餓了就要吃飯,冷了就會找衣服穿。一個生物體會反覆在不同的變化中,維持著某種「動態平衡」,無論是體溫、血壓還是血糖,身體內這些物理或化學條件的恆定性,是許多生理反應的核心,也是讓身體各部位可以在正常範圍內運作的主因。
然而,身體的調節不見得只是機械性的生理變化,更可能還牽涉到與微生物的互動。自2004年「腸腦軸線」 (gut-brain axis) 的概念出現,科學家對於生活在腸道中的微生物如何與大腦互相交流影響,有了越來越多的理解。
許多疾病,也與腸道生物有關?
雖然有很多細節待釐清,但有許多研究發現到腸道微生物的種類與許多嚴重疾病有關聯,如自閉症、焦慮症、肥胖症、精神分裂症、帕金森氏症與阿茲海默症等。
以往的研究認為,腸道微生物群的代謝產物,如短鏈脂肪酸、支鏈胺基酸與肽聚醣 (peptidoglycan) 等成分會透過免疫系統、迷走神經、腸道神經叢進行調節,與大腦互相交流,因此也有人主張應該稱之為「微生物─腸─腦軸線」。過去科學家發現微生物影響大腦的途徑,基本上都是比較間接的。但在2022年4月15日的《科學》 (Science) 中,科學家發現到腦部的下視丘 (hypothalamic) 神經元可以直接偵測細菌活動的變化,相對應的調整食慾與身體溫度。也就是說,這似乎是科學家第一次找到微生物直接跟大腦「對話」的證據。
微生物怎麼影響你?NOD2──模式鑑別受器
首先介紹本次研究中最重要的腦部構造,下視丘 (Hypothalamas) 。下視丘位在腦的基底,在一般成年人身上大概只有一顆碗豆的大小,卻負責調控非常多重要的生理機能,包括體溫、情緒、飢餓、口渴。
下視丘還負責調控腦垂腺前葉,參與多種內分泌調控。可以說,微生物如果能夠影響下視丘的功能,相當於開啟了影響生理機制的大門。
回到微生物,剛剛有提到微生物釋放在血液中的物質可以影響宿主的免疫、代謝與大腦等等功能。這些代謝產物會被生物體內許多受器所感測。最具代表性的受器為模式鑑別受器 (pattern recognition receptors, PRRs) 。
過去,科學家認為模式鑑別受器主要由先天免疫系統的細胞,偵測微生物病原體或者受損的細胞黏膜表面、組織間與細胞內出現病毒、細菌、真菌的訊號。
其中,有一種模式鑑別受器被稱為 NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) ,會偵測細菌細胞壁的主要成分肽聚醣(也稱為細胞壁胜肽(muropeptides)。因此,科學家過去認為,NOD2的功能有可能就是幫助免疫系統辨識細菌細胞壁的碎片。
利用腦部成像技術,科學家進一步觀察小鼠腦部的不同區域,尤其在下視丘,紀錄 NOD2 受器的表現。結果證明,若是缺乏NOD2受器的腦袋可是會出問題的,過去科學家們已經確定 NOD2受器的突變,與消化系統疾病如克隆氏症 (Crohn’s disease) 有關,也與幾種神經系統疾病與情緒障礙有關聯。
小鼠研究中揭露了, NOD2 可能在多種免疫與神經的機制上扮演了重要的角色。為了進一步解相關的功能,團隊還開發出一種在下視丘區域缺乏 NOD2 受體的小鼠,這些小鼠對於許多行為與生理包括體溫保存、築巢行為、晝夜節律、禁食與腎上腺刺激等等都有所減弱。更長時間的觀察還顯示,這些失去 NOD2 的小鼠體重會增加,且更容易罹患第二型糖尿病,這些情況尤其在年老的雌鼠上更為嚴重。
細菌與神經元的你增我減
那麼,正常小鼠的 NOD2 受體作用是什麼呢?若小鼠擁有正常的 NOD2 神經元,其神經活動在遭遇到肽聚醣時會受抑制。換句話說,如果NOD2受器消失了,這些神經元就不再受到抑制。
肽聚醣在腦部、血液或腸道中都被認為是細菌增殖 (proliferation) 的標誌物,而研究發現,不管是口服或腸道菌釋出肽聚醣都會抵達大腦的許多區域,包括下視丘中,負責體溫調節、進食行為的弓形核 (arcuate nucles) 。而其中的 GABA 神經元在接觸到肽聚醣時,也會遭到抑制。
研究人員進一步測試微生物與 NOD2 在下視丘 GABA 神經元的表現,是否確實與食物攝取和體溫調節有關?研究顯示,在使用抗生素消除微生物,或是以病毒消除在下視丘的 NOD2 基因表現後,都會導致年老的小鼠體重增加與行為改變。
至此,科學家初步證實,下視丘神經元可以直接偵測到細菌的成分,並改變進食、築巢與體溫調節的行為。微生物非常有可能能夠藉由 NOD2 來調節宿主的一些行為,或者反過來也可以解釋成,大腦藉由 NOD2 受器接受到的訊號,來偵測微生物的狀況、進行一些調節。
微生物幫助你維持完美平衡
某種程度上,腸道菌可能被大腦視為攝入食物品質的某種直接指標;而另一方面,腸道菌的增長或死亡也與腸道的恆定或病理機制有關,因此下視丘進行調節可能至關重要。下視丘主掌的多種生理調控,在腸道菌生長得「不如人意」時,改變攝食與體溫來調整腸道菌相,似乎也相當合理。
反過來,某些腸道菌叢可能也會提供調節訊號,以維繫適合自己的生活環境。影響腸道細菌生長最主要的兩個因子,就是食物以及體溫。舉例來說,大量攝取單一種類的食物,有可能會導致某些細菌甚至是病原菌不成比例的生長,因而危及腸道平衡。因此對於腸道菌來說,有管道可以「上達天聽」似乎是頗合邏輯的。
整個調控機制到底是腸道菌主動、大腦掌握主導權,抑或是兩者基本上「狼狽為奸」,尚待進一步的研究。然而發現大腦可以直接偵測細菌活動,即使是遠在腸道的腸道菌的增生或是死亡,也讓我們了解到大腦與身體待解的謎題,或許遠比想像中還來的多。
細菌細胞壁的肽聚醣會影響下視丘神經元與代謝,那還有沒有更多細菌影響大腦功能的機制呢?本次發現到 NOD2 受器在中樞神經中扮演的角色,未來是否能以此為開端,為腦部疾病與代謝性疾病,如糖尿病與肥胖症找到新的治療手法?就讓我們繼續看下去吧!
參考資料:
- Institut Pasteur. (2022, April 15). Decoding a direct dialog between the gut microbiota and the brain. ScienceDaily. Retrieved April 29, 2022 from www.sciencedaily.com/releases/2022/04/220415100551.htm
- Gabanyi, I., Lepousez, G., Wheeler, R., Vieites-Prado, A., Nissant, A., Wagner, S., … & Lledo, P. M. (2022). Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. Science, 376(6590), eabj3986.
- Cryan, J. F., O’Riordan, K. J., Cowan, C. S., Sandhu, K. V., Bastiaanssen, T. F., Boehme, M., … & Dinan, T. G. (2019). The microbiota-gut-brain axis. Physiological reviews.