網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

1
0

文字

分享

0
1
0

馬改變了人類文明,人又如何改變了馬?

寒波_96
・2017/05/03 ・3346字 ・閱讀時間約 6 分鐘 ・SR值 574 ・九年級
漫畫角色「神力女超人(Wonder Woman)」是一位「亞馬遜(Amazon)」族的公主,這裡的亞馬遜,脫胎自希臘傳說中,以女戰士形象發人遐想的亞馬遜人。而近來研究指出,歐亞草原上的遊牧民族「斯基泰人」,或許正是亞馬遜人的原型。圖/取自 Omega Level

馬,徹底改變歷史的馴化動物

馬被馴化以後,於交通、經濟、軍事等方面,都扮演過舉足輕重的角色,可謂深深影響著人類的歷史,然而馬最初馴化的狀況,卻直到最近幾年才比較清楚。(關於馬的 馴化,可以參考這篇文章:《馬與古文明:騎馬打仗是馴化後好幾千年的事?》)

馬是在何時、何地馴化,長期以來都有爭議。考古學家判斷本來野生的動物是否已經馴化時,往往依靠某些型態特徵分辨;然而各地野馬族群間,本來就存在相當的差異,使得判斷野馬是否已經馴化,常用的標準往往沒那麼可靠 [1][2]。另外現今除了普氏野馬(Przewalski horse)以外,所有野馬族群已全數滅絕,也導致缺乏比較對象。

目前認為馬被馴化的地點,是歐亞草原(Eurasia Steppe)西部某處,最可靠的證據來自位於哈薩克北部,距今五千多年的波泰文化(Botai culture);此處出土的動物遺骸,超過 99% 都是馬的骨頭。

考古學家分析 5500 年前馬的遺骸後,判斷比起野馬族群,波泰馬與其他馴化馬的型態比較接近;牙齒的磨損方式,也展露被騎乘過的跡象;遺址中的陶器,還能偵測到馬乳 [3]。以上三項證據表示波泰文化中,至少部分馬匹已經遭到馴化,也就是說,人類馴化馬匹的年代,至少在 5500 年前。

本次研究中,各年代的順序。圖/取自 Science影片

斯基泰人,馬背上的遊牧民族

古代 DNA 近來成為研究歷史的神器(延伸閱讀:《想重現侏儸紀公園?先征服古代 DNA 的種種難題!》、《尼安德塔人:尋找失落的基因組-科學界30年第一手內幕揭秘》),馬的演化史自然不會例外。之前研究曾經獲得馬被馴化以前,古代野馬的基因組 [4];最近的論文,則是報告了 14 個覆蓋率介於 1.2 到 10.9 的古馬基因組,讓我們能更加認識馬被馴化以後的演變狀況 [5]。

這回獲得最古早的基因組,是位距今 4100 年的女生,位於現代俄羅斯的 Chelyabinsk Oblast,也是波泰文化的西方 400 公里遠處。此處遺址屬於青銅時代的 Sintashta 文化,是史上最早出土馬戰車(chariot)的地方,這位被定序的女生和其他 3 頭馬,與馬戰車被葬在一塊。

Sintashta文化的居民,是史上首度使用馬戰車的人。圖/取自 Science影片

其他古馬基因組,都來自分佈於中亞、阿爾泰山一帶的「斯基泰人(Scythian)」墓葬。距今 2700 年的 Arzhan I,或許是年代最早的斯基泰遺址;考古學家在此發現 160 頭犧牲的馬,其中 2 個成為本次研究的樣本。距今 2300 年的 Berel 遺址,位於知名的巴澤雷克(Pazyryk)墓葬附近(《金怪獸GO!—古代歐亞草原上的神秘客》),則提供了 11 個樣本。13 個斯基泰古馬樣本皆為男生,死因都是在儀式中被犧牲。

「斯基泰」並非單一族群,而是鐵器時代時,由西到東分佈於歐亞草原上,許多共享類似文化的遊牧族群總稱。由於斯基泰人沒有自己的文字,後代往往透過他們周圍的人(多半是敵人),例如古希臘史學家希羅多德,帶有偏見的記載來間接認識他們。斯基泰人以草原為家,與馬共同生活,想必是養馬高手;透過分析古馬 DNA,將能直接揭露他們的養馬策略。

古馬樣本的遺址位置。有趣的是,東部斯基泰 Berel 和 Arzhan 遺址的位置,十分接近丹尼索瓦洞穴,見《丹尼索瓦人(上):尼安德塔人的神秘近親》。圖/取自 ref 5

馬有什麼特徵才受人喜愛?

由斯基泰馬配備的基因版本判斷,牠們的毛色多變,當初在儀式上被整群犧牲時,大概相當美觀 (誤)。也有大批與骨骼發育,還有減少水分喪失相關的基因被偵測到,顯然斯基泰人相當重視馬的速度與耐力,以及美麗。另外有趣的是,還有基因似乎與促進產乳有關。

比較古今各地馬群的 DNA 後,斯基泰馴化馬和野馬相比,許多改變的基因和認知、行為能力,以及耳朵形狀、神經索型態、神經系統的發育與運作關係密切。論文指出,這支持動物馴化的「神經脊假說(neural crest hypothesis)」。

為什麼各種馴化動物間,常具備類似的型態與生理特徵,還有遺傳缺陷?神經脊假說的解釋是:馴化動物有別於野生動物的特色,或謂「馴化症候群(domestication syndrome)」,大部分都可以追溯到胚胎發育時的神經脊細胞 [6]。神經脊衍生的影響層面很廣,包括直接受到人擇,或被間接影響,如各式毛色、不易受驚、強化的學習與認知能力、軟耳(floppy ears)等特色。

大部分與馬馴化相關的基因,都和神經索有關。圖/取自 Science影片

馬的遺傳多樣性,並未被馴化毀滅

馬跟人一樣,Y 染色體都是父子代代相傳,粒線體則是子女繼承自母親(延伸閱讀:《男生的Y染色體從何而來,有一天會消失嗎?》)。目前全世界馬的 Y 染色體變異極為有限,都能追溯到相當近期的一位馬爸爸,顯然是人擇的結果;除此之外,由於長期近親交配,使得許多現代的馬,遺傳上擁有某些有害變異。

馴化的代價之一,是毀滅本來的遺傳多樣性,幾乎已經變成常識。馬的馴化從五千多年前開始,一直到兩千多年前,將馬發揚光大的斯基泰人時,中間大約經過了三千多年;此時馬早已被完全馴化,照理說馴化該有的後遺症,應該都已經出現。遺傳學家根據目前 Y 染色體的變異程度,推論最初只有非常少數公馬被馴化,後來這個品系陸續與各地母馬情慾交流,才造成現在的情形。

古今各馬族群的遺傳負荷。圖/取自 ref 5

然而,這回由斯基泰古馬觀察到的狀況,卻不是這麼回事。斯基泰古馬在遺傳上,粒線體 DNA 的變異跟現代馬群差不多,Y 染色體卻遠比現代馬大得多;遺傳負荷(genetic load)方面,斯基泰馬群甚至比之前定序,未被馴化的野馬族群還要更低(遺傳負荷看這裡:《馴化生物教戰手冊—人馴化了作物,作物也馴化了人)。除此之外,對 5200 年前北極圈古馬的研究得知,牠們與現代馬共享一些遺傳組成[7];這次則發現,現代馬比起斯基泰馬,與野馬共享的 DNA 數目更加降低。

各項分析皆指出,馴化馬的多樣性至少到兩千多年前,在斯基泰人的經營下仍相當多變,特別是父系方面尚未喪失多樣性,跟後世大不相同。現代馬之所以欠缺遺傳變化,累積許多有害變異,都是在斯基泰時期結束以後,更接近現代時才產生。

儘管馬的地位不再,牠們仍繼續以各種形象,普遍出現在文創作品中,例如彩虹小馬。圖/取自 好色龍的網路生活觀察日誌

重現歐亞草原史

取材自斯基泰古馬的遺傳研究,再度展示了古代 DNA 的價值。假如只知道現代馬的 DNA,我們將永遠無法得知,直到兩千年前左右,馬已被馴化三千餘年時,仍未喪失遺傳多樣性。馬在什麼時候變成現在這樣,要解答此一問題,勢必需要更多古代基因組。

探究馬的歷史,還有另一層意義。馬的馴化起於歐亞草原,此後馬也一直是遊牧民族的招牌;幾千年來縱橫歐亞大陸,屢屢震撼周邊農耕族群的遊牧民族,卻在大航海時代後,徹底失去本來的地位。

草原曾經輝煌的過去,如今大半遭到遺忘,近年來才慢慢靠著考古研究,找回失落的故事;而馬,是我們重建歐亞草原史時,不可或缺的一環。

參考文獻

  1. Anthony, D. W. (2010). The horse, the wheel, and language: how Bronze-Age riders from the Eurasian steppes shaped the modern world. Princeton University Press.
  2. Anthony, D. W., & Brown, D. R. (2011). The secondary products revolution, horse-riding, and mounted warfare. Journal of World Prehistory, 24(2-3), 131.
  3. Outram, A. K., Stear, N. A., Bendrey, R., Olsen, S., Kasparov, A., Zaibert, V., … & Evershed, R. P. (2009). The earliest horse harnessing and milking. Science, 323(5919), 1332-1335.
  4. Schubert, M., Jónsson, H., Chang, D., Der Sarkissian, C., Ermini, L., Ginolhac, A., … & Fumagalli, M. (2014). Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proceedings of the National Academy of Sciences, 111(52), E5661-E5669.
  5. Librado, P., Gamba, C., Gaunitz, C., Der Sarkissian, C., Pruvost, M., Albrechtsen, A., … & Serres-Armero, A. (2017). Ancient genomic changes associated with domestication of the horse. Science, 356(6336), 442-445.
  6. Wilkins, A. S., Wrangham, R. W., & Fitch, W. T. (2014). The “domestication syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics, 197(3), 795-808.
  7. Librado, P., Der Sarkissian, C., Ermini, L., Schubert, M., Jónsson, H., Albrechtsen, A., … & Mortensen, C. D. (2015). Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proceedings of the National Academy of Sciences, 112(50), E6889-E6897.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

文章難易度
寒波_96
153 篇文章 ・ 376 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。


0

11
5

文字

分享

0
11
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》