1

7
2

文字

分享

1
7
2

人類寶寶的腸道裡到底都住了哪些微生物?──決定嬰兒腸道微生物菌相的要素及對於整復之啟示

社團法人台灣國際生命科學會_96
・2021/04/02 ・5982字 ・閱讀時間約 12 分鐘 ・SR值 576 ・九年級

-----廣告,請繼續往下閱讀-----

圖/ILSI Taiwan

文/李元昆 教授|新加坡國立大學楊潞齡醫學院,微生物與免疫學系/外科學系。

臨床及基礎研究中,已有越來越多證據顯示人類腸道微生物菌相 (gut microbiome) 能調節免疫系統、心智及其他生理功能的發育 (1-8)。成熟的人類腸道微生物菌相可分為兩大操作類型,分別是擬桿菌屬-雙歧桿菌屬型 (Bacteroides-Bifidobacterium type) 和普雷沃氏菌屬型 (Prevotella type) ,主要決定於飲食、地理位置以及生活型態(9-13)。擬桿菌屬-雙歧桿菌屬型主要分布於歐洲、北美洲和東亞 (9, 13–15),普雷沃氏菌屬型則是常見於東南亞、蒙古與非洲 (9, 14, 16)。母親會在懷孕與生產的過程中將自己的微生物菌相轉移給孩子 (17–20)。在嬰兒出生後,微生物菌相在母嬰之間的垂直轉移主要發生在腸道、產道、母乳、口腔以及皮膚等部位 (20–27)。西方國家自然產的新生兒,經由產道傳遞,會和母親有相同的腸道微生物菌相類型,也就是擬桿菌屬-雙歧桿菌屬型 (21, 26–29)。實際上不同菌種之間的相對豐富度在滿周歲前仍會改變 (23, 28, 30–32)。這些研究結果暗示,這類能「遺傳」到嬰兒的腸道微生物菌相組成,或許能夠保護兒童未來的健康。

母親只給了寶寶腸道微生物藍圖,並不決定其終其一生的發展

諷刺的是,這種常見於西方國家微生物菌相型的優勢菌:擬桿菌屬 (Bacteroides) 卻被列為許多已開發國家常見疾病的獨立風險因子,包含心血管疾病 (24, 25)、第二型糖尿病 (26, 27)、大腸直腸癌 (28-30)、心肌病變 (31)、類風溼性關節炎 (32)、發炎型腸道疾病 (33)、帕金森氏症 (34)、乳糜瀉 (35) 以及阿茲海默症 (36)。另外一方面,普雷沃氏菌屬(Prevotella) 為東南亞居民和素食者腸道主要菌群,也有直接或間接的證據暗示其與慢性發炎型疾病有關,包括牙周病、陰道菌叢變化症 (bacterial vaginosis) (37)、扁桃腺炎(38)、非酒精性脂肪肝引發的後期肝纖維化 (39)、心血管代謝疾病風險 (40) 以及氣喘 (41)等。 這些研究導向一個值得思考的重要健康問題:難道我們一生的健康與可能得到的疾病竟然被連結到出生那一刻?在回答這個問題之前,我們必須先了解決定腸道微生物菌相發展與建立的幾個關鍵因子。

如上所述,自然產嬰兒,其第一時間接觸的微生物菌相來自於母親的垂直傳遞。因此,有人可能會假設我們的健康狀況或許在這個時刻就已經被母親「設定」了。令人意外地是,一份近期於東南亞的研究結果顯示,新生兒至離乳前,其腸道微生物菌相屬於擬桿菌屬-雙歧桿菌屬型,並非他們母親所擁有的普雷沃氏菌屬型 (42)。且這些嬰兒的腸菌相,會在離乳過程中逐步轉變成與母親相同的普雷沃氏菌屬型 (12, 14)。

圖/ILSI Taiwan

剖腹產也會影響寶寶的腸胃道微生物菌相?

這項於印尼的研究,發現擬桿菌屬、雙岐桿菌屬 (Bifidobacterium) 與腸細菌科 (Enterobacteriaceae) 是嬰幼兒糞便中佔比最高的細菌,和過去於西方國家的研究結果相同 (23, 28–30)。在這群印尼嬰幼兒的糞便中,菌相隨著年紀的變化,主要來自於年紀較長的嬰幼兒糞便出現了一些特定的菌屬:在 6-12 月齡和 12-24 月齡的兩組中,主要是普雷沃氏菌屬、布勞特氏菌屬 (Blautia)、普拉梭菌屬 (Faecalibacterium)、毛螺菌科 (Lachnospiraceae) 以及瘤胃菌科 (Ruminococcaceae)等。同時,擬桿菌屬、雙岐桿菌屬、腸細菌科與克雷伯氏菌屬 (Klebsiella) 的相對豐富度則在離乳後逐漸下降 (6-12 月齡時),並在 24–48 月齡時持續維持較低的比率。在出生後短短不到一個月內,擬桿菌屬和雙岐桿菌屬就能以母親菌相的少數菌之姿,迅速在嬰兒的腸道內建立優勢微生物菌相,顯示新生兒的腸道環境可能非常適合這類菌屬的定殖與生長。同時卻又讓我們思考,為什麼剖腹產嬰兒即使是由母親哺乳,腸道內的擬桿菌屬和雙岐桿菌屬卻生長速度較為緩慢呢 (28, 43)?過去曾認為,這個差異可能是來自於剖腹產胎兒與母親有較少的垂直傳遞 (28, 43),然而根據這份印尼的研究,嬰兒早期腸道微生物菌相的快速建立,未必需要高量菌數之殖入。一個可能的解釋是,剖腹產手術過程會影響腸道的環境,進而阻撓共生菌在嬰兒腸道的建立過程。人類乳汁中的寡醣類能幫助雙岐桿菌屬在嬰兒腸道中成長 (44–46),且母乳富含脂質 (47),會促進膽酸分泌,進一步抑制普雷沃氏菌屬,並促進擬桿菌屬和雙岐桿菌屬的生長 (48, 49)。確實在該篇研究中,印尼嬰兒離乳前的排泄物 (糞水) 中含有較多的初級膽酸 (primary bile acids)。 離乳後的腸道微生物菌相改變也使得初級膽酸被轉換成次級膽酸 (secondary bile acids),與過去日本的研究結果相符 (42, 50)。離乳前嬰兒腸道中擬桿菌屬和雙岐桿菌屬的功能以及它們之所以佔據菌相多數的原因,值得注意。以該篇印尼研究來說,擬桿菌屬和雙岐桿菌屬不太可能與成人後的營養消化有關,因為在離乳後就會迅速轉成普雷沃氏菌屬主導的微生物相,且母親 (成人) 的腸道微生物菌相中擬桿菌屬和雙岐桿菌屬分布本就較低。在這篇研究中,與免疫細胞生長、成熟有關的細胞激素含量 (IL-1β, −2, −5, −8, −12, TNF-α 和 IFN-β) 也在離乳後上升。這也暗示了幼兒的主動免疫在離乳期開始發展。在一篇小鼠研究中, 腸道殖入Bacteroides fragilis (來自擬桿菌屬) 能夠抑制促發炎的TH17 免疫細胞反應 (51)。推測此篇印尼研究,離乳前擬桿菌屬的優勢定殖或許能抑制腸道中的促發炎細胞。在產後一個月內,普雷沃氏菌是母親陰道裡含量最豐富菌種。然而,即使生產過程中,嬰兒暴露於較多的普雷沃氏菌,但哺乳期間此菌的含量卻一直只在嬰兒的腸道微生物菌相佔少數。直到離乳後,嬰兒開始吃母乳以外的食物才逐漸轉為優勢菌種。有趣的是,歐洲與北美的母親,雖然腸道微生物菌相屬於擬桿菌屬-雙岐桿菌屬型,其陰道菌相卻仍以大量的普雷沃氏菌為主 (20, 23),即便歐美常見離乳後攝食的高脂/高蛋白飲食並不利於與此菌於腸道之繁衍 (12, 15)。儘管已開發國家飲食型態近數十年來有相當的演變,內源性因子所造就的普雷沃氏菌在母親陰道中的優勢,完全沒有受到影響。因為早期人類的飲食主要是以蔬菜為主,與現今的印尼族群飲食型態近似。然而,來自母體的微生物傳遞依舊被認為是嬰幼兒腸道微生物菌相的重要來源之一,因為所有孩子腸道中的菌種都可以在母親的微生物相中找到。不過,母親的微生物菌相中仍有許多額外的菌種,這表示只有少部分菌種可以透過腸道、陰道以及母乳傳遞給嬰兒,並且成功建立起嬰兒的微生物菌相。更重要的是,在母體優勢的菌種,並不一定在嬰兒腸道環境中也具相同的競爭優勢。這現在的其中一個解釋為,嬰兒的腸道環境可能偏好具有帶著某些特定功能基因的菌種 (27), 也有可能是除了垂直傳遞以外,菌相的水平傳遞也占了一席之地 (52)。無論如何,該篇研究最後也顯示嬰幼兒的腸菌相,會隨著成長而逐漸與母親的腸菌相愈來愈相近 (26, 28)。

-----廣告,請繼續往下閱讀-----

這篇研究,使用了一個相關係數指標來評估腸道共生菌與一些已知致病菌之間的相關程度;此指標係將共生菌與潛在致病菌的相關係數予以加總,指標 0 表示任何共生菌與病原菌均不相關。這個指標在這篇印尼嬰兒的研究中,離乳前為 4.9,而在離乳後則是上升到 31.0。前後的數字變化顯示,離乳前的共生菌群和母乳中可提供被動免疫防護的抗體、免疫球蛋白能夠壓制並避免潛在致病菌的生長。這些共生菌會提供嬰兒保護力,直到離乳前後他們自己的免疫系統完整發育。這種微生物菌相也許是一個演化上的保護策略,能在較不注重衛生習慣的過去,或者是某些開發中國家的現今,提供較早離乳的嬰兒足夠的保護力。 霍亂弧菌為開發中國家最廣泛的致命腸道病原菌。

圖/ILSI Taiwan

雙岐桿菌屬在各年齡層均與複雜碳水化合物、當地水果以及乳製品的攝取呈負相關。此印尼的研究結果也支持了先前的研究發現,飲食中抗性澱粉的存在會與雙岐桿菌屬數量呈現負相關(14)。印尼人的主食為秈米 (Indica rice),含有較多的抗性澱粉。印尼嬰兒離乳後攝取秈米,抗性澱粉持續存在於腸道中,造成腸道中游離膽酸被移除,進而使得普雷沃氏菌屬增殖,而降低雙岐桿菌屬 (10)。此外,普雷沃氏菌屬能夠發酵碳水化合物 (14, 15),攝食高碳水化合物的印尼人腸道環境有利其增殖。再者,研究也發現當地的水果及乳製品似乎會抑制雙岐桿菌屬的生長,且具有強烈的劑量效應。當地的果樹為了在高溫、容易滋生細菌的環境下生長,會產生抗菌的化學物質 (54–56)。而雙岐桿菌屬是否屬於對這類抗菌化學物質敏感的微生物,還需要進一步的研究證實。若屬實,這可能就是印尼幼兒離乳後腸道雙岐桿菌屬急遽下降的原因,同時也可解釋為何母親的腸道微生物菌相含有較少雙岐桿菌屬。在某些幼兒攝取較為西化飲食 (速食) 的案例中,來自麵包或洋芋片的可消化碳水化合物,可能造成速食攝取與雙岐桿菌屬之間出現正相關 (14)。過去在歐洲、北美洲以及東亞兒童所觀察到的雙岐桿菌屬保健功能 (33-36, 43, 53),在印尼兒童或許是由別種共生菌所取代,例如腸球菌 (Enterococcus faecalis) (57, 58)。嬰幼兒成長到 24-48 月齡時,可能已發展出一套成熟平衡的腸道微生物菌相系統。或許因與母親的飲食日趨相似,其與母親的微生物菌相亦就非常雷同。

綜此,至今研究指出:

  • 在出生僅僅一個月內,嬰兒體內優勢菌相即可相對快速的建立,其起始於來自母親極少菌量之殖入,但決定於嬰兒腸道環境因子,非母親菌相中含量最多的菌。
  • 嬰兒離乳前的腸道優勢菌相與內外緣因子有關,包括膽酸濃度、細胞激素、母乳中寡醣以及黏液素的醣基 (mucin glycans) 等,這些因子有利於擬桿菌屬及雙岐桿菌屬成為優勢菌種。
  • 在嬰兒離乳前,擬桿菌屬及雙岐桿菌屬的量與潛在致病菌的量呈負相關。唯其於抵抗傳染性疾病中所扮演的角色還需要更多臨床研究證實。
  • 離乳後的飲食型態,驅動嬰兒糞便微生物菌相組成的改變,故離乳期代表了微生物菌相變化的過渡期窗口。
  • 綜而言之,決定兒童腸道微生物菌相主要應是腸道環境和飲食組成,而非完全轉殖自母體。也就是說,離乳期的飲食為改善腸道微生物菌相的一個務實捷徑。

參考文獻 

  1. Turroni F, Milani C, Duranti S, Lugli GA, Bernasconi S, Margolles A, Di Pierro F, van Sinderen D, Ventura M. The infant gut microbiome as a microbial organ influencing host well-being. Italian J Pediatrics. 2020;46:16.
  2. Olsza k T, An D, Zeissig S, Vera MP, Richter J, Franke A,Glickman JN, Siebert R, Baron RM, Kasper DL, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336(6080):489–493. doi:10.1126/science.1219328.
  3. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonisation by microbiota in early life shapes the immune system. Science. 2016;352(6825):539–544. doi:10.1126/science.aad9378.
  4. Scheepers L, Penders J, Mbakwa CA, Thijs C, Mommers M, Arts I. The intestinal microbiota composition and weight development in children: the KOALA birth cohort study. Int J Obesity. 2015;39:16–25. doi:10.1038/ijo.2014.178.
  5. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, et al. The first microbial colonizers of the human gut: composition, activities and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036–17.
  6. Mulligan CM, Friedman JE. Maternal modifiers of the infant gut microbiota: metabolic consequences. J Endocrinol. 2017;235(1):R1–R12. doi:10.1530/JOE-17-0303.
  7. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW, et al. Neonatal gut microbiota associates with childhood multisensitised atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. doi:10.1038/nm.4176.
  8. Ismail IH, Boyle RJ, Licciardi PV, Oppedisano F, Lahtinen S, Robins-Browne RM, Tang MLK. Early gut colonization by Bifidobacterium breve and B. catenulatum differentially modulates eczema risk in children at high risk of developing allergic disease. Paediatric Allergy Immunol. 2016;27(8):838–846. doi:10.1111/pai.12646.
  9. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by acomparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691–14696. doi:10.1073/pnas.1005963107.
  10. Khine WWT, Zhang YW, Goie JY, Wong MS, Liong MT, Lee YY, Cao H, Lee Y-K. Gut microbiome of preadolescent children of two ethnicities residing in three distant cities. Sci Rep. 2019;9(1):78931. doi:10.1038/s41598-019-44369-y.
  11. Kisuse J, La-Ongkham O, Nakphaichit M, Therdtatha P, Momoda R, Tanaka M, Fukuda S, Popluechai S, Kespechara K, Sonomoto K, et al. Urban diets linked to gut microbiome and metabolome alterations in children: a comparative cross-sectional study in Thailand. Front Microbiol. 2018;9:1345. doi:10.3389/fmicb.2018.01345.
  12. Nakayama J, Yamamoto A, Palermo-Conde LA,Higashi K, Sonomoto K, Tan J, Lee Y-K. Impact of Westernized diet on gut microbiota in children on Leyte islands. Front Microbiol. 2017;8:197. doi:10.3389/fmicb.2017.00197.
  13. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. doi:10.1038/nature11053.
  14. Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, Lee Y-K. Diversity in gut bacterial community of school-age children in Asia. Sci Rep. 2015;5:8397. doi:10.1038/srep08397.
  15. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen -Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:6052. doi:10.1126/science.1208344.
  16. Zhang JC, Guo Z, Lim AA, Zheng Y, Koh EY, Ho D, Qiao J, Huo D, Hou Q, Huang W, et al. Mongolians core gut microbiota and its correlation with seasonal dietary changes. Sci Rep. 2014;4:5001. doi:10.1038/srep05001.
  17. Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD. Review: maternal health and the placental microbiome. Placenta. 2017;54:30–37. doi:10.1016/j.placenta.2016.12.003.
  18. Rautava S, Luoto R, Salminen S, Isolauri E. Perinatal microbial contact and the origins of human disease. Nat Rev Gastroenterol Hepatol. 2012;9:565–576. doi:10.1038/nrgastro.2012.144.
  19. Penders J, Thijs C, Vink C, Stelma CV, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Paediatrics. 2006;118(2):511–521. doi:10.1542/peds.2005-2824.
  20. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. W. W. T. KHINE ET AL. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–11975. doi:10.1073/pnas.1002601107.
  21. Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, Ferretti P, Gorfer V, Pedrotti A, Tett A, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomics profiling. mSystem. 2017;2(1):e00164–16. doi:10.1128/mSystems.00164-16.
  22. Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11(8):e1001631. doi:10.1371/journal.pbio.1001631.
  23. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015;21(2):109–117. doi:10.1016/j.molmed.2014.12.002.
  24. Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL. Examination of fecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology Society. 2010;156(11):3329–3341. doi:10.1099/mic.0.043224-0.
  25. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108(Suppl.1):4578–4585. doi:10.1073/pnas.1000081107.
  26. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–145. doi:10.1016/j.chom.2018.06.005.
  27. Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S, Siljander H, Selvenius J, Oikarinen S, Hyöty H, Virtanen SM, et al. Strain-level analysis of mother-tochild bacterial transmission during the first few months of life. Cell Host Microbe. 2018;24:146–154. doi:10.1016/j.chom.2018.06.007.
  28. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, KovatchevaDatchary P, Li Y, Xia Y, Xie H, Zhong H, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–730. doi:10.1016/j.chom.2015.04.004.
  29. Makino H. Bifidobacterial strains in the intestines of newborns originate from their mothers. Biosci Microbiota Food Health. 2018;37:79–85. doi:10.12938/bmfh.18-011.
  30. Vaishampayan PA, Kuehl JV, Froula JL, Morgan JL, Ochman H, Francino MP. Comparative metagenomics and population dynamics of the gut microbiota inmother an infant. Genome Biol Evol. 2010;2:53–66. doi:10.1093/gbe/evp057.
  31. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, van Sinderen D, Ventura M. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol. 2015;82(4):980–991. doi:10.1128/AEM.03500-15.
  32. Duranti S, Lugli GA, Mancabelli L, Armanini F, Turroni F, James K, Ferretti P, Gorfer V, Ferrario C, Milani C, et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome. 2017;5:66. doi:10.1186/s40168-017-0282-6.
  33. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, et al. The first microbial colonizers of the human gut: composition, activities and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036–17.
  34. 34. Mulligan CM, Friedman JE. Maternal modifiers of the infant gut microbiota: metabolic consequences. J Endocrinol. 2017;235(1):R1–R12. doi:10.1530/JOE-17-0303.
  35. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW, et al. Neonatal gut microbiota associates with childhood multisensitised atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. doi:10.1038/nm.4176.
  36. Ismail IH, Boyle RJ, Licciardi PV, Oppedisano F, Lahtinen S, Robins-Browne RM, Tang MLK. Early gut colonization by Bifidobacterium breve and B. catenulatum differentially modulates eczema risk in children at high risk of developing allergic disease. Paediatric Allergy Immunol. 2016;27(8):838–846. doi:10.1111/pai.12646.
  37. Wampach L, Heintz-Buschart A, Fritz JV, RamiroGarcia J, Habier J, Herold M, Narayanasamy S, Kaysen A, Hogan AH, Bindl L, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun. 2018;9:5091. doi:10.1038/s41467-018-07631-x.
  38. Fouhy F, Watkins C, Hill CJ, ÓShea C-A, Nagle B, Dempsey EM, ÓToole PW, Ross RP, Ryan CA, Stanton C. Perinatal factors affect the gut microbiota up to four years after birth. Nat Commun. 2019;10:1517. doi:10.1038/s41467-019-09252-4.
  39. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, Kumar N, Stares MD, Rodger A, Brocklehurst P, et al. Stunted microbiota and opportunistic pathogen colonisation in caesarean-section birth. Nature. 2019;574:117–121. doi:10.1038/s41586-019-1560-1.
  40. Nogacka A, Salazar N, Suárez M, Milani C, Arboleya S, Solís G, Fernández N, Alaez L, Hernández-Barranco AM, de Los Reyes-gavilán CG, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. 2017;5(1):93. doi:10.1186/s40168-017-0313-3.
  41. Neuman H, Forsythe P, Uzan A, Avni O, Koren O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev. 2018;42:489–499. doi:10.1093/femsre/fuy018.
  42. Khine WWT, Rahayu ES, See TY, Kuah S, Salminen S, Nakayama J, Lee YK. Indonesian children fecal microbiome from birth until weaning was different from microbiomes of their mothers, Gut Microbes, doi: 10.1080/19490976.2020.1761240.
  43. Dzidic M, Boix-Amorós A, Selma-Royo M, Mira A, Collado MC. Gut microbiota and mucosal immunity in the neonate. Med Sci (Basel). 2018;6:E56.
  44. Aakko J, Kumar H, Rautava S, Wise A, Autran C, Bode L, Isolauri E, Salminen S. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef Microbes. 2017;8(4):563–567. doi:10.3920/BM2016.0185.
  45. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, Mills DA. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58(9):5334–5340. doi:10.1021/jf9044205.
  46. Duranti S, Lugli GA, Milani C, James K, Mancabelli L, Turroni F, Alessandri G, Mangifesta M, Mancino W, Ossiprandi MC, et al. Bifidobacterium bifidum and the infant gut microbiota: an intriguing case of microbehost co-evolution. Environ Microbiol. 2019;21 (10):3683–3695. doi:10.1111/1462-2920.14705.
  47. Andreas NJ, Kampmann B, Mehring L-DK. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015;91(11):629–635. doi:10.1016/j. earlhumdev.2015.08.013.
  48. Hayashi H, Shibata K, Sakamoto M, Tomita S, Benno Y. Prevotella copri sp. Nov. and Prevotella stercorea sp. Nov., isolated from human feces. Int J Syst Evol Microbiol. 2007;57:941–946. doi:10.1099/ijs.0.64778-0.
  49. Wahlstrom A, Sayin SI, Marschall H-U, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50. doi:10.1016/j.cmet.2016.05.005.
  50. Masaru. T, Sanefuji M, Morokuma S, Yoden M, Momoda R, Sonomoto K, Ogawa M, Kato K, Nakayama J. The association between gut microbiota development and maturation of intestinal bile acid metabolism in the first three years of healthy Japanese infants. Gut Microbes. 2019. doi:10.1080/19490976.2019.1650997.
  51. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK. The Toll-like receptor 2 pathway establishes colonisation by a commensal of the human microbiota. Science. 2011;332:974–977. doi:10.1126/science.1206095.
  52. Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science. 2018;362:453–457. doi:10.1126/science.aat7164.
  53. Kim Y-G, Sakamoto K, Seo SU, Pickard JM, Gillilland MG 3rd, Pudlo NA, Hoostal M, Li X, Wang TD, Feehley T, et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science. 2017;356:315–319. doi:10.1126/science.aag2029.
  54. Oyedemi BOM, Kotsia EM, Stapleton PD, Gibbons S. Capsaicin and gingerol analogues inhibit the growth of efflux-multidrug resistant bacteria and R-plasmids conjugal transfer. J Ethnopharmacol. 2019;245:111871. doi:10.1016/j.jep.2019.111871.
  55. Kariu T, Nakao R, Ikeda T, Nakashima K, Potempa J, Imamura T. Inhibition of gingipains and Porphyromonas gingivalis growth and biofilm formation by prenyl flavonoids. J Periodontal Res. 2017;52(1):89–96. doi:10.1111/jre.12372.
  56. Cushnie TP, Cushnie B, Lamb AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents. 2014;44:377–386. doi:10.1016/j.ijantimicag.2014.06.001.
  57. Are A, Aronsson L, Wang S, Greicius G, Lee Y-K, Gustafsson JA, Pettersson S, Arulampalam V. Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proc Natl Acad Sci USA. 2008;105:1943–1948. doi:10.1073/pnas.0711734105.
  58. Wang SG, Hibberd ML, Pettersson S, Lee Y-K. Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways. PLoS One. 2014;9(5):e97523. doi:10.1371/journal.pone.0097523.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
社團法人台灣國際生命科學會_96
28 篇文章 ・ 8 位粉絲
創會於2013年,這是一個同時能讓產業界、學術界和公領域積極交流合作及凝聚共識的平台。期望基於科學實證,探討營養、食品安全、毒理學、風險評估以及環境的議題,尋求最佳的科學解決方法,以共創全民安心的飲食環境。欲進一步了解,請至:ww.ilsitaiwan.org

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
一餐變災難:台北素食餐廳爆食物中毒,這些細菌你不可不知!
careonline_96
・2024/08/30 ・2532字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

北市素食餐廳的食物中毒事件已造成二死四危急,引發眾人關注。食物中毒可能是因為食物內含有細菌、病毒、或寄生蟲,當這些病菌持續在腸胃道理作亂、生長,就會引發不適。另外,食物中毒也可能與細菌製作出的毒素有關。

食物中毒的症狀

食物中毒算是個很廣泛的說法,包含了各種不同的細菌或病毒感染,多數在幫表現症狀的初期,我們還不知道究竟是哪一種細菌或病毒造成的,因為一般食物中毒還輕微的時候,就是腸胃炎的症狀。患者會肚子絞痛,想要跑廁所,開始有腹瀉症狀。這時要注意自己的糞便是純粹水便,還是含有血絲或大量的血便,這與猜測致病原有關係,要記得就診時告知醫師腹瀉的狀況。另外,還要告知有沒有發燒、嘔吐等情形。

另外,我們也需要注意這些噁心嘔吐及腹瀉症狀發生的時間點,不同的細菌或病毒造成症狀的時間不一樣,有的短至三十分鐘內患者就開始上吐下瀉,有的則是要過上一星期才發病。不過通常是吃到含有病菌的食物後一到三天發病。

多數的食物中毒症狀並不嚴重,很多人會覺得自己只是腸胃不舒服一下下,拉個幾次就會過去了。然而如果有以下狀況,最好趕快就診:

-----廣告,請繼續往下閱讀-----
  • 脫水嚴重:尿尿的量變少,覺得頭暈目眩,嘴巴很乾
  • 一直吐:什麼東西都吃不了,一進食就吐
  • 一直拉:成人拉肚子超過兩天,或是小孩拉肚子連續一天,就算是嚴重了。如果是新生兒,只要看到腹瀉,最好還是就醫。看到血便也是要就醫。
  • 肚子很痛或發燒
  • 家人發現患者意識狀況變差,或發現有複視皮膚變黃等等狀況。

引起食物中毒的知名病菌及其特色

接下來我們來看看幾個容易引起食物中毒的細菌或病毒。

  • 大腸桿菌(E. coli)

最常見的狀況是吃到沒有完全煮熟的絞肉,像是沒煎到全熟的漢堡排。不過大腸桿菌也會出現在受到污染的蔬菜(像是生菜沙拉)、水果、或生水之中。

  • 沙門氏菌(Salmonella)

沙門氏菌存在沒有煮熟的肉類與蛋類食物,或是喝到沒有完全經由巴斯德滅菌過程的乳製品。

  • 金黃色葡萄球菌(Staphylococcus aureus)

備餐的時候沒有先洗手,而處理食物後沒有再經過烹煮,像是切肉片肉排,切三明治或包裝三明治,就可能讓人因金黃色葡萄球菌而食物中毒。

-----廣告,請繼續往下閱讀-----
  • 產氣莢膜桿菌(Clostridium perfringens)

產氣莢膜桿菌存在自然界,可以形成具有耐熱性的孢子,有些甚至在沸水中仍能存活許久。因此,除了生肉、蛋類、奶類可能含有產氣莢膜桿菌外,土生土長的蔬菜、穀類也可能含有產氣莢膜桿菌。當燉煮的肉湯、肉汁放在室溫一陣子,沒有放到冰箱冷藏的話,可能會引起食物中毒。

  • 肉毒桿菌(Clostridium botulinum)

這屬於少見但容易致死的食物中毒。肉毒桿菌是存在自然界土壤與水源的常見細菌,如果沒有藉由煮沸煮熟來殺死肉毒桿菌的話,是無法停止其生長的。最容易造成食物中毒的狀況有兩種,一種是吃到沒有正確保存的醃漬物或罐頭食物,尤其是居家自己醃漬的小品,無論是醃菜、醃魚、醃肉,都可能會導致肉毒桿菌滋生。另一種傳染途徑是讓小於一歲的幼童吃到蜂蜜或玉米糖漿,裡面的孢子可能含有肉毒桿菌而造成幼兒食物中毒,記住記住,千萬不要以為讓幼兒吃蜂蜜很營養喔,會因為感染肉毒桿菌而致死的。

肉毒桿菌會影響神經肌肉的控制,造成的食物中毒特色是患者的視力出現複視,講話講不清楚,肌肉無力,無法吞嚥,有這種狀況務必趕緊就醫。

  • 李斯特菌(Listeria)

李斯特菌可以存在未經巴斯德滅菌過程的牛奶及乳酪中,也會存在於豆芽、瓜類、和香腸熟肉裡。

-----廣告,請繼續往下閱讀-----
  • 諾羅病毒(Norovirus)

諾羅病毒的傳染能力很強,只要碰到帶有諾羅病毒的餐桌表面、再將食物送往口中,就可能感染。因此只要有個人感染諾羅病毒,很容易在與他人共餐的同時藉由分享食物、備餐等狀況而傳給其他人。

預防食物中毒

  • 擤鼻嚏、咳嗽、抽菸、上廁所之後,請記得都要好好洗手
  • 如果是備餐的人,請好好清洗蔬菜及水果,用來備餐的表面及餐具也都要在準備食物之前好好清洗。
  • 肉類、蛋類等務必都要好好煮熟,不要讓生肉或未煮熟的肉或肉汁去污染到其他食物。
  • 不管是煮過的食物或生肉,不要任其停留在室溫內超過兩小時,放兩個小時後的食物都不安全,請儘早把食物冰到冰箱。解凍的食物要趕快煮一煮,不要放在室溫過久。
  • 保存食物的時候,生的肉類要與蔬菜水果、煮過的食物、或加工食物分開擺放。
  • 買含有沙拉醬、美乃滋的食物沒吃完一定要冰起來。
  • 不知道放了多久的食物請丟掉。一打開有味道,或是罐頭蓋子鼓起的一定要丟掉。

預防食物中毒的重點是自己常洗手,並好好保存食物,備餐時也要用心。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
515 篇文章 ・ 275 位粉絲
台灣最大醫療入口網站