Loading [MathJax]/jax/input/TeX/config.js

0

0
0

文字

分享

0
0
0

小兔子為何睡不著?

林希陶_96
・2016/02/15 ・1618字 ・閱讀時間約 3 分鐘 ・SR值 466 ・五年級

-----廣告,請繼續往下閱讀-----

《好想睡覺的小兔子》(The Rabbit Who Wants to Fall Asleep)這本書的中文版最近要在台灣上市了,很多有小小孩的家長對於這件事情非常關心,很想瞭解是否真的能達到效果?對於嬰幼兒的睡眠能否找到一勞永逸的方法?

Source: mirror

其實,這本書的英文版本去年就已經出版,當時曾在國外造成一股風潮。但是很多有實驗精神的心理學家,也試著在自己的小孩身上試用,但效果似乎不是很好。(請見:想睡覺的兔子讓你家寶寶入睡了嗎?

個人瞭解了英文版本(中文版本還未到手),發現它是使用放鬆的概念,並企圖營造出催眠的感覺(放鬆一事是催眠的基礎,不能放鬆就不可能被催眠)。裡面所使用的語氣與詞彙,都是想造成睡眠的氛圍。但這樣的概念,其實出自於睡眠儀式。大人其實只要想辦法營造睡眠氣氛,一樣可達到相同效果。

Source: mirror

像我家的雙胞胎用這樣的方式肯定無效,因為我們睡前不講故事的。由神經科學可知,講故事這件事牽涉到認知學習。如果我們想講故事,都是盡量在清醒的狀態,這樣所說的故事才有可能觸動大腦學習。我們的作法只是讓睡前的整個流程盡量簡化,並且盡可能在15分鐘內完成。我們是這樣做的:先泡奶、喝奶,之後上廁所、包尿布、清口腔,最後全家人一起上床睡覺。他們當然不會一下子就睡著,但是滾來滾去大約十五分鐘內就會進入夢鄉。這與大部分的睡眠科學研究相符合,大部分的人都是十五到三十分鐘內睡著(見延伸閱讀)。

-----廣告,請繼續往下閱讀-----

對於睡眠儀式有疑慮的人,會覺得這樣流程不容易建立,甚至弄得不好整個過程會長達一兩小時。但這真的是誤解,如果放學回家就要開始進行睡眠儀式,這完全是不懂行為理論所導致。我們先停下來思考一下大人怎麼睡覺的,就會發現有疑問的人完全搞錯方向了。成年人想睡的時間,與生理時鐘配合。有的人早一些大約十點就想睡了,有的人晚一些,大約要十二點才想睡覺。每個人覺得睡得夠飽的時間也不同,落差在四到十小時之間(若以歷史上知名的人物來看,拿破崙只需要睡四小時,但是愛因斯坦卻要睡到十小時以上)。因此,大人在想睡覺的時候,睡眠儀式很簡短,準備一下就睡了,不需要拖到一、兩個小時(註一)。

Source: mirror

所以,回過頭來看嬰幼兒的睡眠也是如此。小孩想睡的時間到了,生理時鐘就是這樣,不可能撐太久,幾乎都會很快就睡著。因此睡眠儀式只要睡覺前幾個步驟就行了,而不是遙遙無盡期。若有一兩天失敗,這是很正常的,因為孩子們不是機器人,關了機就可以直接放倒在地上。每個孩子會因為當天的活動量、誤吃咖啡因相關食物、使用藥物、有無照到太陽(註二),而略有不同的。我家的雙胞胎也曾經喝到茶,而搞到十一、二點才睡著。

總之,千萬不要誤信單一方法或書籍可以永久地解決所有問題。這不只不科學,也容易造成巨大的誤會,以為書買回家照做就會成功。不管是大人或小孩,都是有機體,我們要找尋的是合適的方式,而非人云亦云。

  • 註一:如果每天真的要拖一兩個小時才能睡著,每星期有三天有這樣的情形,持續了三個月。那很有可能是睡眠節律有問題,應該要尋求醫療專業協助。
  • 註二:太陽光可以幫忙校正松果體,讓松果體正常釋出褪黑激素。褪黑激素可以幫助我們入眠。

延伸閱讀:

-----廣告,請繼續往下閱讀-----

參考文獻:

  • American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders,
    5th edition. Arlington, VA., American Psychiatric Association, 2013.
  • Mindell JA, Kuhn B, Lewin DS et al. Behavioral treatment of bedtime problems and night
    wakings in infants and young children. SLEEP 2006;29(10):1263-1276.

本文轉載自作者部落格暗夜浮動月黃昏

-----廣告,請繼續往下閱讀-----
文章難易度
林希陶_96
80 篇文章 ・ 53 位粉絲
作者為臨床心理師,專長為臨床兒童心理病理、臨床兒童心理衡鑑、臨床兒童心理治療與親子教養諮詢。近來因生養雙胞胎,致力於嬰幼兒相關教養研究,並將科學育兒的經驗,集結為《心理師爸爸的心手育嬰筆記》。與許正典醫師合著有《125遊戲,提升孩子專注力》(1)~(6)、《99連連看遊戲,把專心變有趣》、《99迷宮遊戲,把專心變有趣》。並主持FB專頁:林希陶臨床心理師及部落格:暗香浮動月黃昏。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
新生兒基因檢測及早發現,把握黃金治療期
careonline_96
・2021/07/01 ・2640字 ・閱讀時間約 5 分鐘

在少子化的台灣,每個孩子都是寶,父母親殷切期盼孩子出世,更希望孩子能健康長大。隨著檢測技術的進步,家長們也有越來越多的選擇。

最首要的是國家提供的篩檢項目,包含代謝篩檢與聽力篩檢。目前的新生兒先天性代謝異常疾病篩檢有 21 個項目,這些代謝疾病若未能及時治療,可能造成損害,導致永久性後遺症。禾馨醫療小兒科陳菁兒醫師指出,國民健康署提供的新生兒篩檢主要是篩檢「採檢當下」血液中的代謝產物、酵素,可以找出急性或嚴重程度較高的疾病,以便即早接受治療、減輕症狀。至於聽力篩檢,可以找出當下已經發生嚴重聽力損傷的寶寶。

由政府補助的各項篩檢皆相當重要,但還是有其侷限性,陳菁兒醫師分析,所以有些未列入篩檢的疾病,或者是比較晚發病的寶寶,往往得等到出現症狀、生長遲緩時,才就醫檢查,可能錯過黃金治療期,而造成父母的自責與遺憾。

受惠於醫學的進展,目前已可運用基因檢技術讓新生兒篩檢更加完善,「新生兒基因檢測」只需寶寶採取幾滴血液或是刮取口腔黏膜細胞便能進行檢驗,能夠提早驗出晚發型的寶寶,且涵蓋更多疾病種類。

-----廣告,請繼續往下閱讀-----

新生兒聽力篩檢正常,長大後卻出現聽力損傷!?

新生兒基因檢測的起源與聽力篩檢有關,陳菁兒醫師解釋,以往大家認為只要通過新生兒聽力篩檢的寶寶,聽力應該就沒有問題,但是後來卻發現,部分在 4-5 歲有語言發展遲緩的小朋友,檢查起來其實是聽力損傷造成的學習遲緩,代表仍有部份聽力損傷無法透過新生兒聽力篩檢出來。

台大醫院耳鼻喉科醫師與基因醫學部團隊針對這個問題深入研究,這才發現台灣人具有一些特別常見的聽損基因及點位,於是發展出聽損基因檢測在新生兒的應用。

陳菁兒醫師說明,上圖中藍色圈圈代表由新生兒聽力篩檢所發現當下已經有嚴重聽損的寶寶,橘色圈圈是利用基因檢測所找出來較輕微、以及晚發型的聽損寶寶。研究發現這兩種檢查重疊的部分很小,也就是說新生兒基因檢測可以找到傳統聽力篩檢無法篩檢到的族群,且兩者同等重要,無法互相取代。

這樣的研究開啟了新生兒基因篩檢的應用,在台灣也已經頗為普及,準父母在產檢過程中都可以由醫療院所獲得相關資訊。

-----廣告,請繼續往下閱讀-----

新生兒基因檢測涵蓋更廣泛

不同檢測技術,可以找出的不同疾病特性的族群,陳菁兒醫師說明,「新生兒代謝篩檢」所檢驗的採檢當下寶寶血液中的代謝物質,可以偵測出急性且嚴重的代謝疾病,但輕型或晚發型代謝疾病就不一定驗得出來;「新生兒基因檢測」則可以提早找出高風險寶寶,後續便能加強照護和追蹤。

除了聽力損傷及代謝疾病,目前新生兒基因檢測的應用範圍很廣,還可以進階到找出特定中樞神經、血液、肌肉、心臟、視力等多種疾病,陳菁兒醫師說,透過基因檢測甚至可以了解一些藥物過敏的問題。

「基因檢測可以實現預防醫學與精準醫療的概念。」陳菁兒醫師說,「以藥物過敏為例,輕微的可能只是皮膚搔癢紅腫,但嚴重可能導致死亡。過去大家只能在用藥之後,才從臨床反應知道是否對藥物過敏,現在則可利用藥物基因檢測找出可能引起過敏反應的藥物,就醫時就能提醒醫師避免使用相關藥物,或調整藥物劑量,以降低藥物不良反應發生的機會。」

藥物基因體學包括藥物代謝與藥物不良反應的資訊,陳菁兒醫師分析,因為每個人對藥物代謝的速率不同,所以在相同劑量下可能產生不同的反應,譬如小朋友常用的退燒藥,可能因為代謝速率不同而導致不良反應,嚴重可能造成腸胃道出血。成人常用的降尿酸藥物,在某些人身上可能出現史帝芬強生症候群 (Steven-Johnson Syndrome,SJS) 或毒性上皮溶解症 (Toxic Epidermal Necrolysis,TEN),皮膚會嚴重潰爛,甚至導致死亡。

-----廣告,請繼續往下閱讀-----

「還有知名電視劇「麻醉風暴」中上演的惡性高熱,主要是因為帶有特殊基因的人群,在使用某些麻醉藥物後容易演變成惡性高熱,而危及性命。」陳菁兒醫師說,「以往這些比較特殊的案例,常找不到原因,但是現在透過藥物基因檢測,我們可以提早找出容易對這些高敏感藥物產生不良反應的族群,有助於提升用藥安全。」

因為人體的遺傳基因不會改變,一輩子只需要驗一次即可,這些攸關用藥安全的資訊,長大以後也都非常實用。

基因檢測讓家族成員連帶受益

針對有家族史的寶寶,因為帶有相同疾病基因變異的機率比較高,需要以基因檢測確認是否為高風險寶寶,提早做預防照護。

至於沒有家族史的寶寶,則可以透過基因檢測找出相關疾病,並能藉此找出隱藏的家族史而讓整個家族受益。

-----廣告,請繼續往下閱讀-----

也就是說,新生兒基因檢測的好處其實不只侷限在受檢的寶寶,陳菁兒醫師分析,包含已出生、未出生的兄弟姊妹、其他家族成員,甚至上一代或下一代都可能是受益的對象。

無論是否有已知家族史,如果新生兒驗出疾病基因變異,都應該接受完整遺傳諮詢,必要時再進行相對應基因檢測。「有的家族因為寶寶做了基因檢測,才發現其他家族成員其實也有相同的疾病,因而得以提早接受治療。」陳菁兒醫師說,「另外,了解遺傳疾病的狀況,也可以讓爸爸媽媽在準備生育下一胎時,做好計畫。」

貼心小叮嚀

陳菁兒醫師提醒,基因檢測是一種風險評估的概念,一生只需驗一次,就可以得到終身受用的基因疾病資訊。提早檢測就越能夠提早預防,避免錯失疾病的黃金治療期,甚至其他家族成員也可能連帶受益喔!

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
小兔子為何睡不著?
林希陶_96
・2016/02/15 ・1618字 ・閱讀時間約 3 分鐘 ・SR值 466 ・五年級

-----廣告,請繼續往下閱讀-----

《好想睡覺的小兔子》(The Rabbit Who Wants to Fall Asleep)這本書的中文版最近要在台灣上市了,很多有小小孩的家長對於這件事情非常關心,很想瞭解是否真的能達到效果?對於嬰幼兒的睡眠能否找到一勞永逸的方法?

Source: mirror

其實,這本書的英文版本去年就已經出版,當時曾在國外造成一股風潮。但是很多有實驗精神的心理學家,也試著在自己的小孩身上試用,但效果似乎不是很好。(請見:想睡覺的兔子讓你家寶寶入睡了嗎?

個人瞭解了英文版本(中文版本還未到手),發現它是使用放鬆的概念,並企圖營造出催眠的感覺(放鬆一事是催眠的基礎,不能放鬆就不可能被催眠)。裡面所使用的語氣與詞彙,都是想造成睡眠的氛圍。但這樣的概念,其實出自於睡眠儀式。大人其實只要想辦法營造睡眠氣氛,一樣可達到相同效果。

-----廣告,請繼續往下閱讀-----

Source: mirror

像我家的雙胞胎用這樣的方式肯定無效,因為我們睡前不講故事的。由神經科學可知,講故事這件事牽涉到認知學習。如果我們想講故事,都是盡量在清醒的狀態,這樣所說的故事才有可能觸動大腦學習。我們的作法只是讓睡前的整個流程盡量簡化,並且盡可能在15分鐘內完成。我們是這樣做的:先泡奶、喝奶,之後上廁所、包尿布、清口腔,最後全家人一起上床睡覺。他們當然不會一下子就睡著,但是滾來滾去大約十五分鐘內就會進入夢鄉。這與大部分的睡眠科學研究相符合,大部分的人都是十五到三十分鐘內睡著(見延伸閱讀)。

對於睡眠儀式有疑慮的人,會覺得這樣流程不容易建立,甚至弄得不好整個過程會長達一兩小時。但這真的是誤解,如果放學回家就要開始進行睡眠儀式,這完全是不懂行為理論所導致。我們先停下來思考一下大人怎麼睡覺的,就會發現有疑問的人完全搞錯方向了。成年人想睡的時間,與生理時鐘配合。有的人早一些大約十點就想睡了,有的人晚一些,大約要十二點才想睡覺。每個人覺得睡得夠飽的時間也不同,落差在四到十小時之間(若以歷史上知名的人物來看,拿破崙只需要睡四小時,但是愛因斯坦卻要睡到十小時以上)。因此,大人在想睡覺的時候,睡眠儀式很簡短,準備一下就睡了,不需要拖到一、兩個小時(註一)。

Source: mirror

-----廣告,請繼續往下閱讀-----

所以,回過頭來看嬰幼兒的睡眠也是如此。小孩想睡的時間到了,生理時鐘就是這樣,不可能撐太久,幾乎都會很快就睡著。因此睡眠儀式只要睡覺前幾個步驟就行了,而不是遙遙無盡期。若有一兩天失敗,這是很正常的,因為孩子們不是機器人,關了機就可以直接放倒在地上。每個孩子會因為當天的活動量、誤吃咖啡因相關食物、使用藥物、有無照到太陽(註二),而略有不同的。我家的雙胞胎也曾經喝到茶,而搞到十一、二點才睡著。

總之,千萬不要誤信單一方法或書籍可以永久地解決所有問題。這不只不科學,也容易造成巨大的誤會,以為書買回家照做就會成功。不管是大人或小孩,都是有機體,我們要找尋的是合適的方式,而非人云亦云。

  • 註一:如果每天真的要拖一兩個小時才能睡著,每星期有三天有這樣的情形,持續了三個月。那很有可能是睡眠節律有問題,應該要尋求醫療專業協助。
  • 註二:太陽光可以幫忙校正松果體,讓松果體正常釋出褪黑激素。褪黑激素可以幫助我們入眠。

延伸閱讀:

參考文獻:

-----廣告,請繼續往下閱讀-----
  • American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders,
    5th edition. Arlington, VA., American Psychiatric Association, 2013.
  • Mindell JA, Kuhn B, Lewin DS et al. Behavioral treatment of bedtime problems and night
    wakings in infants and young children. SLEEP 2006;29(10):1263-1276.

本文轉載自作者部落格暗夜浮動月黃昏

-----廣告,請繼續往下閱讀-----
文章難易度
林希陶_96
80 篇文章 ・ 53 位粉絲
作者為臨床心理師,專長為臨床兒童心理病理、臨床兒童心理衡鑑、臨床兒童心理治療與親子教養諮詢。近來因生養雙胞胎,致力於嬰幼兒相關教養研究,並將科學育兒的經驗,集結為《心理師爸爸的心手育嬰筆記》。與許正典醫師合著有《125遊戲,提升孩子專注力》(1)~(6)、《99連連看遊戲,把專心變有趣》、《99迷宮遊戲,把專心變有趣》。並主持FB專頁:林希陶臨床心理師及部落格:暗香浮動月黃昏。

1

7
2

文字

分享

1
7
2
人類寶寶的腸道裡到底都住了哪些微生物?──決定嬰兒腸道微生物菌相的要素及對於整復之啟示
社團法人台灣國際生命科學會_96
・2021/04/02 ・5982字 ・閱讀時間約 12 分鐘 ・SR值 576 ・九年級

-----廣告,請繼續往下閱讀-----

圖/ILSI Taiwan

文/李元昆 教授|新加坡國立大學楊潞齡醫學院,微生物與免疫學系/外科學系。

臨床及基礎研究中,已有越來越多證據顯示人類腸道微生物菌相 (gut microbiome) 能調節免疫系統、心智及其他生理功能的發育 (1-8)。成熟的人類腸道微生物菌相可分為兩大操作類型,分別是擬桿菌屬-雙歧桿菌屬型 (Bacteroides-Bifidobacterium type) 和普雷沃氏菌屬型 (Prevotella type) ,主要決定於飲食、地理位置以及生活型態(9-13)。擬桿菌屬-雙歧桿菌屬型主要分布於歐洲、北美洲和東亞 (9, 13–15),普雷沃氏菌屬型則是常見於東南亞、蒙古與非洲 (9, 14, 16)。母親會在懷孕與生產的過程中將自己的微生物菌相轉移給孩子 (17–20)。在嬰兒出生後,微生物菌相在母嬰之間的垂直轉移主要發生在腸道、產道、母乳、口腔以及皮膚等部位 (20–27)。西方國家自然產的新生兒,經由產道傳遞,會和母親有相同的腸道微生物菌相類型,也就是擬桿菌屬-雙歧桿菌屬型 (21, 26–29)。實際上不同菌種之間的相對豐富度在滿周歲前仍會改變 (23, 28, 30–32)。這些研究結果暗示,這類能「遺傳」到嬰兒的腸道微生物菌相組成,或許能夠保護兒童未來的健康。

母親只給了寶寶腸道微生物藍圖,並不決定其終其一生的發展

諷刺的是,這種常見於西方國家微生物菌相型的優勢菌:擬桿菌屬 (Bacteroides) 卻被列為許多已開發國家常見疾病的獨立風險因子,包含心血管疾病 (24, 25)、第二型糖尿病 (26, 27)、大腸直腸癌 (28-30)、心肌病變 (31)、類風溼性關節炎 (32)、發炎型腸道疾病 (33)、帕金森氏症 (34)、乳糜瀉 (35) 以及阿茲海默症 (36)。另外一方面,普雷沃氏菌屬(Prevotella) 為東南亞居民和素食者腸道主要菌群,也有直接或間接的證據暗示其與慢性發炎型疾病有關,包括牙周病、陰道菌叢變化症 (bacterial vaginosis) (37)、扁桃腺炎(38)、非酒精性脂肪肝引發的後期肝纖維化 (39)、心血管代謝疾病風險 (40) 以及氣喘 (41)等。 這些研究導向一個值得思考的重要健康問題:難道我們一生的健康與可能得到的疾病竟然被連結到出生那一刻?在回答這個問題之前,我們必須先了解決定腸道微生物菌相發展與建立的幾個關鍵因子。

如上所述,自然產嬰兒,其第一時間接觸的微生物菌相來自於母親的垂直傳遞。因此,有人可能會假設我們的健康狀況或許在這個時刻就已經被母親「設定」了。令人意外地是,一份近期於東南亞的研究結果顯示,新生兒至離乳前,其腸道微生物菌相屬於擬桿菌屬-雙歧桿菌屬型,並非他們母親所擁有的普雷沃氏菌屬型 (42)。且這些嬰兒的腸菌相,會在離乳過程中逐步轉變成與母親相同的普雷沃氏菌屬型 (12, 14)。

圖/ILSI Taiwan

剖腹產也會影響寶寶的腸胃道微生物菌相?

這項於印尼的研究,發現擬桿菌屬、雙岐桿菌屬 (Bifidobacterium) 與腸細菌科 (Enterobacteriaceae) 是嬰幼兒糞便中佔比最高的細菌,和過去於西方國家的研究結果相同 (23, 28–30)。在這群印尼嬰幼兒的糞便中,菌相隨著年紀的變化,主要來自於年紀較長的嬰幼兒糞便出現了一些特定的菌屬:在 6-12 月齡和 12-24 月齡的兩組中,主要是普雷沃氏菌屬、布勞特氏菌屬 (Blautia)、普拉梭菌屬 (Faecalibacterium)、毛螺菌科 (Lachnospiraceae) 以及瘤胃菌科 (Ruminococcaceae)等。同時,擬桿菌屬、雙岐桿菌屬、腸細菌科與克雷伯氏菌屬 (Klebsiella) 的相對豐富度則在離乳後逐漸下降 (6-12 月齡時),並在 24–48 月齡時持續維持較低的比率。在出生後短短不到一個月內,擬桿菌屬和雙岐桿菌屬就能以母親菌相的少數菌之姿,迅速在嬰兒的腸道內建立優勢微生物菌相,顯示新生兒的腸道環境可能非常適合這類菌屬的定殖與生長。同時卻又讓我們思考,為什麼剖腹產嬰兒即使是由母親哺乳,腸道內的擬桿菌屬和雙岐桿菌屬卻生長速度較為緩慢呢 (28, 43)?過去曾認為,這個差異可能是來自於剖腹產胎兒與母親有較少的垂直傳遞 (28, 43),然而根據這份印尼的研究,嬰兒早期腸道微生物菌相的快速建立,未必需要高量菌數之殖入。一個可能的解釋是,剖腹產手術過程會影響腸道的環境,進而阻撓共生菌在嬰兒腸道的建立過程。人類乳汁中的寡醣類能幫助雙岐桿菌屬在嬰兒腸道中成長 (44–46),且母乳富含脂質 (47),會促進膽酸分泌,進一步抑制普雷沃氏菌屬,並促進擬桿菌屬和雙岐桿菌屬的生長 (48, 49)。確實在該篇研究中,印尼嬰兒離乳前的排泄物 (糞水) 中含有較多的初級膽酸 (primary bile acids)。 離乳後的腸道微生物菌相改變也使得初級膽酸被轉換成次級膽酸 (secondary bile acids),與過去日本的研究結果相符 (42, 50)。離乳前嬰兒腸道中擬桿菌屬和雙岐桿菌屬的功能以及它們之所以佔據菌相多數的原因,值得注意。以該篇印尼研究來說,擬桿菌屬和雙岐桿菌屬不太可能與成人後的營養消化有關,因為在離乳後就會迅速轉成普雷沃氏菌屬主導的微生物相,且母親 (成人) 的腸道微生物菌相中擬桿菌屬和雙岐桿菌屬分布本就較低。在這篇研究中,與免疫細胞生長、成熟有關的細胞激素含量 (IL-1β, −2, −5, −8, −12, TNF-α 和 IFN-β) 也在離乳後上升。這也暗示了幼兒的主動免疫在離乳期開始發展。在一篇小鼠研究中, 腸道殖入Bacteroides fragilis (來自擬桿菌屬) 能夠抑制促發炎的TH17 免疫細胞反應 (51)。推測此篇印尼研究,離乳前擬桿菌屬的優勢定殖或許能抑制腸道中的促發炎細胞。在產後一個月內,普雷沃氏菌是母親陰道裡含量最豐富菌種。然而,即使生產過程中,嬰兒暴露於較多的普雷沃氏菌,但哺乳期間此菌的含量卻一直只在嬰兒的腸道微生物菌相佔少數。直到離乳後,嬰兒開始吃母乳以外的食物才逐漸轉為優勢菌種。有趣的是,歐洲與北美的母親,雖然腸道微生物菌相屬於擬桿菌屬-雙岐桿菌屬型,其陰道菌相卻仍以大量的普雷沃氏菌為主 (20, 23),即便歐美常見離乳後攝食的高脂/高蛋白飲食並不利於與此菌於腸道之繁衍 (12, 15)。儘管已開發國家飲食型態近數十年來有相當的演變,內源性因子所造就的普雷沃氏菌在母親陰道中的優勢,完全沒有受到影響。因為早期人類的飲食主要是以蔬菜為主,與現今的印尼族群飲食型態近似。然而,來自母體的微生物傳遞依舊被認為是嬰幼兒腸道微生物菌相的重要來源之一,因為所有孩子腸道中的菌種都可以在母親的微生物相中找到。不過,母親的微生物菌相中仍有許多額外的菌種,這表示只有少部分菌種可以透過腸道、陰道以及母乳傳遞給嬰兒,並且成功建立起嬰兒的微生物菌相。更重要的是,在母體優勢的菌種,並不一定在嬰兒腸道環境中也具相同的競爭優勢。這現在的其中一個解釋為,嬰兒的腸道環境可能偏好具有帶著某些特定功能基因的菌種 (27), 也有可能是除了垂直傳遞以外,菌相的水平傳遞也占了一席之地 (52)。無論如何,該篇研究最後也顯示嬰幼兒的腸菌相,會隨著成長而逐漸與母親的腸菌相愈來愈相近 (26, 28)。

-----廣告,請繼續往下閱讀-----

這篇研究,使用了一個相關係數指標來評估腸道共生菌與一些已知致病菌之間的相關程度;此指標係將共生菌與潛在致病菌的相關係數予以加總,指標 0 表示任何共生菌與病原菌均不相關。這個指標在這篇印尼嬰兒的研究中,離乳前為 4.9,而在離乳後則是上升到 31.0。前後的數字變化顯示,離乳前的共生菌群和母乳中可提供被動免疫防護的抗體、免疫球蛋白能夠壓制並避免潛在致病菌的生長。這些共生菌會提供嬰兒保護力,直到離乳前後他們自己的免疫系統完整發育。這種微生物菌相也許是一個演化上的保護策略,能在較不注重衛生習慣的過去,或者是某些開發中國家的現今,提供較早離乳的嬰兒足夠的保護力。 霍亂弧菌為開發中國家最廣泛的致命腸道病原菌。

圖/ILSI Taiwan

雙岐桿菌屬在各年齡層均與複雜碳水化合物、當地水果以及乳製品的攝取呈負相關。此印尼的研究結果也支持了先前的研究發現,飲食中抗性澱粉的存在會與雙岐桿菌屬數量呈現負相關(14)。印尼人的主食為秈米 (Indica rice),含有較多的抗性澱粉。印尼嬰兒離乳後攝取秈米,抗性澱粉持續存在於腸道中,造成腸道中游離膽酸被移除,進而使得普雷沃氏菌屬增殖,而降低雙岐桿菌屬 (10)。此外,普雷沃氏菌屬能夠發酵碳水化合物 (14, 15),攝食高碳水化合物的印尼人腸道環境有利其增殖。再者,研究也發現當地的水果及乳製品似乎會抑制雙岐桿菌屬的生長,且具有強烈的劑量效應。當地的果樹為了在高溫、容易滋生細菌的環境下生長,會產生抗菌的化學物質 (54–56)。而雙岐桿菌屬是否屬於對這類抗菌化學物質敏感的微生物,還需要進一步的研究證實。若屬實,這可能就是印尼幼兒離乳後腸道雙岐桿菌屬急遽下降的原因,同時也可解釋為何母親的腸道微生物菌相含有較少雙岐桿菌屬。在某些幼兒攝取較為西化飲食 (速食) 的案例中,來自麵包或洋芋片的可消化碳水化合物,可能造成速食攝取與雙岐桿菌屬之間出現正相關 (14)。過去在歐洲、北美洲以及東亞兒童所觀察到的雙岐桿菌屬保健功能 (33-36, 43, 53),在印尼兒童或許是由別種共生菌所取代,例如腸球菌 (Enterococcus faecalis) (57, 58)。嬰幼兒成長到 24-48 月齡時,可能已發展出一套成熟平衡的腸道微生物菌相系統。或許因與母親的飲食日趨相似,其與母親的微生物菌相亦就非常雷同。

綜此,至今研究指出:

  • 在出生僅僅一個月內,嬰兒體內優勢菌相即可相對快速的建立,其起始於來自母親極少菌量之殖入,但決定於嬰兒腸道環境因子,非母親菌相中含量最多的菌。
  • 嬰兒離乳前的腸道優勢菌相與內外緣因子有關,包括膽酸濃度、細胞激素、母乳中寡醣以及黏液素的醣基 (mucin glycans) 等,這些因子有利於擬桿菌屬及雙岐桿菌屬成為優勢菌種。
  • 在嬰兒離乳前,擬桿菌屬及雙岐桿菌屬的量與潛在致病菌的量呈負相關。唯其於抵抗傳染性疾病中所扮演的角色還需要更多臨床研究證實。
  • 離乳後的飲食型態,驅動嬰兒糞便微生物菌相組成的改變,故離乳期代表了微生物菌相變化的過渡期窗口。
  • 綜而言之,決定兒童腸道微生物菌相主要應是腸道環境和飲食組成,而非完全轉殖自母體。也就是說,離乳期的飲食為改善腸道微生物菌相的一個務實捷徑。
  1. Turroni F, Milani C, Duranti S, Lugli GA, Bernasconi S, Margolles A, Di Pierro F, van Sinderen D, Ventura M. The infant gut microbiome as a microbial organ influencing host well-being. Italian J Pediatrics. 2020;46:16.
  2. Olsza k T, An D, Zeissig S, Vera MP, Richter J, Franke A,Glickman JN, Siebert R, Baron RM, Kasper DL, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336(6080):489–493. doi:10.1126/science.1219328.
  3. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonisation by microbiota in early life shapes the immune system. Science. 2016;352(6825):539–544. doi:10.1126/science.aad9378.
  4. Scheepers L, Penders J, Mbakwa CA, Thijs C, Mommers M, Arts I. The intestinal microbiota composition and weight development in children: the KOALA birth cohort study. Int J Obesity. 2015;39:16–25. doi:10.1038/ijo.2014.178.
  5. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, et al. The first microbial colonizers of the human gut: composition, activities and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036–17.
  6. Mulligan CM, Friedman JE. Maternal modifiers of the infant gut microbiota: metabolic consequences. J Endocrinol. 2017;235(1):R1–R12. doi:10.1530/JOE-17-0303.
  7. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW, et al. Neonatal gut microbiota associates with childhood multisensitised atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. doi:10.1038/nm.4176.
  8. Ismail IH, Boyle RJ, Licciardi PV, Oppedisano F, Lahtinen S, Robins-Browne RM, Tang MLK. Early gut colonization by Bifidobacterium breve and B. catenulatum differentially modulates eczema risk in children at high risk of developing allergic disease. Paediatric Allergy Immunol. 2016;27(8):838–846. doi:10.1111/pai.12646.
  9. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by acomparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691–14696. doi:10.1073/pnas.1005963107.
  10. Khine WWT, Zhang YW, Goie JY, Wong MS, Liong MT, Lee YY, Cao H, Lee Y-K. Gut microbiome of preadolescent children of two ethnicities residing in three distant cities. Sci Rep. 2019;9(1):78931. doi:10.1038/s41598-019-44369-y.
  11. Kisuse J, La-Ongkham O, Nakphaichit M, Therdtatha P, Momoda R, Tanaka M, Fukuda S, Popluechai S, Kespechara K, Sonomoto K, et al. Urban diets linked to gut microbiome and metabolome alterations in children: a comparative cross-sectional study in Thailand. Front Microbiol. 2018;9:1345. doi:10.3389/fmicb.2018.01345.
  12. Nakayama J, Yamamoto A, Palermo-Conde LA,Higashi K, Sonomoto K, Tan J, Lee Y-K. Impact of Westernized diet on gut microbiota in children on Leyte islands. Front Microbiol. 2017;8:197. doi:10.3389/fmicb.2017.00197.
  13. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. doi:10.1038/nature11053.
  14. Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, Lee Y-K. Diversity in gut bacterial community of school-age children in Asia. Sci Rep. 2015;5:8397. doi:10.1038/srep08397.
  15. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen -Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:6052. doi:10.1126/science.1208344.
  16. Zhang JC, Guo Z, Lim AA, Zheng Y, Koh EY, Ho D, Qiao J, Huo D, Hou Q, Huang W, et al. Mongolians core gut microbiota and its correlation with seasonal dietary changes. Sci Rep. 2014;4:5001. doi:10.1038/srep05001.
  17. Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD. Review: maternal health and the placental microbiome. Placenta. 2017;54:30–37. doi:10.1016/j.placenta.2016.12.003.
  18. Rautava S, Luoto R, Salminen S, Isolauri E. Perinatal microbial contact and the origins of human disease. Nat Rev Gastroenterol Hepatol. 2012;9:565–576. doi:10.1038/nrgastro.2012.144.
  19. Penders J, Thijs C, Vink C, Stelma CV, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Paediatrics. 2006;118(2):511–521. doi:10.1542/peds.2005-2824.
  20. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. W. W. T. KHINE ET AL. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–11975. doi:10.1073/pnas.1002601107.
  21. Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, Ferretti P, Gorfer V, Pedrotti A, Tett A, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomics profiling. mSystem. 2017;2(1):e00164–16. doi:10.1128/mSystems.00164-16.
  22. Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11(8):e1001631. doi:10.1371/journal.pbio.1001631.
  23. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015;21(2):109–117. doi:10.1016/j.molmed.2014.12.002.
  24. Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL. Examination of fecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology Society. 2010;156(11):3329–3341. doi:10.1099/mic.0.043224-0.
  25. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108(Suppl.1):4578–4585. doi:10.1073/pnas.1000081107.
  26. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–145. doi:10.1016/j.chom.2018.06.005.
  27. Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S, Siljander H, Selvenius J, Oikarinen S, Hyöty H, Virtanen SM, et al. Strain-level analysis of mother-tochild bacterial transmission during the first few months of life. Cell Host Microbe. 2018;24:146–154. doi:10.1016/j.chom.2018.06.007.
  28. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, KovatchevaDatchary P, Li Y, Xia Y, Xie H, Zhong H, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–730. doi:10.1016/j.chom.2015.04.004.
  29. Makino H. Bifidobacterial strains in the intestines of newborns originate from their mothers. Biosci Microbiota Food Health. 2018;37:79–85. doi:10.12938/bmfh.18-011.
  30. Vaishampayan PA, Kuehl JV, Froula JL, Morgan JL, Ochman H, Francino MP. Comparative metagenomics and population dynamics of the gut microbiota inmother an infant. Genome Biol Evol. 2010;2:53–66. doi:10.1093/gbe/evp057.
  31. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, van Sinderen D, Ventura M. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol. 2015;82(4):980–991. doi:10.1128/AEM.03500-15.
  32. Duranti S, Lugli GA, Mancabelli L, Armanini F, Turroni F, James K, Ferretti P, Gorfer V, Ferrario C, Milani C, et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome. 2017;5:66. doi:10.1186/s40168-017-0282-6.
  33. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, et al. The first microbial colonizers of the human gut: composition, activities and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036–17.
  34. 34. Mulligan CM, Friedman JE. Maternal modifiers of the infant gut microbiota: metabolic consequences. J Endocrinol. 2017;235(1):R1–R12. doi:10.1530/JOE-17-0303.
  35. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW, et al. Neonatal gut microbiota associates with childhood multisensitised atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. doi:10.1038/nm.4176.
  36. Ismail IH, Boyle RJ, Licciardi PV, Oppedisano F, Lahtinen S, Robins-Browne RM, Tang MLK. Early gut colonization by Bifidobacterium breve and B. catenulatum differentially modulates eczema risk in children at high risk of developing allergic disease. Paediatric Allergy Immunol. 2016;27(8):838–846. doi:10.1111/pai.12646.
  37. Wampach L, Heintz-Buschart A, Fritz JV, RamiroGarcia J, Habier J, Herold M, Narayanasamy S, Kaysen A, Hogan AH, Bindl L, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun. 2018;9:5091. doi:10.1038/s41467-018-07631-x.
  38. Fouhy F, Watkins C, Hill CJ, ÓShea C-A, Nagle B, Dempsey EM, ÓToole PW, Ross RP, Ryan CA, Stanton C. Perinatal factors affect the gut microbiota up to four years after birth. Nat Commun. 2019;10:1517. doi:10.1038/s41467-019-09252-4.
  39. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, Kumar N, Stares MD, Rodger A, Brocklehurst P, et al. Stunted microbiota and opportunistic pathogen colonisation in caesarean-section birth. Nature. 2019;574:117–121. doi:10.1038/s41586-019-1560-1.
  40. Nogacka A, Salazar N, Suárez M, Milani C, Arboleya S, Solís G, Fernández N, Alaez L, Hernández-Barranco AM, de Los Reyes-gavilán CG, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. 2017;5(1):93. doi:10.1186/s40168-017-0313-3.
  41. Neuman H, Forsythe P, Uzan A, Avni O, Koren O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev. 2018;42:489–499. doi:10.1093/femsre/fuy018.
  42. Khine WWT, Rahayu ES, See TY, Kuah S, Salminen S, Nakayama J, Lee YK. Indonesian children fecal microbiome from birth until weaning was different from microbiomes of their mothers, Gut Microbes, doi: 10.1080/19490976.2020.1761240.
  43. Dzidic M, Boix-Amorós A, Selma-Royo M, Mira A, Collado MC. Gut microbiota and mucosal immunity in the neonate. Med Sci (Basel). 2018;6:E56.
  44. Aakko J, Kumar H, Rautava S, Wise A, Autran C, Bode L, Isolauri E, Salminen S. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef Microbes. 2017;8(4):563–567. doi:10.3920/BM2016.0185.
  45. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, Mills DA. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58(9):5334–5340. doi:10.1021/jf9044205.
  46. Duranti S, Lugli GA, Milani C, James K, Mancabelli L, Turroni F, Alessandri G, Mangifesta M, Mancino W, Ossiprandi MC, et al. Bifidobacterium bifidum and the infant gut microbiota: an intriguing case of microbehost co-evolution. Environ Microbiol. 2019;21 (10):3683–3695. doi:10.1111/1462-2920.14705.
  47. Andreas NJ, Kampmann B, Mehring L-DK. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015;91(11):629–635. doi:10.1016/j. earlhumdev.2015.08.013.
  48. Hayashi H, Shibata K, Sakamoto M, Tomita S, Benno Y. Prevotella copri sp. Nov. and Prevotella stercorea sp. Nov., isolated from human feces. Int J Syst Evol Microbiol. 2007;57:941–946. doi:10.1099/ijs.0.64778-0.
  49. Wahlstrom A, Sayin SI, Marschall H-U, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50. doi:10.1016/j.cmet.2016.05.005.
  50. Masaru. T, Sanefuji M, Morokuma S, Yoden M, Momoda R, Sonomoto K, Ogawa M, Kato K, Nakayama J. The association between gut microbiota development and maturation of intestinal bile acid metabolism in the first three years of healthy Japanese infants. Gut Microbes. 2019. doi:10.1080/19490976.2019.1650997.
  51. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK. The Toll-like receptor 2 pathway establishes colonisation by a commensal of the human microbiota. Science. 2011;332:974–977. doi:10.1126/science.1206095.
  52. Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science. 2018;362:453–457. doi:10.1126/science.aat7164.
  53. Kim Y-G, Sakamoto K, Seo SU, Pickard JM, Gillilland MG 3rd, Pudlo NA, Hoostal M, Li X, Wang TD, Feehley T, et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science. 2017;356:315–319. doi:10.1126/science.aag2029.
  54. Oyedemi BOM, Kotsia EM, Stapleton PD, Gibbons S. Capsaicin and gingerol analogues inhibit the growth of efflux-multidrug resistant bacteria and R-plasmids conjugal transfer. J Ethnopharmacol. 2019;245:111871. doi:10.1016/j.jep.2019.111871.
  55. Kariu T, Nakao R, Ikeda T, Nakashima K, Potempa J, Imamura T. Inhibition of gingipains and Porphyromonas gingivalis growth and biofilm formation by prenyl flavonoids. J Periodontal Res. 2017;52(1):89–96. doi:10.1111/jre.12372.
  56. Cushnie TP, Cushnie B, Lamb AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents. 2014;44:377–386. doi:10.1016/j.ijantimicag.2014.06.001.
  57. Are A, Aronsson L, Wang S, Greicius G, Lee Y-K, Gustafsson JA, Pettersson S, Arulampalam V. Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proc Natl Acad Sci USA. 2008;105:1943–1948. doi:10.1073/pnas.0711734105.
  58. Wang SG, Hibberd ML, Pettersson S, Lee Y-K. Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways. PLoS One. 2014;9(5):e97523. doi:10.1371/journal.pone.0097523.
-----廣告,請繼續往下閱讀-----
所有討論 1
社團法人台灣國際生命科學會_96
28 篇文章 ・ 8 位粉絲
創會於2013年,這是一個同時能讓產業界、學術界和公領域積極交流合作及凝聚共識的平台。期望基於科學實證,探討營養、食品安全、毒理學、風險評估以及環境的議題,尋求最佳的科學解決方法,以共創全民安心的飲食環境。欲進一步了解,請至:ww.ilsitaiwan.org