推論怎樣的行為較有利於生存、從考古遺跡推論古人有哪些行為能力、從其他動物的行為來推論人類如何取食或躲避天敵。

然而,第三點目前卻完全無法證明:就算現代人的行為確實源自某些認知模組、而且古人也確實在當時的環境中演化出了某個類似或完全相同的認知模組,我們仍無法證明前者遺傳自後者。

-----廣告,請繼續往下閱讀-----

古人沒有文字,為什麼我們自帶閱讀的認知模組?

有不少證據都顯示認知模組可以習得,不見得源自基因遺傳,例如,文字大概三、四千年前才出現,但人腦中卻有專門負責閱讀的認知模組。

四千年前人類足跡早已遍及五大洲,如果閱讀的基因在四千年前才開始演化,那麼沒有文字的撒哈拉以南非洲和大洋洲的原住民應該無法閱讀,由此可知,這個認知模組應該是後天學習而得。

演化所需的時間尺度遠長於文字出現的歷史,但人腦中卻有專門負責閱讀的認知模組。圖/pexel

若人的認知模組能在現代環境下習得,那表示現代人的行為並不受制於古代的環境,演化心理學的基本假設就無法證明。

此外,還有許多人類學家也反對演化心理學,因為人類學在世界各地的研究顯示人類行為極為多元,然而演化心理學卻常常只用已開發國家的大學生當受試者,便把這些人的行為當作全人類的行為,宣稱人類「天性」如何如何,忽略人類的多元性。

-----廣告,請繼續往下閱讀-----

這三個問題(拱肩、現代人的認知無法證明是遺傳自古人、人類行為很多元)表示用演化論來研究人類只是死路一條嗎?話別說太快。

擺脫生物學的枷鎖!如果行為不只來自「基因」呢?

社會生物學和演化心理學認為人類的行為主要都是不變的天性,是因為這兩個學科認為要能套用演化論,行為一定要能透過基因遺傳,不管是直接由基因控制行為,或是間接透過認知模組。

同時,遺傳學研究又顯示基因演化的速度很慢,人與人之間的基因大同小異,那些差異之處也很少會對應到行為差異,所以兩個學科才預期演化會造成人類的行為普世皆然。

然而,達爾文從未主張演化只能發生在基因遺傳的特徵上

-----廣告,請繼續往下閱讀-----

達爾文沒有讀孟德爾寄給他的論文,直到到過世前,他都不知生物的特性是如何從一代傳給下一代,也就是說,達爾文提出演化概念時,連基因、性狀遺傳的機制都還不清楚。

此外,當達爾文提出演化論時,強調的也從來就不是「不變的天性」,而是多樣性。

達爾文從未主張演化只能發生在基因遺傳的特徵上。圖/pixabay

他在《物種原始》開頭的第一、二章開宗明義先介紹生物個體之間的可遺傳差異,然後在第三、四章說明這些差異如何影響存活、傳給下一代,於是發生天擇演化。即使在第七章特別討論生物本能從何而來時,他也斬釘截鐵地說:「我可以斷言,本能無疑存在變異」(I can only assert, that instincts certainly do vary),然後以鳥類為例,說明鳥類在遷徒、築巢和對天敵的反應方面,同一物種的本能往往會有各地差異。

文化演化認為,可能是來自「學習」的遺傳!

用演化論研究人類行為的另一嘗試是文化演化

簡單來說,雖然人的行為或認知模組可能不是由基因決定,但仍然可以透過學習而代代相傳,並同樣受到天擇的影響。

比較適應當地的生態或社會環境的行為就容易存活並傳給下一代,不適應的就容易消失。因為「學習」成了另一種遺傳機制,文化演化避開了社會生物學和演化心理學太依賴基因的問題,也就不用預設人類有什麼不變的天性。

在同樣的環境下,人類和動物竟然出現一樣的傾向

最近有篇研究很漂亮地示範了文化演化的研究潛力。

英國布里斯托大學的 Toman Barsbai 教授、德國普朗克研究院的 Dieter Lukas 研究員、以及德國波昂大學的的 Andreas Pondorfer 研究員,集結了從古至今許多研究者在世界各地 339 個遊獵採集社會做的民族誌,以及這些社會周邊 25 公里內的所有已知的哺乳動物和鳥類名錄,整理出這些人和動物在取食、生殖以及社會方面的行為予以比較,並用當地的生物群系、緯度、海拔高度、到海岸的距離等變因來描述這些人和動物是處在什麼樣的生態環境。

結果,他們發現類似生態環境中的遊獵採集社會,人們的行為常有類似的傾向,不但如此,當某地區或環境中的人類行為有特定傾向時,不管是拿這些人和25公里內的動物比較,還是和同樣生態環境中的動物比較,往往都有類似的傾向:

  • 常吃魚的人類社會,同樣環境的動物也較常會吃魚
  • 隨季節搬家越遠的人類社會,同樣環境的鳥類遷徙距離也越長
  • 越偏一夫多妻制的人類社會,同樣環境的哺乳動物越容易會重組群體(使少數雄性有機會霸佔多數雌性),雄鳥的羽毛也越豔麗
  • 外婚制(出嫁或入贅到其他部落)的人類社會,同樣環境的哺乳動物也在找交配對象時遷徙較遠,但鳥類則較近
  • 允許離婚的人類社會,同樣環境的鳥類更常每年重新找對象
  • 父親貢獻越多食物給家人的人類社會,同樣環境的雄性哺乳動物越傾向會照顧後代,鳥類越容易只由雄性照顧後代
  • 有階級的人類社會,同樣環境的動物也越常會區分出生育者和幫手
婆羅洲的本南族以狩獵采集爲生,在取食、生殖以及社會方面的行為,他們和同樣生態環境下的動物都有類似的傾向。圖/Barsbai et al., 2021

進一步的分析又顯示,雖然前述各種人類行為特別類似 25 公里內的動物,而非 25 公里外的動物,但若是只比較相同生態環境之內的人和動物,分析人類行為是否仍比較像 25 公里內的動物時,則相似的程度會下降或消失。這顯示人類之所以會和附近的動物會有相似的行為,正是因為人類和其他動物都受到了類似的生態限制。

這表示遊獵採集的人類只是受天性趨使的禽獸嗎?非也。水鳥直接叼起獵物,人類卻會用複雜的方式製作漁網和漁籃來捕魚,這絕非本能。

這研究結果顯示的是:不論是人或禽獸,如果住在水邊卻不利用水產,就處在劣勢,較容易被演化淘汰。具體淘汰的方式仍待進一步研究。

我們可以猜測,或許小孩子比較喜歡向每天吃魚吃飽飽的大人學習,造成捕魚的行為在社會中成為主流?或是拒絕吃魚的人容易餓死或生較少小孩,造成拒絕吃魚的信念慢慢失傳?或許是不捕魚的社會在戰爭中容易被會捕魚的社會消滅或被同化?

無論細節如何,總的來說,人類的文化和動物的基因在類似的環境演化出了類似的行為。

研究調查了世界各地 339 個遊獵採集社會,以非洲熱帶雨林的 Mbuti 部落爲例,他們所囤積的食物量少,方圓 25 公里内的 171 種生物中也只有 4% 會囤積食物。圖/Barsbai et al., 2021

文化演化的集大成:加上歷史與生態環境的形塑

文化人類學的傳統觀點認為人類的行為差異來自後天學習的文化,而且文化發展沒有特定的趨勢,人們的行為只能放在他們各自的文化背景中理解。

這篇研究的重要貢獻是它顯示雖然人類的行為是來自文化,但文化差異並非全都源自歷史,而是有很大部份受生態環境的天擇形塑。

此外,各文化也不是只能放在該文化中單獨理解,而是能透過文化演化的框架來找尋一套可以解釋許多不同文化的理論。

除了天擇,先前的研究顯示文化也受歷史影響。

語言較相似或距離較近的社會,就算生態環境不同,在文化上的許多特徵仍較為類似,尤其是在政治結構、宗教儀式和親族關係方面,歷史的影響往往比環境更重要

生態環境的影響可以使用天擇演化來詮釋,而歷史的影響則可能用演化樹來分析。

演化論不是只有適應環境,另一個重要概念是地球上的每個獨立個體、族群和物種,都有共同的血統,可以表示成同一棵樹的不同分枝。這樣的概念已經廣泛應用在語言學,比較不同語言之間的關係;在考古學,也有些研究者開始用這種方式研究文物之間的關係。

人類行為能用演化論研究嗎?看來是可以的。

參考資料:

  1. Smith, S.E. (2020) Is evolutionary psychology possible?. Biological Theory. 15: 39-49.
  2. Hill, K., Boyd, R. (2021) Behavioral convergence in humans and animals. Science. 371(6526): 235-236.
  3. Barsbai, T., Lukas, D., Pondorfor, A. (2021) Local convergence of behavior across species. Science. 371(6526): 292-295.
  4. Mathew, S. Charles, P. (2015) Behavioural variation in 172 small-scale societies indicates that social learning is the main mode of human adaptation. Proceedings of the Royal Society B: Biological Sciences. 282: 20150061.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 57
葉多涵_96
4 篇文章 ・ 9 位粉絲
演化生物學和文化演化的研究者,興趣包括生物學、哲學、經濟學、人類學、語言學、科幻,什麼都略懂,什麼都不精通。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
惱怒飛機上的哭聲和幫助脆弱的嬰兒,都是人類演化後的行為?——《利他衝動》
知田出版_96
・2024/12/09 ・3771字 ・閱讀時間約 7 分鐘

苦難與同理心:能激發出援助還是自我關注?

縱貫全文,我們持續主張,苦難演化得十分凸顯、讓我們不能不關注,而且它還得以在子代照護背景脈絡中激發行動。利他反應模型的這項原則,似乎與巴特森(Daniel Batson)和讓.德塞蒂(Jean Decety)以及其他人的普遍觀點互相衝突,後者主張苦難會阻礙援助。

根據同理心──利他行為假設,人們在感到溫暖、柔情、冷靜、關切和慈悲時,會專注關心他人的需求,並提供無私的援助;相反,當發愁、憂心、痛苦、不安和沮喪時,他們就會專注關切自己的需求,並只有在自己的苦難減輕時,才會提供幫助。舉個例子,當實驗室中的學生目睹某人受到痛苦的電擊時,表示感受同理心的觀察者,即便可以離開,也都會伸援,至於感到個人苦難的人,則較少提供幫助,除非他們被迫留下並繼續觀看痛苦的電擊。因此,人們有能力出於無私的原因提供幫助,但可以出於自私的動機行事,以緩解自己的苦難。

我們自己的研究有時確實會披露很棘手的苦難。例如,我們往往會複製出巴特森的發現,遭逢苦難的受害者有可能觸動觀察者的同理心以及負面反應。當人們觀看我們最悲苦醫院患者的錄影時,一部分參與者甚至還表示他們感到驚恐(亦即忐忑、憤怒、驚恐)。這種高度負面的反應還更加引人注目,因為參與者知道,這些是真正的重症病人或末期患者。

因此,當他人表達的苦難會引發多餘的、會感染的負面感受之時,嫌惡反應也就可能因此發生──特別當他們的問題看來很沒有道理或者難以解決。(舉例來說,一位護理師表示,「嗯,對這個問題她打算怎麼辦?」)不過還不算滿盤皆輸,因為比起對快樂的患者,一般人對苦難的患者會看出更多需求、感受更多同理心,並提供更多幫助。不過這種慷慨精神是有侷限的。

-----廣告,請繼續往下閱讀-----

例如,倘若參與者必須坐下來陪伴患者,而不是只給他們幾塊錢並不做社交接觸,那麼他們就會提高協助快樂患者的相對偏好度。所以,即便苦難肯定帶來嫌惡的知覺和感受,它仍能成功傳達需求並激發反應,而這也正符合它的設計功能。

倘若我們思忖,在任意給定的情境中,利他反應模型的種種屬性如何權衡取捨,也就能預測這類複雜的關係。舉例來說,飛機上有小寶寶啼哭時,人們就會抱怨。這似乎自相矛盾,因為,我們理當演化來幫助那些身處苦難的寶寶。

利他反應受情境權衡影響,飛機上寶寶啼哭引抱怨反映其限制。圖/unsplash

啼哭的力量:無助者需求與觀察者情緒的博弈

然而,這種惱怒和模型相符,因為那些寶寶並不是其他乘客熟悉的或有感情紐帶的對象,他們多數人都相隔太遠,不會陶醉於寶寶的可愛模樣,也不知道是哪裡出了問題,所以幫不上忙。因此「飛機上有小寶寶啼哭」經典案例自然會惹人苦惱──這就證明了聲音很凸顯,激使我們去讓它平息──然而我們沒辦法產生同理心,也幫不上忙,因為欠缺界定親代照護的感情紐帶、熟悉度、專門知識和掌控權,況且社會規範告訴我們,不要去碰陌生人的寶寶,進一步約束自身的舉止。

碰到兒童虐待一類狀況時,這種衝突就變得更嚴重了,這時照護者會抽身或甚至攻擊、傷害他們應該保護的兒童。根據研究,由於苦難是如此明顯、有激勵性,而且不容忽視,於是當苦難或啼哭接連持續了好幾個小時或好幾天時,人們也就會變得非常煩躁,特別當沒有明確的解決方案之時(好比,由於寶寶罹患腹絞痛)。

-----廣告,請繼續往下閱讀-----

人們必須接受培訓,並在這種情況下獲得支持而非遭受懲罰;他們應該能夠讓自己置身激烈情境之外,好讓自己冷靜下來,而且我們需要提供幫助,好讓照護者能夠休息片刻。釀成這種情況的起因,是由於人類演化出的本性是在相互支持的社會性團體生活中養育兒童,然而如今我們多數人所體驗的西方式工業化獨自育兒方式,卻已經與此脫節所致。

與苦難不能激發援助的情況相反,只要觀察者理解狀況,能介入並對他們的反應抱持信心,那麼即便強烈的和嫌惡的苦難,也依然能夠促成援助。哺乳類動物的神經激素壓力反應之所以演化出現,並不是為了讓我們在工作壓力下能吃餅乾,這種反應的演化,是藉由調動交感和新陳代謝歷程,犧牲了消化和成長等較慢、長期的生理歷程所促成的即時行動。

人們在理解並有信心介入時,即便是巨大的苦難仍能激發援助行動。圖/unsplash

我們的壓力系統經過演化,能在脅迫下最有效地快速反應,好比當觀察者受了壓力驅使,必須迅速採取行動來幫助某人──假定他們知道該怎麼做,也知道分寸。所以,即便苦難線索啟動你的壓力和自主神經系統,當我們無法行動時──強烈激情和不安找不到明確的出口之時──它們就會產生冷漠、紛擾或攻擊行為,因為這些狀態本身就是演化來激發行動。

人們面臨苦難時,若認為自己有可能遭人操控,也會感到矛盾。由於苦難會激發援助行為,人們有時會偽裝陷入苦難來誘發支持,這有可能讓開始懷疑受害者的觀察者感到困窘、惱怒、生氣或反感。舉例來說,赫迪便曾描述,像狨猿和檉柳猴這類合作養育後代的新世界猴,通常會與無助的寶寶分享食物,特別是當牠們乞求食物之時。

-----廣告,請繼續往下閱讀-----

然而,當年輕個體年齡增長獨立生活,成年個體就比較不會與牠們分享食物,而這就會導致年輕個體以愈強烈並引人嫌惡的方式懇求乞討食物,有時訴諸偷竊。這種現象已經在著名的吸血蝠動物模型的利他行為研究中重複驗證,研究發現,成年蝙蝠較少與已經發育超越青少年階段,理當自給自足的蝙蝠分享血餐。

小寶寶確實很無助,起碼在嬰兒早期階段是如此,實在不能認為他們是藉由啼哭來「操控」照護者,起碼不像是幼童、較大兒童和成人那般以刻意的、邪惡的手法來操控。嬰兒有可能「使用」哭聲來激使照護者為他們提供食物、溫暖、撫慰或移除有害刺激物。這是他們溝通需求的僅有方式之一。這些需求有的並不是真的很緊急,不過即便是需求被動照護,好比身體撫慰,也可能影響嬰兒的長期健康和幸福。

例如,寶寶獨自被留在嬰兒床或汽車座椅時,通常就會放聲啼哭,因為他們喜歡照護者充滿愛心的溫暖擁抱。不過這些並不是必須立刻解決的急迫需求(而且就汽車座椅的情況,這說不定正是拯救他們的要素)。

嬰兒以啼哭表達需求,這也是他們唯一與外界的溝通方式。圖/unsplash

即便寶寶使用哭泣來激使我們幫助他們,我想我們都同意,他們並不是刻意密謀對付任何人,而且他們的要求也相當合理──特別是在面對相當惱人的現代裝置之時。因此,寶寶哭聲的真情實意、毫不誇張,未加操控的性質,提供了一種促成行動的誘發刺激,而且就算出自成年人,我們也依然遵從。

-----廣告,請繼續往下閱讀-----

苦難的演化功能:從激發行動到引發嫌惡

人們對於苦難哭聲的音質非常敏感,能區分反映出不同需求的哭聲,好比需要接觸、肚子餓了和疼痛。因此在醫院接受腿部注射的新生兒,所引發的同情比較多,超過在圖書館因無法帶回家的玩具,半哀鳴半啼哭的十八個月大的兒童。後面這樣的哀鳴和啼哭,會讓觀察者感到非常煩躁,他們甚至還可能覺得小孩是在操控而惱火,特別當目標是要取得玩具火車或更多金魚餅乾等獎賞時。然而,聽到新生兒為真正的需求而啼哭時,人們確實會心生同情,這樣的哭聲比較溫和、有規律,並暗示了脆弱的、幼態的、受苦受難和有援助需求的理想組合。

苦難不是單一事物。苦難有多樣化形式和背景脈絡,其中有些有激勵作用,另有些沒有。不過倘若我們從照護無助新生兒的背景脈絡來理解苦難,模式便自然浮現。真正的苦難,肇因於嚴重的急迫狀況,而需要觀察者提供力所能及之幫助的困境是有激勵作用的,而當觀察者不熟悉或沒有形成感情紐帶、不知道該怎麼辦、力有未逮,幫不上忙,或者感覺受了操控,這時苦難就可能引人嫌惡,也不太可能激發援助。

科學文獻有必要更明確地釐清,苦難何時會促使人們走向困難處境,何時則會讓他們遠離,並拿包含利他反應模型屬性的情境(好比受害者與觀察者存有感情紐帶、呈幼態模樣、明顯受苦受難,並需要觀察者力所能及的即時幫助)來與不包含這些屬性的情境進行比對。這些研究將能讓我們就現實世界對苦難之反應範圍方面達成更完整的認識,這類反應並不總是充滿同情,但確實會產生比自我關注更多的可能結果。

——本文摘自《利他衝動:驅策我們幫助他人的力量》,2024 年 11 月,知田出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

知田出版_96
5 篇文章 ・ 0 位粉絲
成為世界幸福、希望的緣起──知田出版「環境永續」、「心靈提升」、「自我成長」等類型圖書,探討由個體的轉變進而影響整個群體命運等議題,希望藉由閱讀,以更多元化的角度,讓每一位讀者的心跟著轉動,認識到我們生活在同一顆星球。 已出版:《回到地球》、《人類是五分之四的灰熊》、《利他衝動:驅策我們幫助他人的力量》等書。