0

0
0

文字

分享

0
0
0

假睫毛越長就越棒嗎?!最好還是不要超過眼寬的1/3

曾 文宣
・2015/12/01 ・531字 ・閱讀時間約 1 分鐘 ・SR值 507 ・六年級

-----廣告,請繼續往下閱讀-----

ISTOCKPHOTO-THINKSTOCK
有人想要請問PanSci週四動畫日的常景陸主播,牠的睫毛是不是最長的呢? Source: ISTOCKPHOTO-THINKSTOCK

標題的問題我不只一次問過吾家老媽。每次出門前,她總坐在梳妝台前耗去一大把時間,最後走出房間,我只會發現她長到很不自然的睫毛,這麼容易被識破的假睫毛,甘伍咖賀(台語)?

今年二月刊在《英國皇家學會介面期刊》的研究找來了22種哺乳動物,除了量了他們的睫毛長和眼寬長,還進一步去量測這些不同動物眼睛的水分蒸散量、阻隔塵埃量等空氣動力學相關的物理數據。大致上的結論是:

  • (1)如果按比例的話,大概睫毛長都是眼寬的1/3
  • (2)這樣的睫毛黃金比例,此長度能夠最有效將外界氣流攔截於眼睛之上,降低 50% 從眼睛蒸散出去和塵粒進入到眼睛的量(所以可以保濕防汙)。如果睫毛再長下去,這些功能反而就沒有囉!
來看看這22種動物的睫毛大概多長吧!編譯自 Amador et al. 2015_Fig. 4

快好好請身邊的朋友們拿起尺來量量,作者在此徵求黃金比例的睫毛照~XD

研究文獻:
Amador GJ, Mao W, DeMercurio P, Montero C, Clewis J, Alexeev A, Hu DL. 2015 Eyelashes divert airflow to protect the eye. J. R. Soc. Interface 12: 20141294.

-----廣告,請繼續往下閱讀-----
文章難易度
曾 文宣
22 篇文章 ・ 15 位粉絲
我是甩啊!畢業於臺灣師範大學生科系生態演化組|寫稿、審稿、審書被編輯們追殺是日常,經常到各學校或有關單位演講,寒暑假會客串帶小朋友到博物館學暴龍吼叫。癡迷鱷魚,守備領域從恐龍到哺乳動物,從陰莖到動物視覺,因此貴為「視覺系男孩」、或被稱呼「老二大大」。

0

1
0

文字

分享

0
1
0
頭好撞撞追求女生的「獬豸鹿」,和長頸鹿脖子變長有什麼關係?
寒波_96
・2022/08/31 ・2359字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

長頸鹿最顯眼的特色莫過於長脖子。牠們祖先的脖子沒有那麼長,從短頸鹿變成長頸鹿是為什麼呢?一般說法是長脖子有利於覓食,天擇有優勢。然而一篇 2022 年的論文,報告一款長頸鹿的遠古親戚之餘,還主張脖子變長和性擇有關:男生脖子長有利於求偶。此一論點能相信嗎?

長頸鹿男生用脖子互撞,是爭取女生的手段之一。圖/參考資料 1

頭好撞撞向女生求愛!

進入主題以前,先請大家動動腦:分類學中,馬是馬科,人是人科,豬是豬科,牛是牛科,羊是牛科(!),鹿是鹿科,長頸鹿是哪一科?

這個問題很容易答錯,正確答案是:長頸鹿就是長頸鹿科(Giraffidae)。

多數人大概根本不知道有個長頸鹿科,它如今獸口單薄,只剩下住在非洲的長頸鹿、㺢㹢狓兩群。不同人對於長頸鹿有幾個物種見解不一,反正就是一群類似的長頸鹿。㺢㹢狓的知名度很低,許多人是從博客來 Okapi 網站的吉祥物認識牠。㺢㹢狓沒有長脖子,這點與許多長頸鹿科的古代親戚類似。

-----廣告,請繼續往下閱讀-----

長頸鹿科及其近親們,古時候的多樣性遠勝現在。獬豸鹿便是其中一員,牠們住在中新世(Miocene)早期, 約莫 1700 萬年前的新疆。多年下來古生物學家在準噶爾盆地蒐集到幾件化石,可以推測獬豸鹿的體型,以及腦補頭部、頸部的狀況。

獬豸鹿男生想像圖。圖/參考資料 3

新發表的論文將其定義為新的物種:Discokeryx xiezhi,屬名和種小名都是新的。屬名 Discokeryx 的英文意思為 round-plated horn,可以翻譯作圓板角;種小名 xiezhi 則來自傳奇上古神獸「獬豸」,本文皆稱之為獬豸鹿,唸作蟹智露

研究者根據化石認為,獬豸鹿的頭部、頸部適應衝撞,頭好撞撞的戰鬥值很高,男牲求偶時可能用衝撞來爭搶女牲。會用腦袋撞來撞去的動物並不罕見,論文分析後主張,獬豸鹿的撞擊能力可謂難波萬,比所有古今的牛、羊、馬、豬都更能撞。

不過接下來的推論乍看有點神奇:脖子長有利同性競爭,於是愈來愈長變成長頸鹿!?

-----廣告,請繼續往下閱讀-----
獬豸鹿、長頸鹿,與眾多親戚們的演化關係。圖/參考資料 1

向女生求愛,使得脖子長?

關於這點,其實沒有比較明確的證據。論文的思路是,長頸鹿古早近親們在頭部、頸部變化的花樣不少,堅頭曼們競爭女生的性擇力量,應該是適應的一大影響力。長頸鹿祖先的脖子變長,或許就是為了求偶有優勢。

長頸鹿和獬豸鹿的親戚關係如何?應該沒有直接關係。獬豸鹿住在 1700 萬年前的新疆草地,長頸鹿脖子變長則發生在 500 萬年前的非洲草地,算是上新世(Pliocene)早期。沒有證據支持獬豸鹿是長頸鹿的直系祖先,兩者頸部是獨立演化,適應方向也不一樣。

獬豸鹿和長頸鹿的年代差距非常遠。圖/參考資料 1

然而,論文很努力類比,強調兩者的相似。假如頭、頸適應的主要驅動力是性擇,獬豸鹿超耐撞是性擇所致,那麼長頸鹿脖子超長也有機會是性擇造成。

動物吃進不同的食物,會影響身體構造的成分,能夠由穩定同位素判斷飲食組成。對新疆獬豸鹿的牙齒分析得知,牠們當年應該住在乾燥的草地,也許乾旱到其他大型動物都不太能生存。

-----廣告,請繼續往下閱讀-----

現在的長頸鹿也時常住在資源稀缺,不太有牛、羊的棲位。苦行的邊緣路線,或許是長頸鹿及其部分古代親戚的特色。

獬豸鹿生活的生態系想像圖,牠們或許能住在比其他動物更邊緣的棲位。圖/參考資料 2

一項特徵的演變,受到性擇影響之外,也可能涉及天擇。論文的說辭是,長頸鹿脖子變長一開始為性擇影響,尺寸增長有利於獲得女生歡心;脖子變長以後更容易取得資源,也對天擇有利。所以長期看來性擇、天擇兩個方向,都支持脖子延長的趨勢,也衍生出如今的長頸鹿。

不過這件事和獬豸鹿有關係嗎?好像沒有。

長頸鹿的脖子變長,和男牲競爭女牲有關嗎?這題交給各位讀者自行判斷。

-----廣告,請繼續往下閱讀-----

延伸閱讀

參考資料

  1. Wang, S. Q., Ye, J., Meng, J., Li, C., Costeur, L., Mennecart, B., … & Deng, T. (2022). Sexual selection promotes giraffoid head-neck evolution and ecological adaptation. Science, 376(6597), eabl8316.
  2. Strange fossil solves giraffe evolutionary mystery
  3. How the giraffe got its neck: ‘unicorn’ fossil could shed light on puzzle
  4. This ancient giraffe relative head-butted rivals with an ‘amazing sexual weapon’

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

0

2
2

文字

分享

0
2
2
【2011 諾貝爾化學獎】與確立的知識奮戰:黃金比例的晶體——準晶體
諾貝爾化學獎譯文_96
・2022/07/03 ・5569字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自諾貝爾化學獎專題系列,原文為《【2011諾貝爾化學獎】具有黃金比例的晶體 — 準晶

  • 譯者/蔡蘊明|台大化學系名譽教授
  • 圖/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。

十重對稱的黃金比例

當丹尼.謝西曼(Daniel Shechtman)將這個讓他得到 2011 年諾貝爾化學獎的發現登記於實驗記錄簿上時,在後面寫下了三個問號,因為從那些在他眼前的晶體裡面的原子,產生了一個不可能的對稱性,那就好像一個足球——一個球面 ——不可能只由正六邊形組成。從此之後,有趣的馬賽克圖案(Mosaic)、數學裡面的黃金比例以及藝術,幫科學家們解釋了謝西曼那令人困惑的觀察。

「Eyn chaya kazoo」,丹尼.謝西曼用希伯來語告訴自己「不可能有這種東西」。時值 1982 年 4 月 8 號的早晨,他正在研究的物質,是一個由鋁和錳組成的混合物,看起來很奇怪,因此他用電子顯微鏡,企圖從原子的層次來觀察,但是透過電子顯微鏡得到的圖像,卻違反了所有的邏輯:他看到一些同心圓,每一個都是由十個相互等距的亮點所組成(圖 1)。

謝西曼迅速地將灼熱的熔化金屬冷卻下來。這種溫度的突然改變應該會讓原子的排列混亂,但是他所觀察到的圖案,卻說出了一個完全不同的故事:那些原子以一種違反自然定律的方式而排列。謝西曼一再重複地數著那些點,四個或六個點是可能的,但十個是絕不可能。他在實驗記錄簿上寫下:十重對稱???

一個未知的發現

為了瞭解謝西曼的實驗結果,以及為何他會如此驚訝,讓我們想像下面的一個課堂實驗:一位物理老師讓光通過一個鑿有縫隙的金屬板,一個被稱為繞射光柵的物體(圖 2),當光波通過這個光柵時,它會產生折射,就好像海浪的波紋通過一個防波堤的開口一般。

-----廣告,請繼續往下閱讀-----

在光柵的另一邊,波紋以一個半圓方式散開,並與其它的波紋相交,波峰與波谷相互地加強或減弱。在繞射光柵後面的螢幕上,一種具有明暗的紋路出現,稱為繞射圖紋。

這就是謝西曼在 1982 年 4 月早晨所得到的那種繞射圖紋(圖 1),只不過他的實驗是不同的:他不是用光,而是用電子(註:電子具有波的性質),而他的光柵就是那個快速冷卻了的金屬原子之間的縫隙。

此外,他的實驗是三度空間的,而非平面的。

圖 1:丹尼.謝西曼的繞射圖紋具有十重對稱:將此圖轉動十分之一的圓周角度時(36 度)可得到相同的圖案。圖/諾貝爾獎官網
圖 2:光通過一個繞射光柵產生散射,產生的波相互干涉得到繞射圖案。圖/諾貝爾獎官網

那個繞射圖紋顯示,在那金屬之內的原子是排列成一個整齊有序的晶體。這當然不意外,幾乎所有的固體物質,不論是冰塊或金子,都具有整齊的晶體。雖然謝西曼使用電子顯微鏡非常有經驗,然而,一個由十個亮點排列成的圓形,卻是過去他從未看到過的。

-----廣告,請繼續往下閱讀-----

更有甚者,這樣的晶體並沒有被列在國際晶體規格表之內,那是一個結晶學的主要參考指引。在當時的科學,明訂了一個由十個亮點排列成的圓形圖紋是不可能的,而其證明是非常簡單而明顯的。

違反所有邏輯的圖紋

在一個晶體中,原子是以固定而重複的方式排列的。決定於化學的組成,它們會具有不同的對稱性。在圖 3a 中,我們可以看到每一個原子是由三個原子圍繞著,而形成不斷重複的排列圖案,產生一個三重對稱;將此圖案轉動 120 度,又會得到相同的圖案。

同樣的原理發生在四重對稱(圖 3b)以及六重對稱(圖 3c),圖案不斷重複。當你個別地轉動 90 度或 60 度,相同的圖案會重複出現。

圖 3:晶體中不同的對稱性。具有五重對稱的晶體結構單元無法重複。圖/諾貝爾獎官網

然而,五重對稱(圖 3d)是不可能的,某些原子之間的距離會小於其它原子之間的距離,也就是說,相同的圖案不會重複。科學家認為這足以證明五重對稱不可能存在於晶體中。同樣的原因存在於七重對稱或更高重的對稱。

-----廣告,請繼續往下閱讀-----

謝西曼卻發現,他的圖案轉動一個圓的十分之一的角度(36 度)時,又可得到相同的圖案。他的確看到了一個被認為不可能的十重對稱,因此,不意外地,他在實驗記錄簿上寫下了三個問號。

基本假設出錯了

在美國國家標準局(NIST),謝西曼從他的辦公室向外探頭,望了望走廊,希望能看到某一個可以與他分享發現的人,但是走廊空無一人,所以他回到電子顯微鏡前,對那個晶體繼續進一步的實驗。其中他重複地確認所得到的不是巒晶(twin crystal):兩種共生的晶體享有相同的晶面,而導致了奇怪的繞射圖紋;但是他無法找到任何的跡象顯示那是巒晶。

除此之外,他將電子顯微鏡下的晶體轉動,看看到底要轉多少度可以讓這個十重對稱的繞射圖紋重複出現。實驗顯示晶體的對稱性與圖紋的十重對稱不同,但仍然是一個不可能的五重對稱。謝西曼的結論是:科學界的基本假設是錯誤的

當謝西曼告訴科學家們他的發現時,他面對了完全的否定,一些同事們甚至認為這根本是無稽之談,許多人宣稱他所得到的是巒晶。實驗室的主管丟給了他一本結晶學教科書,建議他讀讀。謝西曼當然知道教科書裡面說了什麼,但是他更相信自己的實驗。

-----廣告,請繼續往下閱讀-----

根據謝西曼的回憶,所有的騷動終於導致他的老闆要求他離開那個研究小組,狀況變得非常難堪。

與已知奮戰

謝西曼是在以色列科技大學(Technion-Israel Institute of Technology)修得博士學位的。在 1983 年,他引發了在他母校任職的伊蘭.布雷契(Ilan Blech)對這個研究的興趣,他們合力企圖解釋此一繞射圖紋,並轉譯成為原子在晶體內的排列模式。

於 1984 年夏,他們送了一份論文稿到應用物理期刊(Journal of Applied Physics),但是該稿似乎在收到當日,就即刻被編輯退回。

接著,謝西曼向約翰.康(John Cahn)提出要求。康是一位著名的物理學家,也是當初邀聘謝西曼到 NIST 的人。謝西曼希望康能看看他的數據。這位通常很忙的學者終於答應,接著,康與一位法國的結晶學家丹尼斯.格拉提亞斯(Denis Gratias)諮詢,看看謝西曼是否忽略了什麼,但是根據格拉提亞斯的檢驗,謝西曼的實驗是可以信賴的,格拉提亞斯如果親自做那些實驗,也會使用同樣的方法。

-----廣告,請繼續往下閱讀-----

在 1984 年的十一月,偕同了康、布雷契與格拉提亞斯,謝西曼等人終於在 Physical Review Letters 這份期刊中,共同發表了他的數據。這篇論文像顆炸彈一般,投在結晶學者之間。它質疑了他們的科學學門中的最基本教條:所有的晶體具有重複的週期性結構模式。

揭開知識的迷障

現在這項發現觸及了更多的讀者,而謝西曼成為了更多批評的目標。不過,在此同時,全世界的結晶學者們都產生了一種似曾相識的感覺,許多人在分析一些其它的物質時,也曾經得到過類似的繞射圖紋,但是當初,他們都將之視為巒晶的證據。現在,他們開始翻箱倒櫃,找出以前的實驗記錄簿,很快發現有些其它的晶體也會產生這種看似不可能的圖紋,譬如八重和十二重的對稱。

在謝西曼發表了他的發現之後,他仍然不知道那個奇怪的晶體內部結構到底如何。顯然地,它的對稱性是五重的,那是何種堆疊方式呢?這個答案卻從另一個未曾料到的領域而得:數學中的馬賽克遊戲。

用以解謎的馬賽克

數學家們喜歡用迷團和邏輯問題來挑戰自我。於 1960 年代,他們開始思索是否可以用有限數目的圖案塊,舖出不會重複的馬賽克圖案,創造一種所謂的「非週期馬賽克」。

-----廣告,請繼續往下閱讀-----

頭一個成功的嘗試是在 1966 年,由一位美國的數學家所發表,但是他需要超過兩萬種圖案塊來做到,這很難讓著迷於精簡的數學家滿足。當更多的數學家投入這項挑戰,需要的不同圖案塊數目穩定下修。

終於,在 1970 年代中期,一位英國數學教授羅傑.潘洛斯(Roger Penrose)對此問題提出了一個最漂亮的解答。他用僅僅兩種圖案塊創造出非週期馬賽克,例如一胖一瘦的菱形(圖 4-1)。

潘洛斯的馬賽克在好幾個不同方面啟發了學界,其中之一是他的發現被用來分析中世紀伊斯蘭綺理(Girih)圖案。我們也發現阿拉伯藝術家早在 13 世紀就創造出了非週期馬賽克,這種馬賽克裝飾著非凡的西班牙阿罕布拉宮,還有伊朗 Darb-i Imam 寺廟的入口和穹頂。

結晶學者艾倫.馬凱(Alan Mackay)運用潘洛斯的馬賽克於另一個方面,他想探究構成物質的原子是否也能如同非週期馬賽克的圖案般排列。他做了一個實驗,用代表原子的圓圈放置在潘洛斯的馬賽克圖案的交點位置(圖 4-2),然後用這樣的圖案作成繞射光柵,來看會得到何種繞射圖案,結果得到一個十重對稱——十個光點圍成一圈。

-----廣告,請繼續往下閱讀-----

馬凱的模型與謝西曼的繞射圖紋之間的關聯性,接著被物理學家保羅.史坦哈特(Paul Steinhardt)與多夫.李凡(Dov Levine)所發現。謝西曼的論文在 Physical Review Letters 這份期刊上發表之前,編輯將該文稿交由其他的科學家審核,在這個過程中,史坦哈特有機會看到這份文章,他早就對馬凱的模型熟悉,因此體認到馬凱的理論模型,存在現實世界中,亦存在於謝西曼在 NIST 的實驗室裡。

在 1984 年的聖誕夜,就在謝西曼的論文出刊後的四週,史坦哈特與李凡發表了一篇論文,其中描述了準晶體(quasicrystal)以及它的非週期馬賽克排列。在這篇論文中,準晶體得到了它的名字。

關鍵的黃金比例

準晶體與非週期馬賽克具有一項共同的迷人特質,那是一個在數學與藝術中不斷出現的黃金比例,亦即數學常數 tau。例如:在潘洛斯的馬賽克中,胖的和瘦的菱形數目的比例是 tau;類似地,準晶體中原子間的不同距離的比例,總是與 tau 相關。

13 世紀的義大利數學家費布那西(Fibonacci),從一個有關兔子繁殖的假設性實驗中找到的一系列數字中,描述了這個數學常數 tau。在這個著名的數列中,每一個數字是前兩個數字之和:1、1、2、3、5、8、13、21、34、55、89、144 等等。如果將一個費氏數列中較大的數字除以前一個數字,例如 144/89,你就會得到一個接近黃金比例的數字。

當科學家想要用一個繞射圖紋來描述準晶體中的原子排列時,費氏數列與黃金比例對他們是很重要的。費氏數列也可以解釋 2011 年的諾貝爾化學獎所表彰的發現,為何改變了化學家對晶體結構的規律性之看法。

費氏數列解釋了為何準晶體改變了化學家對晶體結構規律性的看法。 圖/seventyfourimages

不會重複的規律

先前,化學家解釋晶體的規律性在於一個週期性不斷重複的模式。費氏數列雖然不會重複,卻也是規律的,因為它遵守一個數學的規則。

在準晶體中,原子間的距離與費氏數列相關,原子以規律的方式排列,化學家可以預測一個準晶體中的結構是何樣,不過這種規律性與具有周期性結構的晶體是不同的。

在 1992 年,這個認知導致了國際結晶學會改變了他們對晶體的定義。先前對晶體的定義是「一個物質,其中組成的原子、分子或離子以一個整齊而且重複的方式堆疊成立體的型態」,現在新的定義是「任何固體,基本上具有可區別的繞射圖紋」,這個定義比較寬廣,而且允許未來可能發現的其它種晶體。

準晶體也存在於…

從他們 1982 年的發現之後,數以百計的準晶體在全球許多實驗室中被合成,但一直到了 2009 年的夏天,科學家才第一次報導了天然的準晶體。他們發現了一種採自東俄的哈吐卡(Khatyrka)河的樣本中之礦石。這種礦石是由鋁、銅和鐵組成,具有一個十重對稱的繞射圖紋。它被稱為二十面石(icosahedrite),此名源自於二十面體(icosahedron),那是一種具有 20 個正三角形面的幾何固體,黃金比例存在於其幾何結構中。

準晶體也被發現存在於一種世界上最耐用的鐵當中。在嘗試不同組合的金屬時,一家瑞典的公司成功的製備出一種鐵,具有許多令人驚訝的良好特質。分析它的原子排列結構時,顯示它具有兩種相:硬鐵的準晶體嵌在一種較軟的鐵中,此一準晶體具有一種盔甲的功能。現在它被用於刮鬍刀片,以及眼睛手術的細針等產品中。

準晶體現在也被用在刮鬍刀中。 圖/Pressmaster

除了特別堅硬外,準晶體能像玻璃般輕易的碎裂。

由於其特殊原子排列結構,它們也是很差的熱與電的導體,以及含有不具黏性的表面。其低熱傳導的性質可以讓它們成為有用的熱電材料,能將熱轉為電,發展這種材料的目的在解決熱能的再利用,例如用在汽車與卡車上。現在科學家們正在實驗將準晶體用做像是煎鍋,以及節能的發光二極體(LED)之表面塗料,或是作為引擎的隔熱等等。

保持開放的心

謝西曼的故事並非唯一。

在科學的歷史中,一再地有研究工作者被迫與已經建立的「真理」作戰。事後看來,那些真理不過是一些假設。謝西曼和他的準晶體所面對過的最嚴厲批評,來自於鮑林(Linus Pauling),他曾得過兩次諾貝爾獎。這很清楚地顯示,即使是我們最偉大的科學家,也無法免疫於被陷在舊教條當中。

保持一個開放的心態,勇於質疑已經建立的知識,實際上可能是科學家們最重要的性格特質。

參考資料

諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

1

0
1

文字

分享

1
0
1
「黃金」角度——長腿背後的秘密,原來網美和服飾店的是這樣辦到的?!|2021 數感盃|高中專題|金獎
數感實驗室_96
・2021/12/25 ・5320字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者:王浤齡、陳玟蓉、高珮珊/台北市立大同高級中學

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。
本文為 2021 數感盃青少年寫作競賽/高中組專題報導類佳作之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

在拍照時,我們總是希望能夠自然地呈現出最漂亮的自己,但這是一件何其困難的事情。法國傳奇攝影師——羅伯特・杜瓦諾曾說:「如果我知道如何拍出好照片,那我每次都會拍出好照片了。」然而有沒有什麼拍攝方法,可以讓照片中的身材比例變得更完美呢? 

有一天,我和一群朋友到某間知名服飾店逛街,試穿今年流行的秋冬款,並拍照片比較看看,選出較適合自己的衣服。在過程中,我發現一個問題:「為什麼在店家試穿時,全身鏡映照出的自己總是比照片中好看?」

嘗試幾次後,我們發現這是因為自己的身材比例,在鏡子與照片中的呈現是不一樣的,服飾店內的全身鏡,總是使腿的比例看起來比較長。

圖/envato elements

於是我們開始好奇,拍照時要如何拍攝出如同店裡的全身鏡具有長腿效果的方法,以及,是什麼原因讓這間服飾店內的全身鏡會有這樣長腿的效果呢? 

-----廣告,請繼續往下閱讀-----

上網搜尋之後,發現在這個社群軟體發達的時代,網路上有許多人分享不用俢圖軟體,就能「拍」出完美比例的文章或是教學影片,其結論是:「把手機或相機傾斜一個角度,就可以讓人的腿在照片中的比例變長。」然而,所謂的「傾斜一個角度」到底是幾度,卻沒有網站提供。

事實上,每個人身高比例皆不相同,取景的遠近都不一樣,甚至使用的拍攝器材也不 盡相同,使這個「角度」也會因情況而有所不同。因此,我們試著用所學的數學工具,去推論出不同人在拍照時,手機應該要傾斜幾度才能達到想要的長腿效果? 

關於服飾店內全身鏡有長腿效果的原因,我在觀察這些鏡子後,發現它們都有傾斜(如圖一),而且與地面都是夾 80 度。這個傾斜角度到底有什麼樣的用意呢?我們試圖去解開這個業界沒有說出來的秘密。 

首先,我們先解釋物理上的「成像原理」。人的眼睛之所以能看到物體、相機可以拍到畫面,都是因為物體反射的光線,進入到眼睛內的視網膜、或是相機裡的底片後所成的「像」。

-----廣告,請繼續往下閱讀-----

成像的原理與國中理化所教的凸透鏡成像原理相同,是由三條光線所交會而成的像(圖二),其中平行光通過透鏡後會穿過焦點,而穿過焦點的光通過透鏡後會成為平行光,交會處就是成像地點;並且第三條穿過透鏡的直線光也會與前兩條相交,因此可以由物距與像距算出成像縮放的倍率。 

如果我們在成像位置放一個平面,當成像的平面與物體是平行時,像會與實物相似,但是上下顛倒;但是如果把成像平面傾斜一個角度的話,成像的比例就會因為傾斜的角度,而 與實物的原比例不同。 

我們想要研究相機傾斜角度對照片中人物的身材比例的影響。 

考慮拍攝時,相機高度與被拍攝者的肚臍位置相同,如上面圖三所示,點 D 為相機的焦點,物體反射的光線直線穿過 D點,在另一側的平面上呈現一個倒立的像。

-----廣告,請繼續往下閱讀-----

把 \( \overline{AC} \) 當成為一位站立著的被拍攝者, \( \overline{AB} \) =b 為被拍攝者的頭頂到肚臍的長度,即為身長;而 \( \overline{BC} \) =l 為被拍攝者的肚臍到腳底的長度,即為腿長; \( \overline{BD} \) =d 為被拍攝者與相機的距離。

當成像平面垂直地面時,若把像距等比例放大到等於物距時(即是 \( \overline{DI} \) =d ),則 \( \overline{HJ} \) 會是一個全等的倒立像,即 \( \overline{HI} \) =l 為像的腿長、 \( \overline{IJ} \) =b 為像的身長。

若把成像平面傾斜一個角度,轉成 \( \overline{EJ} \) , 則像的身長會被拉成 \( \overline{IJ} \) → \( \overline{FJ} \)  ,像的腿長會被拉成 \( \overline{IH} \) → \( \overline{FE} \) 。

接下來,我們將推導出一條公式,可以算出相機該傾斜幾度,才能讓被拍攝者的身長及腿長呈現我們所想要的比例。 

-----廣告,請繼續往下閱讀-----
圖四

假設在照片中,身長比腿長的比例為 \( \overline{FJ} \) : \( \overline{EF} \) =1 : r,先求出 \( \overline{HD} \) : \( \overline{HE} \) 。

如圖四,我們利用「孟氏定理」, ΔJEH 被直線 \( \overline{FD} \) 所截的線段比為

 \( \frac{\overline{JI}}{\overline{IH}} \) ✕ \( \frac{\overline{HD}}{\overline{DE}} \) ✕ \( \frac{\overline{EF}}{\overline{FJ}} \) =1  \( \Rightarrow \) \( \frac{b}{l} \) ✕ \( \frac{\overline{HD}}{\overline{DE}} \) ✕ \( \frac{r}{1} \) =1,則 \( \frac{\overline{HD}}{\overline{DE}} \) = \( \frac{l}{br} \)

又因為圖三中, \( \overline{IH} \) // \( \overline{EG} \) ,所以 \( \frac{l}{br} \) = \( \frac{\overline{HD}}{\overline{DE}} \) =  \( \frac{\overline{DI}}{\overline{DG}} \) = \( \frac{d}{\overline{DG}} \)  \( \Rightarrow \)  \( \overline{DG} \) = \( \frac{bdr}{l} \)

-----廣告,請繼續往下閱讀-----

\( \overline{IG} \) = \( \overline{DG} \) – \( \overline{DI} \) = \( \frac{bdr}{l} \) -d

因為 ΔEFG ≈ ΔJFI,所以  \( \frac{\overline{IF}}{\overline{FG}} \) =  \( \frac{\overline{FJ}}{\overline{EF}} \) =  \( \frac{1}{r} \) ;可推得:

\( \overline{IF} \) = \( \frac{1}{(1+r)} \) ✕ \( \overline{IG} \) = \( \frac{1}{(1+r)} \) ✕  \( \left ( \frac{bdr}{l}-d \right ) \)

因此,若相機傾斜的斜率為 m,則

-----廣告,請繼續往下閱讀-----

 \( m=\frac{\overline{IJ}}{\overline{IF}}=\frac{b}{\frac{1}{(1+r)}\left ( \frac{bdr}{l}-d \right )}=\frac{(1+r)lb}{rbd-ld} \)

從這個公式可知,我們只要知道以下數據,代入公式之中即可算出相機的斜率:

若圖中 \( \overline{AJ} \) 的斜率與 \( \overline{CH} \) (原文使用的是雙箭頭線段符號,但公式表中找不到,所以就先以線段符號代替)的斜率分別令成 mb ml ,則相機傾斜的斜率公式可用斜率簡化表示為

 \( m=\frac{(1+r)m_{b}m_{l}}{rm_{b}+m_{l}} \)

我們根據此公式進行以下實作。 

拍攝工具為 iPhone 手機,被拍攝同學的身體數據如下表一: 

-----廣告,請繼續往下閱讀-----

我們設定畫面高度與人物身高的比例黃金比例(約為 1:0.618),而由〈物距計算器〉網站,可算出此畫面下的拍攝距離為 144.7 公分。並且,我們希望拍攝出的身長與腿長也是黃金比 例,即  \( r=\frac{1}{0.618}=1.618 \)。

由表一,因為 mb = -身高 / 物距 =  \( \frac{-67.5}{144.7} \),ml = 腿長 / 物距 =  \( \frac{95.5}{144.7} \),所以帶入公式可得:

\( m=\frac{(1+1.618)\times \left ( \frac{-67.5}{144.7} \right )\times \left ( \frac{95.5}{144.7} \right )}{1.618\times \left ( \frac{-67.5}{144.7} \right )+\left ( \frac{95.5}{144.7} \right )}\approx 8.538 \)

因此,拍攝時手機傾斜的斜率約為 8.538,換算成角度: 

\( 8.538=tan\theta \Rightarrow tan^{-1}(8.538)\approx 83.3^{\circ} \)

所以手機在拍攝這位同學時應該要傾斜 83.3°。

下圖是手機傾斜前後拍照出來的照片效果對比: 

從右圖看得出來,照片中的腿部確實有拉長的效果,其比例為 1 : 1.84,但並非是當初我們給 定的黃金比例。這個原因是來自於 iPhone 手機鏡頭視角的限制,當手機傾斜時,放在腰部的高度,被拍者會無法全身入鏡。所以,我們將手機高度降低至能夠完全拍攝到整個人,因而導致加大拉長效果。

因此,我們建議在拍攝時,若需要降低手機高度,則手機與地面夾角,要比原計算出來的角度更接近 90° 一點。 

接下來,我們利用研究的結果去計算,各個年齡層與性別的人在拍照時,身長與腿長在照片中要呈現黃金比例,手機適當的傾斜角度分別為幾度。

下圖五,是內政部〈建築使用行為與本土人因工程關連性研究〉指出的 19 項人體計測尺寸中的部份數據;而下圖六,則是將圖表的數據進行以下的計算,去推論一般人平均的身長與腿長。

  • 膝蓋高度 − 膝膕高度 = 大腿厚度 
  • 坐高 − 大腿厚度 = 身長(頭頂到肚臍) 
  • 身高 − 身長 = 腿長 

把各個年齡層與性別的平均身長與腿長整理成下表二。最後,我們各別將數據代入公式計算得出,不同人在拍照時,手機的傾斜角度,如下表三所示。 

表格三中,65 歲以上的民眾要拍出黃金比例的手機角度比較垂直,是因為數據的統計有將駝背也考慮進去,導致統計出的結果,相對其它年齡層來說腿的比例較長。但普遍來說, 在未滿 65 歲的各個年齡層拍照時,手機傾斜角度分布在 65 ~ 70° 之間。

然而,考慮到手機傾斜時又要全身入鏡,需要降低手機拍攝的高度,會更加拉大腿長的比例,因此,一般人在拍照時,若想讓身長比腿長接近黃金比例的話,我們建議:

手機與地面的夾角以「70°」為最佳。

服飾業內不能說的秘密,全身鏡傾斜 80° 的原因!

在前文中,我們想探討第二個問題,是服飾店的全身鏡為什麼都與地面夾 80°。其斜置的原因,明顯是要讓腿看起比較長,但為何不用其它的角度而恰好是 80° 呢? 

斜鏡面會產生仰視效果,讓人感覺鏡中的人像向後仰,使腿的視覺效果變長。事實上, 長腿效果與我們研究的主題一致,同樣是實物(鏡中後仰的人像)與成像平面(視網膜)不平行,因此後仰角度與視覺比例的關係,符合前文推論的公式。

如下圖七所示,全身鏡傾斜 80° 後,由於鏡子和直立的人夾角 為 10°,因為鏡射原理,鏡子和像的夾角也為為10°, 所以像會傾斜 70°,且 ∠ACD = ∠AOB = 10° 。

實際到店家測量全身鏡前的走道寬度,約為 78 公分。也就是一般民眾會站在距離約 78 公分的位置使用全身鏡,即 \( \overline{DE} \) = 78,則 

78+ \( \overline{EC} \) = \( \overline{DC} \) = \( \overline{AC} \) cos(10º)

 \( \Rightarrow \) 78+ \( \overline{EC} \) = 2 \( \overline{BC} \) cos(10º)

 \( \Rightarrow \) 78+ \( \overline{EC} \) = 2 \( \overline{EC} \) cos(10º)

因此,可以算出 \( \overline{EC}=\frac{78}{2cos^{2}(10^{\circ})-1}\approx 83 \)

所以當我們照鏡子時,眼睛與成像的距離為 78+83=161 公分。若成年女性(平均身長 75.6 公分、 腿長 81.8 公分)使用服飾店的全身鏡時,看到鏡中自己的比例(腿長 / 身長)為 r,則

 \( \frac{(1+r)\times \left ( -\frac{75.6}{161} \right )\times \left ( \frac{81.8}{161} \right )}{r\times \left ( -\frac{75.6}{161} \right )+\left ( \frac{81.8}{161} \right )}=tan(70^{\circ})\approx 2.747 \)

 \( \Rightarrow \) r ✕ [(-0.4696) ✕ 0.5081+2.747 ✕ 0.4696] = 0.4696 ✕ 0.5081 + 2.747 ✕ 0.5081

 \( \Rightarrow r=\frac{0.4696\times 0.5081 + 2.747\times 0.5081}{ [(-0.4696)\times 0.5081+2.747\times 0.4696] }=\frac{1.63435446}{1.0.5138744}\approx 1.565 \)

這個結果非常接近黃金比例。

用其它年齡層與性別的數據去計算,也可得到 r ≈ 1.618 ± 0.05

因此,我們發現服飾店會在店內全身鏡會斜置 80° 的原因,很可能是因為要讓顧客認為穿上自家的衣服後,會讓比例接近於黃金比例,以提升購買慾望。

結合我們計算的數據和實作的結果,可以得出一些結論:大多數的人拍攝時,如果想要拍出身體的比例接近黃金比例,手機需要傾斜的角度大約為 65° ~ 70°。若將傾斜時,可能會把手機高度降低的因素考慮進去,則是以 70° 為最佳角度。

下次拍照時,不妨也將手機傾斜成 70°,或許會有意想不到的效果!

參考資料

所有討論 1
數感實驗室_96
60 篇文章 ・ 40 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/