Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

假睫毛越長就越棒嗎?!最好還是不要超過眼寬的1/3

曾 文宣
・2015/12/01 ・531字 ・閱讀時間約 1 分鐘 ・SR值 507 ・六年級

ISTOCKPHOTO-THINKSTOCK
有人想要請問PanSci週四動畫日的常景陸主播,牠的睫毛是不是最長的呢? Source: ISTOCKPHOTO-THINKSTOCK

標題的問題我不只一次問過吾家老媽。每次出門前,她總坐在梳妝台前耗去一大把時間,最後走出房間,我只會發現她長到很不自然的睫毛,這麼容易被識破的假睫毛,甘伍咖賀(台語)?

今年二月刊在《英國皇家學會介面期刊》的研究找來了22種哺乳動物,除了量了他們的睫毛長和眼寬長,還進一步去量測這些不同動物眼睛的水分蒸散量、阻隔塵埃量等空氣動力學相關的物理數據。大致上的結論是:

  • (1)如果按比例的話,大概睫毛長都是眼寬的1/3
  • (2)這樣的睫毛黃金比例,此長度能夠最有效將外界氣流攔截於眼睛之上,降低 50% 從眼睛蒸散出去和塵粒進入到眼睛的量(所以可以保濕防汙)。如果睫毛再長下去,這些功能反而就沒有囉!
來看看這22種動物的睫毛大概多長吧!編譯自 Amador et al. 2015_Fig. 4

快好好請身邊的朋友們拿起尺來量量,作者在此徵求黃金比例的睫毛照~XD

研究文獻:
Amador GJ, Mao W, DeMercurio P, Montero C, Clewis J, Alexeev A, Hu DL. 2015 Eyelashes divert airflow to protect the eye. J. R. Soc. Interface 12: 20141294.

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
曾 文宣
22 篇文章 ・ 15 位粉絲
我是甩啊!畢業於臺灣師範大學生科系生態演化組|寫稿、審稿、審書被編輯們追殺是日常,經常到各學校或有關單位演講,寒暑假會客串帶小朋友到博物館學暴龍吼叫。癡迷鱷魚,守備領域從恐龍到哺乳動物,從陰莖到動物視覺,因此貴為「視覺系男孩」、或被稱呼「老二大大」。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
頭好撞撞追求女生的「獬豸鹿」,和長頸鹿脖子變長有什麼關係?
寒波_96
・2022/08/31 ・2359字 ・閱讀時間約 4 分鐘

長頸鹿最顯眼的特色莫過於長脖子。牠們祖先的脖子沒有那麼長,從短頸鹿變成長頸鹿是為什麼呢?一般說法是長脖子有利於覓食,天擇有優勢。然而一篇 2022 年的論文,報告一款長頸鹿的遠古親戚之餘,還主張脖子變長和性擇有關:男生脖子長有利於求偶。此一論點能相信嗎?

長頸鹿男生用脖子互撞,是爭取女生的手段之一。圖/參考資料 1

頭好撞撞向女生求愛!

進入主題以前,先請大家動動腦:分類學中,馬是馬科,人是人科,豬是豬科,牛是牛科,羊是牛科(!),鹿是鹿科,長頸鹿是哪一科?

這個問題很容易答錯,正確答案是:長頸鹿就是長頸鹿科(Giraffidae)。

多數人大概根本不知道有個長頸鹿科,它如今獸口單薄,只剩下住在非洲的長頸鹿、㺢㹢狓兩群。不同人對於長頸鹿有幾個物種見解不一,反正就是一群類似的長頸鹿。㺢㹢狓的知名度很低,許多人是從博客來 Okapi 網站的吉祥物認識牠。㺢㹢狓沒有長脖子,這點與許多長頸鹿科的古代親戚類似。

-----廣告,請繼續往下閱讀-----

長頸鹿科及其近親們,古時候的多樣性遠勝現在。獬豸鹿便是其中一員,牠們住在中新世(Miocene)早期, 約莫 1700 萬年前的新疆。多年下來古生物學家在準噶爾盆地蒐集到幾件化石,可以推測獬豸鹿的體型,以及腦補頭部、頸部的狀況。

獬豸鹿男生想像圖。圖/參考資料 3

新發表的論文將其定義為新的物種:Discokeryx xiezhi,屬名和種小名都是新的。屬名 Discokeryx 的英文意思為 round-plated horn,可以翻譯作圓板角;種小名 xiezhi 則來自傳奇上古神獸「獬豸」,本文皆稱之為獬豸鹿,唸作蟹智露

研究者根據化石認為,獬豸鹿的頭部、頸部適應衝撞,頭好撞撞的戰鬥值很高,男牲求偶時可能用衝撞來爭搶女牲。會用腦袋撞來撞去的動物並不罕見,論文分析後主張,獬豸鹿的撞擊能力可謂難波萬,比所有古今的牛、羊、馬、豬都更能撞。

不過接下來的推論乍看有點神奇:脖子長有利同性競爭,於是愈來愈長變成長頸鹿!?

-----廣告,請繼續往下閱讀-----
獬豸鹿、長頸鹿,與眾多親戚們的演化關係。圖/參考資料 1

向女生求愛,使得脖子長?

關於這點,其實沒有比較明確的證據。論文的思路是,長頸鹿古早近親們在頭部、頸部變化的花樣不少,堅頭曼們競爭女生的性擇力量,應該是適應的一大影響力。長頸鹿祖先的脖子變長,或許就是為了求偶有優勢。

長頸鹿和獬豸鹿的親戚關係如何?應該沒有直接關係。獬豸鹿住在 1700 萬年前的新疆草地,長頸鹿脖子變長則發生在 500 萬年前的非洲草地,算是上新世(Pliocene)早期。沒有證據支持獬豸鹿是長頸鹿的直系祖先,兩者頸部是獨立演化,適應方向也不一樣。

獬豸鹿和長頸鹿的年代差距非常遠。圖/參考資料 1

然而,論文很努力類比,強調兩者的相似。假如頭、頸適應的主要驅動力是性擇,獬豸鹿超耐撞是性擇所致,那麼長頸鹿脖子超長也有機會是性擇造成。

動物吃進不同的食物,會影響身體構造的成分,能夠由穩定同位素判斷飲食組成。對新疆獬豸鹿的牙齒分析得知,牠們當年應該住在乾燥的草地,也許乾旱到其他大型動物都不太能生存。

-----廣告,請繼續往下閱讀-----

現在的長頸鹿也時常住在資源稀缺,不太有牛、羊的棲位。苦行的邊緣路線,或許是長頸鹿及其部分古代親戚的特色。

獬豸鹿生活的生態系想像圖,牠們或許能住在比其他動物更邊緣的棲位。圖/參考資料 2

一項特徵的演變,受到性擇影響之外,也可能涉及天擇。論文的說辭是,長頸鹿脖子變長一開始為性擇影響,尺寸增長有利於獲得女生歡心;脖子變長以後更容易取得資源,也對天擇有利。所以長期看來性擇、天擇兩個方向,都支持脖子延長的趨勢,也衍生出如今的長頸鹿。

不過這件事和獬豸鹿有關係嗎?好像沒有。

長頸鹿的脖子變長,和男牲競爭女牲有關嗎?這題交給各位讀者自行判斷。

-----廣告,請繼續往下閱讀-----

延伸閱讀

參考資料

  1. Wang, S. Q., Ye, J., Meng, J., Li, C., Costeur, L., Mennecart, B., … & Deng, T. (2022). Sexual selection promotes giraffoid head-neck evolution and ecological adaptation. Science, 376(6597), eabl8316.
  2. Strange fossil solves giraffe evolutionary mystery
  3. How the giraffe got its neck: ‘unicorn’ fossil could shed light on puzzle
  4. This ancient giraffe relative head-butted rivals with an ‘amazing sexual weapon’

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
假睫毛越長就越棒嗎?!最好還是不要超過眼寬的1/3
曾 文宣
・2015/12/01 ・531字 ・閱讀時間約 1 分鐘 ・SR值 507 ・六年級

ISTOCKPHOTO-THINKSTOCK
有人想要請問PanSci週四動畫日的常景陸主播,牠的睫毛是不是最長的呢? Source: ISTOCKPHOTO-THINKSTOCK

標題的問題我不只一次問過吾家老媽。每次出門前,她總坐在梳妝台前耗去一大把時間,最後走出房間,我只會發現她長到很不自然的睫毛,這麼容易被識破的假睫毛,甘伍咖賀(台語)?

今年二月刊在《英國皇家學會介面期刊》的研究找來了22種哺乳動物,除了量了他們的睫毛長和眼寬長,還進一步去量測這些不同動物眼睛的水分蒸散量、阻隔塵埃量等空氣動力學相關的物理數據。大致上的結論是:

  • (1)如果按比例的話,大概睫毛長都是眼寬的1/3
  • (2)這樣的睫毛黃金比例,此長度能夠最有效將外界氣流攔截於眼睛之上,降低 50% 從眼睛蒸散出去和塵粒進入到眼睛的量(所以可以保濕防汙)。如果睫毛再長下去,這些功能反而就沒有囉!

來看看這22種動物的睫毛大概多長吧!編譯自 Amador et al. 2015_Fig. 4

-----廣告,請繼續往下閱讀-----

快好好請身邊的朋友們拿起尺來量量,作者在此徵求黃金比例的睫毛照~XD

研究文獻:
Amador GJ, Mao W, DeMercurio P, Montero C, Clewis J, Alexeev A, Hu DL. 2015 Eyelashes divert airflow to protect the eye. J. R. Soc. Interface 12: 20141294.

-----廣告,請繼續往下閱讀-----
文章難易度
曾 文宣
22 篇文章 ・ 15 位粉絲
我是甩啊!畢業於臺灣師範大學生科系生態演化組|寫稿、審稿、審書被編輯們追殺是日常,經常到各學校或有關單位演講,寒暑假會客串帶小朋友到博物館學暴龍吼叫。癡迷鱷魚,守備領域從恐龍到哺乳動物,從陰莖到動物視覺,因此貴為「視覺系男孩」、或被稱呼「老二大大」。

0

2
2

文字

分享

0
2
2
【2011 諾貝爾化學獎】與確立的知識奮戰:黃金比例的晶體——準晶體
諾貝爾化學獎譯文_96
・2022/07/03 ・5569字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自諾貝爾化學獎專題系列,原文為《【2011諾貝爾化學獎】具有黃金比例的晶體 — 準晶

  • 譯者/蔡蘊明|台大化學系名譽教授
  • 圖/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。

十重對稱的黃金比例

當丹尼.謝西曼(Daniel Shechtman)將這個讓他得到 2011 年諾貝爾化學獎的發現登記於實驗記錄簿上時,在後面寫下了三個問號,因為從那些在他眼前的晶體裡面的原子,產生了一個不可能的對稱性,那就好像一個足球——一個球面 ——不可能只由正六邊形組成。從此之後,有趣的馬賽克圖案(Mosaic)、數學裡面的黃金比例以及藝術,幫科學家們解釋了謝西曼那令人困惑的觀察。

「Eyn chaya kazoo」,丹尼.謝西曼用希伯來語告訴自己「不可能有這種東西」。時值 1982 年 4 月 8 號的早晨,他正在研究的物質,是一個由鋁和錳組成的混合物,看起來很奇怪,因此他用電子顯微鏡,企圖從原子的層次來觀察,但是透過電子顯微鏡得到的圖像,卻違反了所有的邏輯:他看到一些同心圓,每一個都是由十個相互等距的亮點所組成(圖 1)。

謝西曼迅速地將灼熱的熔化金屬冷卻下來。這種溫度的突然改變應該會讓原子的排列混亂,但是他所觀察到的圖案,卻說出了一個完全不同的故事:那些原子以一種違反自然定律的方式而排列。謝西曼一再重複地數著那些點,四個或六個點是可能的,但十個是絕不可能。他在實驗記錄簿上寫下:十重對稱???

一個未知的發現

為了瞭解謝西曼的實驗結果,以及為何他會如此驚訝,讓我們想像下面的一個課堂實驗:一位物理老師讓光通過一個鑿有縫隙的金屬板,一個被稱為繞射光柵的物體(圖 2),當光波通過這個光柵時,它會產生折射,就好像海浪的波紋通過一個防波堤的開口一般。

-----廣告,請繼續往下閱讀-----

在光柵的另一邊,波紋以一個半圓方式散開,並與其它的波紋相交,波峰與波谷相互地加強或減弱。在繞射光柵後面的螢幕上,一種具有明暗的紋路出現,稱為繞射圖紋。

這就是謝西曼在 1982 年 4 月早晨所得到的那種繞射圖紋(圖 1),只不過他的實驗是不同的:他不是用光,而是用電子(註:電子具有波的性質),而他的光柵就是那個快速冷卻了的金屬原子之間的縫隙。

此外,他的實驗是三度空間的,而非平面的。

圖 1:丹尼.謝西曼的繞射圖紋具有十重對稱:將此圖轉動十分之一的圓周角度時(36 度)可得到相同的圖案。圖/諾貝爾獎官網
圖 2:光通過一個繞射光柵產生散射,產生的波相互干涉得到繞射圖案。圖/諾貝爾獎官網

那個繞射圖紋顯示,在那金屬之內的原子是排列成一個整齊有序的晶體。這當然不意外,幾乎所有的固體物質,不論是冰塊或金子,都具有整齊的晶體。雖然謝西曼使用電子顯微鏡非常有經驗,然而,一個由十個亮點排列成的圓形,卻是過去他從未看到過的。

-----廣告,請繼續往下閱讀-----

更有甚者,這樣的晶體並沒有被列在國際晶體規格表之內,那是一個結晶學的主要參考指引。在當時的科學,明訂了一個由十個亮點排列成的圓形圖紋是不可能的,而其證明是非常簡單而明顯的。

違反所有邏輯的圖紋

在一個晶體中,原子是以固定而重複的方式排列的。決定於化學的組成,它們會具有不同的對稱性。在圖 3a 中,我們可以看到每一個原子是由三個原子圍繞著,而形成不斷重複的排列圖案,產生一個三重對稱;將此圖案轉動 120 度,又會得到相同的圖案。

同樣的原理發生在四重對稱(圖 3b)以及六重對稱(圖 3c),圖案不斷重複。當你個別地轉動 90 度或 60 度,相同的圖案會重複出現。

圖 3:晶體中不同的對稱性。具有五重對稱的晶體結構單元無法重複。圖/諾貝爾獎官網

然而,五重對稱(圖 3d)是不可能的,某些原子之間的距離會小於其它原子之間的距離,也就是說,相同的圖案不會重複。科學家認為這足以證明五重對稱不可能存在於晶體中。同樣的原因存在於七重對稱或更高重的對稱。

-----廣告,請繼續往下閱讀-----

謝西曼卻發現,他的圖案轉動一個圓的十分之一的角度(36 度)時,又可得到相同的圖案。他的確看到了一個被認為不可能的十重對稱,因此,不意外地,他在實驗記錄簿上寫下了三個問號。

基本假設出錯了

在美國國家標準局(NIST),謝西曼從他的辦公室向外探頭,望了望走廊,希望能看到某一個可以與他分享發現的人,但是走廊空無一人,所以他回到電子顯微鏡前,對那個晶體繼續進一步的實驗。其中他重複地確認所得到的不是巒晶(twin crystal):兩種共生的晶體享有相同的晶面,而導致了奇怪的繞射圖紋;但是他無法找到任何的跡象顯示那是巒晶。

除此之外,他將電子顯微鏡下的晶體轉動,看看到底要轉多少度可以讓這個十重對稱的繞射圖紋重複出現。實驗顯示晶體的對稱性與圖紋的十重對稱不同,但仍然是一個不可能的五重對稱。謝西曼的結論是:科學界的基本假設是錯誤的

當謝西曼告訴科學家們他的發現時,他面對了完全的否定,一些同事們甚至認為這根本是無稽之談,許多人宣稱他所得到的是巒晶。實驗室的主管丟給了他一本結晶學教科書,建議他讀讀。謝西曼當然知道教科書裡面說了什麼,但是他更相信自己的實驗。

-----廣告,請繼續往下閱讀-----

根據謝西曼的回憶,所有的騷動終於導致他的老闆要求他離開那個研究小組,狀況變得非常難堪。

與已知奮戰

謝西曼是在以色列科技大學(Technion-Israel Institute of Technology)修得博士學位的。在 1983 年,他引發了在他母校任職的伊蘭.布雷契(Ilan Blech)對這個研究的興趣,他們合力企圖解釋此一繞射圖紋,並轉譯成為原子在晶體內的排列模式。

於 1984 年夏,他們送了一份論文稿到應用物理期刊(Journal of Applied Physics),但是該稿似乎在收到當日,就即刻被編輯退回。

接著,謝西曼向約翰.康(John Cahn)提出要求。康是一位著名的物理學家,也是當初邀聘謝西曼到 NIST 的人。謝西曼希望康能看看他的數據。這位通常很忙的學者終於答應,接著,康與一位法國的結晶學家丹尼斯.格拉提亞斯(Denis Gratias)諮詢,看看謝西曼是否忽略了什麼,但是根據格拉提亞斯的檢驗,謝西曼的實驗是可以信賴的,格拉提亞斯如果親自做那些實驗,也會使用同樣的方法。

-----廣告,請繼續往下閱讀-----

在 1984 年的十一月,偕同了康、布雷契與格拉提亞斯,謝西曼等人終於在 Physical Review Letters 這份期刊中,共同發表了他的數據。這篇論文像顆炸彈一般,投在結晶學者之間。它質疑了他們的科學學門中的最基本教條:所有的晶體具有重複的週期性結構模式。

揭開知識的迷障

現在這項發現觸及了更多的讀者,而謝西曼成為了更多批評的目標。不過,在此同時,全世界的結晶學者們都產生了一種似曾相識的感覺,許多人在分析一些其它的物質時,也曾經得到過類似的繞射圖紋,但是當初,他們都將之視為巒晶的證據。現在,他們開始翻箱倒櫃,找出以前的實驗記錄簿,很快發現有些其它的晶體也會產生這種看似不可能的圖紋,譬如八重和十二重的對稱。

在謝西曼發表了他的發現之後,他仍然不知道那個奇怪的晶體內部結構到底如何。顯然地,它的對稱性是五重的,那是何種堆疊方式呢?這個答案卻從另一個未曾料到的領域而得:數學中的馬賽克遊戲。

用以解謎的馬賽克

數學家們喜歡用迷團和邏輯問題來挑戰自我。於 1960 年代,他們開始思索是否可以用有限數目的圖案塊,舖出不會重複的馬賽克圖案,創造一種所謂的「非週期馬賽克」。

-----廣告,請繼續往下閱讀-----

頭一個成功的嘗試是在 1966 年,由一位美國的數學家所發表,但是他需要超過兩萬種圖案塊來做到,這很難讓著迷於精簡的數學家滿足。當更多的數學家投入這項挑戰,需要的不同圖案塊數目穩定下修。

終於,在 1970 年代中期,一位英國數學教授羅傑.潘洛斯(Roger Penrose)對此問題提出了一個最漂亮的解答。他用僅僅兩種圖案塊創造出非週期馬賽克,例如一胖一瘦的菱形(圖 4-1)。

潘洛斯的馬賽克在好幾個不同方面啟發了學界,其中之一是他的發現被用來分析中世紀伊斯蘭綺理(Girih)圖案。我們也發現阿拉伯藝術家早在 13 世紀就創造出了非週期馬賽克,這種馬賽克裝飾著非凡的西班牙阿罕布拉宮,還有伊朗 Darb-i Imam 寺廟的入口和穹頂。

結晶學者艾倫.馬凱(Alan Mackay)運用潘洛斯的馬賽克於另一個方面,他想探究構成物質的原子是否也能如同非週期馬賽克的圖案般排列。他做了一個實驗,用代表原子的圓圈放置在潘洛斯的馬賽克圖案的交點位置(圖 4-2),然後用這樣的圖案作成繞射光柵,來看會得到何種繞射圖案,結果得到一個十重對稱——十個光點圍成一圈。

-----廣告,請繼續往下閱讀-----

馬凱的模型與謝西曼的繞射圖紋之間的關聯性,接著被物理學家保羅.史坦哈特(Paul Steinhardt)與多夫.李凡(Dov Levine)所發現。謝西曼的論文在 Physical Review Letters 這份期刊上發表之前,編輯將該文稿交由其他的科學家審核,在這個過程中,史坦哈特有機會看到這份文章,他早就對馬凱的模型熟悉,因此體認到馬凱的理論模型,存在現實世界中,亦存在於謝西曼在 NIST 的實驗室裡。

在 1984 年的聖誕夜,就在謝西曼的論文出刊後的四週,史坦哈特與李凡發表了一篇論文,其中描述了準晶體(quasicrystal)以及它的非週期馬賽克排列。在這篇論文中,準晶體得到了它的名字。

關鍵的黃金比例

準晶體與非週期馬賽克具有一項共同的迷人特質,那是一個在數學與藝術中不斷出現的黃金比例,亦即數學常數 tau。例如:在潘洛斯的馬賽克中,胖的和瘦的菱形數目的比例是 tau;類似地,準晶體中原子間的不同距離的比例,總是與 tau 相關。

13 世紀的義大利數學家費布那西(Fibonacci),從一個有關兔子繁殖的假設性實驗中找到的一系列數字中,描述了這個數學常數 tau。在這個著名的數列中,每一個數字是前兩個數字之和:1、1、2、3、5、8、13、21、34、55、89、144 等等。如果將一個費氏數列中較大的數字除以前一個數字,例如 144/89,你就會得到一個接近黃金比例的數字。

當科學家想要用一個繞射圖紋來描述準晶體中的原子排列時,費氏數列與黃金比例對他們是很重要的。費氏數列也可以解釋 2011 年的諾貝爾化學獎所表彰的發現,為何改變了化學家對晶體結構的規律性之看法。

費氏數列解釋了為何準晶體改變了化學家對晶體結構規律性的看法。 圖/seventyfourimages

不會重複的規律

先前,化學家解釋晶體的規律性在於一個週期性不斷重複的模式。費氏數列雖然不會重複,卻也是規律的,因為它遵守一個數學的規則。

在準晶體中,原子間的距離與費氏數列相關,原子以規律的方式排列,化學家可以預測一個準晶體中的結構是何樣,不過這種規律性與具有周期性結構的晶體是不同的。

在 1992 年,這個認知導致了國際結晶學會改變了他們對晶體的定義。先前對晶體的定義是「一個物質,其中組成的原子、分子或離子以一個整齊而且重複的方式堆疊成立體的型態」,現在新的定義是「任何固體,基本上具有可區別的繞射圖紋」,這個定義比較寬廣,而且允許未來可能發現的其它種晶體。

準晶體也存在於…

從他們 1982 年的發現之後,數以百計的準晶體在全球許多實驗室中被合成,但一直到了 2009 年的夏天,科學家才第一次報導了天然的準晶體。他們發現了一種採自東俄的哈吐卡(Khatyrka)河的樣本中之礦石。這種礦石是由鋁、銅和鐵組成,具有一個十重對稱的繞射圖紋。它被稱為二十面石(icosahedrite),此名源自於二十面體(icosahedron),那是一種具有 20 個正三角形面的幾何固體,黃金比例存在於其幾何結構中。

準晶體也被發現存在於一種世界上最耐用的鐵當中。在嘗試不同組合的金屬時,一家瑞典的公司成功的製備出一種鐵,具有許多令人驚訝的良好特質。分析它的原子排列結構時,顯示它具有兩種相:硬鐵的準晶體嵌在一種較軟的鐵中,此一準晶體具有一種盔甲的功能。現在它被用於刮鬍刀片,以及眼睛手術的細針等產品中。

準晶體現在也被用在刮鬍刀中。 圖/Pressmaster

除了特別堅硬外,準晶體能像玻璃般輕易的碎裂。

由於其特殊原子排列結構,它們也是很差的熱與電的導體,以及含有不具黏性的表面。其低熱傳導的性質可以讓它們成為有用的熱電材料,能將熱轉為電,發展這種材料的目的在解決熱能的再利用,例如用在汽車與卡車上。現在科學家們正在實驗將準晶體用做像是煎鍋,以及節能的發光二極體(LED)之表面塗料,或是作為引擎的隔熱等等。

保持開放的心

謝西曼的故事並非唯一。

在科學的歷史中,一再地有研究工作者被迫與已經建立的「真理」作戰。事後看來,那些真理不過是一些假設。謝西曼和他的準晶體所面對過的最嚴厲批評,來自於鮑林(Linus Pauling),他曾得過兩次諾貝爾獎。這很清楚地顯示,即使是我們最偉大的科學家,也無法免疫於被陷在舊教條當中。

保持一個開放的心態,勇於質疑已經建立的知識,實際上可能是科學家們最重要的性格特質。

-----廣告,請繼續往下閱讀-----
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列