0

1
2

文字

分享

0
1
2

【2012諾貝爾化學獎】藥物開發新突破:「G-蛋白偶聯受體」功能研究

諾貝爾化學獎譯文_96
・2022/01/13 ・5339字 ・閱讀時間約 11 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文轉載自諾貝爾化學獎專題系列,原文為《【2012諾貝爾化學獎】細胞與感知

  • 譯者/蔡蘊明|台大化學系名譽教授
  • 譯者/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。
  • 譯者/陳竹亭|台大化學系教授

細胞與感知(Cell and Senses)

我們眼、鼻及口中的感官擁有對光、嗅或味的感測器。在人體內,細胞具有類似的感測器來探知荷爾蒙以及各種訊號物質,常知的有腎上腺素(adrenalin)、血清素(serotonin)、組織胺(histamine)與多巴胺(dopamine)。當生命在演化時,細胞不斷的利用同樣的基本機制來讀取它們的環境:但是負責感測的主角——G-蛋白偶聯受體(G-protein coupled receptors)多年來卻隱藏在研究者未知之處。

如果你工作到很晚,月亮已高懸夜空,你正從偏僻的公車站走回家。你突然聽見後方傳來的腳步聲,聲音快速的迫近。「沒什麼好擔心的。」你告訴自己:「不過是另一個被操到太晚的員工罷了。」但是,一種毛骨悚然的感覺油然而升,有人似乎迫近到了你身後…

你立刻拔腿向家門狂奔,打開前門的鎖時,你整個身體都在顫抖,心在狂跳,而且不斷大力的喘息。

當你的眼睛瞥到迫近的黑影時,整個身體已經轉換到逃跑的模式(圖1)。腦部傳來的神經訊號傳給了身體一個初步的警訊。腦下腺將激素(或稱荷爾蒙)釋放到血流中,被喚醒的腎上腺開始湧出皮質醇(cortisol,或稱可體松)、腎上腺素以及去甲基腎上腺素(noradrenalin,又稱正腎上腺素)。這些物質發布了第二次的警告:應該是拔腳而逃的時機了!脂肪細胞、肌肉細胞、肝、心臟、肺以及血管全部立即反應,血管內湧入了糖與脂肪,氣管擴張,心跳加快 — 這些都可讓你的肌肉獲得能量與氧氣,目標在使你跑得愈快愈好,以便救命。

一個人的體內,有數十億計的細胞相互作用,它們大部分各自發展出了不同的角色。有些儲存脂肪,有些產生視覺,又有的產生激素或製造肌肉組織…。為了能讓身體適當運作,非常重要的是細胞必須和協運作。要能感知環境,而且認知道周遭發生的事情,身體就需要感知器。

位於細胞表面的感知器稱為受體(receptors),美國杜克大學(Duke University)的羅伯雷柯維茲(Robert J. Lefkowitz)與史丹福大學的布萊恩柯比卡 Brian K. Kobilka 二人因為釐清了一類被稱為 G-蛋白偶聯受體家族(簡稱GPCRs)的物質及其在體內的運作,共享今年(2012)諾貝爾化學獎的桂冠。在這個龐大的生化物質家族中,包括了腎上腺素、多巴胺、血清素、光線、口味與嗅覺等…的受體物質。許多的生理作用大都與 GPCRs 有關,大約有一半的藥物例如 b-阻斷劑、抗組織胺以及各種精神藥物等,是透過 GPCRs 受體物質發揮作用。

了解 GPCRs 生化運作的知識會大大的造福人類,不過這些受體卻在科學家的眼下藏匿了很久。

那個受體:一個隱藏的謎團

十九世紀末期,科學家們開始實驗腎上腺素對人體的影響時,就發現它會使心跳加速、血壓升高、以及瞳孔舒張。由於他們懷疑腎上腺素是透過體內的神經來運作,就癱瘓動物來實驗。然而,腎上腺素的作用仍然可以表現。他們當時的結論是:細胞一定具有某種受體,能在其環境中感知一些化學物質——可能是激素、毒物或藥物。

但是當研究人員企圖找尋那些受體時,他們卻撞了壁。科學家希望瞭解受體的長像以及它們如何輸送訊號給細胞。當腎上腺素施加於細胞的外側時,會導致細胞內部的代謝發生變化。每一個細胞都有一面外膜壁:就是一層脂肪分子膜將細胞物質與環境區隔。到底訊號是如何穿透這面膜壁的?細胞的內部如何知道外面發生了什麼事?

有數十年,一直無法找到這些受體。即便如此,科學家們仍發展出了一些藥物能專一的針對這一類受體中的特定類型發揮效果。在 1940 年代,美國科學家雷蒙阿爾奎斯特(Raymond Ahlquist)檢驗不同的組織對各種腎上腺素類似的物質如何反應,得到一個結論:一定有兩種不同的腎上腺素受體存在。一種主要讓血管平滑肌細胞收縮,而另一種主要刺激心臟。他稱這兩種受體為 a 和 b。很快的,科學家們發展出了第一個 b-阻斷劑,那正是我們現在最常使用的心臟藥物之一。

這種藥物毫無疑問的是在細胞內發生作用,但是它們是如何做到的卻一直成謎。我們現在知道為什麼這些受體是如此難以發現。因為它們的數量很少,而且大部分被包夾在細胞膜內。又經過了幾十年,甚至於阿爾奎斯特都開始覺得迷失在自己提出的兩個 a、b 受體理論之中時,他如此記載:「對我而言,它們像一種抽象概念。是假想出來解釋組織受到不同結構的化學物質刺激時,所觀察到的生理反應」。

就這 1960 年代末尾之時,今年的諾貝爾化學獎得主之一,雷柯維茲走進了這些受體的歷史。

將受體誘出它們的藏匿處

這位年輕的頂尖學生立下了要成為一位心臟病科醫師的目標,不過他在越戰高峰時期畢業,在美國公衛醫療服務體系的一個國家研究機構服役,那就是美國國家衛生研究院。在那裡他所面對的挑戰就是:找出那些受體。

雷柯維茲的主管已經有一個研究策略,他建議將具有輻射性的碘接在一個激素上。當這個激素結合到一個細胞表面時,碘的輻射線就可以用來追蹤受體。為了進一步的強化他的論點,雷柯維茲必須證明當這個激素結合在細胞膜壁時,真的會引發細胞內會產生的已知作用。如果能成功展示,就沒有人會質疑他真的發現了一個具有生物活性的受體。

雷柯維茲開始研究促進腎上腺皮質的激素,它會刺激腎上腺分泌腎上腺素。然而所有的實驗都失敗了。一年過去,仍然沒有任何進展。雷柯維茲打一開始並沒有對做研究那麼熱衷,現在卻已經開始喪失信心了,他雖然仍持續研究,但同時也夢想著成為一個醫生。

這個計畫進入了第二年,雷柯維茲終於有了進展。在 1970年,他在兩個聲譽卓著的期刊,國家科學院會報(Prceedings of the National Academy of Sciences,PNAS)與科學(Science)發表了幾篇重要論文,他描述發現了一個有效受體。這項成就讓他感受到做研究的興奮,最後他被延攬至北卡羅來納州的杜克大學。他並非特別想去杜大,只是對方給的條件實在好得讓他無法拒絕。

在嶄新的實驗室裡,雷柯維茲組成自己的研究小組。雖然看起來他可能永遠無法成為一位心臟病科醫師了,但他仍然想要研究心臟的疾病。因此,他開始把焦點放在腎上腺素與去甲基腎上腺素的受體,它們被稱為腎上腺素激導性受體(adrenergic receptors)。利用輻射性標記的物質,包括了 b-阻斷劑。他的研究小組檢驗了這些受體如何運作,在精細的調整所使用的工具後,他們終於掌握了高超的技巧來取得一系列從生物組織中萃取得到的受體。

同時,有關細胞內部作用的知識不斷累積,研究者發現了他們稱之為 G-蛋白(1994年諾貝爾生理醫學獎)的物質。它會接到受體傳來的訊號而活化,接著 G-蛋白開啟一系列的反應,導致細胞代謝的改變。在 1980 年代初期,科學家們開始瞭解訊號從細胞外面傳遞到裡面的過程(圖2)。

基因:新看法的一個關鍵

在 1980 年代,雷柯維茲決定他的研究小組應該去尋找 b-阻斷劑受體的基因密碼,這項決定應可確定是今年諾貝爾化學獎獲獎的關鍵。一個基因就好像是個藍圖,它包含了一個密碼,能被細胞讀取,依照指示將許多胺基酸組合製成蛋白質,譬如製造一個蛋白質受體。他的想法是,如果研究小組能分離出負責的基因,並讀取 b-阻斷劑受體的藍圖,他們就可以得到該受體如何運作的線索。

差不多在同時,雷柯維茲錄用了一位年輕的醫師,布萊恩柯比卡。柯比卡對腎上腺素激導性受體之著迷,來自於醫院加護病房的經驗,一針腎上腺素可以決定病人的生與死。這個激素可以打開一個腫脹的呼吸系統,並加速心跳。柯比卡想要從腎上腺素的基礎結構細節來研究它的力量來源,也因此加入雷柯維茲的團隊。

柯比卡作了基因搜尋。然而,在 1980 年代想要在人體龐大的基因體內尋找一個特定基因,就好像在大海裡撈針一樣困難。這個在技術上高度挑戰的計畫因此進展得十分緩慢。不過柯比卡利用了一個很巧妙的想法,使得這個基因終於被分離出來。帶著高度的期待,這些研究者開始分析基因密碼。研究顯示受體具有七條長而且具油性(疏水性)的螺旋形帶子─稱為螺旋體(圖3),這暗示了科學家們,這個受體可能繞進和繞出細胞膜七次。

七次!這與在人體內其它地方已經找到的另一個受體,具有相同數目的帶子以及同樣的螺旋形狀。那就是眼睛視網膜上的視紫質(rhodopsin)光受體。這巧合孕育出一個新的想法:這兩種受體有無可能是相關的,雖然兩者的功能不同?

雷柯維茲後來描述那才是『真正的發現時刻』(real eureka moment)。他知道這兩種受體都會在細胞內側與 G-蛋白作用,他也知道約有 30 個其它的受體是透過 G-蛋白運作。結論是:一定有一個完整的受體家族,長相類似而且運作的方式相同!

因為這個突破性的發現,謎底一步步的被組合浮現出來。現在科學家們對於 GPCRs 已經具有詳盡的知識——它們如何運作,以及如何在分子的層次被調控。雷柯維茲與柯比卡一直站在這整個科學探索工作的最前線。去年,2011 年,柯比卡與其研究團隊報導了一項新發現,他們的工作終於讓他們戴上了桂冠。

腎上腺運作的顯像

成功的分離出基因後,柯比卡搬到了加州史丹福大學的藥學院,他在那裡開始研究如何取得一個受體的影像:大部分科學界的人認為是不可能的任務——而對柯比卡來說,那成為了一條漫長的旅途。

要將一個蛋白質顯像,牽涉到許多複雜的步驟,蛋白質小到無法用普通的電子顯微鏡來觀察,因此科學家們使用一種稱為 X-射線結晶學(X-ray crystallography)的方法,他們先培養出一顆蛋白質的晶體,其中蛋白質分子以整齊且具對稱性的模式整齊排列,就好像水分子在冰晶中,或是碳原子在鑽石中的排列一般。研究者用 X-射線照射這個蛋白質晶體,當射線打到蛋白質時發生繞射(diffraction),科學家們可從繞射的圖譜推導出蛋白質在分子層次的構造與排列。

歷史上第一個蛋白質晶體的結構圖像是在 1950 年代產生。從那時開始,科學家們已經利用 X-射線將上千的蛋白質顯像。不過它們大都是水溶性的,使得養晶較為容易。少有研究者能將位於油性細胞膜上的蛋白質單離顯像。在水裡,這類蛋白質就像油難溶於水,而且非常容易形成非晶性的油團。此外,GPCRs 天生游動性較高。(記得它們是藉著移動來傳遞訊號!)可是在晶體中,GPCRs 的分子又幾乎完全靜止,要讓它們單離結晶出來遂成為極大的挑戰。

柯比卡花了超過二十年的時間去找到這所有問題的解答,要感謝研究者的決心、創意和分子生物實驗的巧手,柯比卡與其研究團隊終於在 2011 年完成了最終目標:他們得到了一張圖像,顯示受體正在將來自於細胞外激素的訊號,傳到細胞內的 G-蛋白(圖3)。

這個圖像發表在「自然」期刊上,論文顯示了 GPCRs 新的細節。例如,當被活化的受體打開一個孔洞,準備與 G-蛋白在該處結合時的長像為何(圖4),這種資訊對未來發展新的藥物極為有用。

人類基因體的按圖索驥,暴露了約有一千個基因是 GPCRs 的密碼。大約一半的 GPCRs 受體接受氣味,並且是嗅覺系統的一部分。約三分之一是激素與訊號物質的受體,像是多巴胺、血清素,前列腺素、升糖素(glucagon)或組織胺。有一些受體可捕捉進入眼睛的光線,還有一些位於舌頭,給我們味覺。超過百種的受體仍然是科學家的挑戰,它們的功能仍然有待確認。

除了發現這些受體的各種變體,跟在雷柯維茲與柯比卡腳步之後的研究者發現它們具有多重功能。一個單一的受體也許可以辨識好幾種細胞外的激素。此外,它們在細胞內側不僅僅與 G-蛋白作用,它們也可與被稱為受體抑制(arrestins)的蛋白質作用。科學家開始認識到這類受體不見得一定與 G-蛋白偶合,導致科學家們開始稱呼它們為七跨膜蛋白質(7TM),因為它們具有七個螺旋形的帶子繞進繞出細胞膜。

這些受體的數目和靈活性,賦予細胞為了生命所需,經過精細調控程序而具備的調節能力。我們再回到一開始在公車站逃跑的場景,當血液湧入了腎上腺素,不同的組織會有不同的反應。流到消化器官的血液減少;同時,流到肌肉的血液增加。腎上腺素的不同效應,有賴於體內至少有九種不同的受體對此一激素發生反應。某些受體啟動細胞的活動,而另一些則具有鎮定的作用。

所以下一次你感到害怕時,回味一下美好食物的味道,或是單純的望向天際的星星,想一下你那與 G-蛋白偶合的受體。沒有它們,你的細胞將會相互衝突,混亂將控制你的身體。

參考資料

本文譯自諾貝爾化學獎委員會公佈給大眾的新聞稿,原文可自以下網站取得:
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2012/popular.html

文章難易度
諾貝爾化學獎譯文_96
15 篇文章 ・ 21 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

2
0

文字

分享

1
2
0
狗用來標記地盤,老鼠用來求偶,但人類很可能沒有?神奇的化學分子費洛蒙——《完美歐姆蛋的化學》
日出出版
・2023/01/01 ・1841字 ・閱讀時間約 3 分鐘

可以傳染的「興奮感」:費洛蒙

費洛蒙是一種非常大的分子,會從動物體內散發出來並影響其他動物身體的行為。

這種物質當初是在 1959 年由德國生物化學家阿道夫.布特南特(Adolf Butenandt)發現, 這位科學家在二十年前就因為首次合成出性激素而獲得諾貝爾化學獎,說他是化學界的搖滾巨星都還不足以形容他的貢獻。

阿道夫.布特南特首次合成出性激素。圖/wikipedia

他的研究發現,費洛蒙的功能和激素一樣,但是只對附近的相同物種個體有效。

舉例來說,如果動物 A 在動物 B 附近釋放出性費洛蒙,動物 B 的身體會吸收這些分子,整體行為也會受到影響。這其實代表動物 A 具有像丘比特的能力,只不過用的不是箭,而是分子。

基於以上的原因,費洛蒙有時會被稱為「環境激素」(eco-hormone),因為這類分子的運作方式就像是體外的激素。

和激素相同的是,費洛蒙有各式各樣的結構。有些分子非常小,有些則相當大,不過全都是揮發性分子,這表示分子在特定條件下會輕易蒸發。揮發性物種通常很好辨識,因為會帶有強烈的氣味(像是汽油或去光水)。

汽油帶有強烈的氣味。圖/pixabay

研究人員決定把這種分子命名為費洛蒙(pheromone),是因為字面上的意思是「轉移興奮感」,而這正是費洛蒙的功能。

動物間的費洛蒙功用

強大的費洛蒙分子可以傳送幾種不同主題的訊號給附近的同類,例如食物、安全狀況或者性。舉例來說,螞蟻會在巢穴和食物之間的路徑散發費洛蒙,來通知彼此食物來源在哪裡。

狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。就連雄鼠也會散發出性相關的費洛蒙來吸引雌鼠,同時也會導致附近的雄鼠變得更有攻擊性。

狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。圖/pixabay

那麼人類呢?

人也會散發出任何一種類型的性費洛蒙嗎?

出乎意料的,人類不會散發任何一種形式的性費洛蒙。不過我們自以為有費洛蒙的原因在這裡:1986年,溫尼弗雷德.卡特勒(Winnifred Cutler)發表的研究宣稱,她成功分離出第一種人類性費洛蒙。

在這項研究計畫中,她蒐集、冷凍並解凍來自幾位不同對象的性費洛蒙。一年之後,她將這些分子塗在許多女性受試者的上唇,接著便宣稱她觀察到和大自然的動物類似的結果。

事實上,卡特勒的研究完全是一派胡言。她根本沒有分離出人類性費洛蒙;而只是把奇怪的氣味塗在隨機受試對象的上唇,其中包括——請做好心理準備——腋下的汗水。

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。圖/pixabay

直到今天,卡特勒的噁心科學研究還流傳在網路上的各個角落,這表示如果有人在 Google 上搜尋「人類性費洛蒙」,就會和得到一堆錯誤資訊。有些研究人員堅信我們總有一天會發現性費洛蒙,不過在這本書出版的當下,科學界尚未找到任何人類性費洛蒙。

一直以來有不少相關研究在執行和重複進行,也盡可能針對各種變數進行調整,而所有的研究團隊都得出相同的結論:二十一世紀的人類大概沒有性費洛蒙。

但人類有史以來就是這樣嗎?如果大多數的其他哺乳類都有性費洛蒙,包括兔子和山羊,為什麼我們沒有?

答案其實意外簡單:人類學會了溝通。

我們可以用語言(和蠟燭……還有性感內衣……)告訴伴侶我們有興趣滾床單,而雪貂則必須往理想交配對象的方向散發性分子。

——本文摘自《完美歐姆蛋的化學》,2022 年 12 月,日出出版出版,未經同意請勿轉載。

所有討論 1

0

3
1

文字

分享

0
3
1
催產素可以幫你神助攻嗎?化學分子幫助你們之間的感情更緊密——《完美歐姆蛋的化學》
日出出版
・2022/12/31 ・1888字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

催產素:讓你產生「愛」的感覺

2003 年,瑞典醫師克絲汀.烏納斯.莫柏格(Kerstin Uvnäs Moberg)出版了《催產素因子》(The Oxytocin Factor,暫譯),她在書中指出,催產素對人體的影響,正好和戰或逃(fight-or-flight)反應相反。

催產素不會讓我們感到厭倦和對陌生人警戒,而是會讓我們感到安全和信任。

莫柏格的理論是基於一些針對動物進行的研究,例如老鼠和田鼠(看起來很像可愛的倉鼠)。她發現如果在田鼠靠近目標配偶的時候對田鼠注射催產素,就可以操控田鼠選擇特定的配偶。

以人類來說,大多數的證據都可以佐證催產素會大幅影響人如何與彼此(甚至和動物)產生連結。例如,當我們撫摸狗的時候,科學家可以觀察到催產素濃度明顯上升,尤其是面對動物寶寶的時候,例如可愛的小狗爬到你腿上窩著。

當我們撫摸狗的時候,科學家可以觀察到催產素濃度明顯上升。圖/pexels

想當然,新手媽媽抱著寶寶時,也同樣會出現催產素濃度上升的現象。從化學的角度來看,媽媽的愛多到一湧而出,以致於她體內的催產素飄升到驚人的程度,愛情分子可不是浪得虛名。

有感情後,催產素濃度會快速上升

研究人員也注意到,當成人對彼此有感情,催產素濃度會快速上升。以女性來說,催產素分子濃度會在前戲的時候開始升高。

有證據顯示,通常如果性行為過程比較長,人會覺得與伴侶比較有連結,即使真正的交合還沒開始。從化學的角度看來,這是因為有更多催產素分子從人體內湧出。

當人對彼此有感覺時,催產素濃度會快速上升。圖/pexels

女性在高潮之後,會馬上迎來第二次的催產素高峰。從生理的角度分析,這是為了讓我們可以與伴侶形成穩固的連結,以應對懷孕的狀況。女性的身體是出於直覺而且無意識地有這樣的行為,目的是協助鞏固兩人之間的連結。

相對地,男性不會迎來第二次催產素高峰,而是在各式各樣的性興奮過程中,都會大致呈現催產素升高的狀態,最後在高潮過後回復穩定。

研究人員認為男性沒有第二次催產素高峰,是因為從生理的角度而言,男性沒有與伴侶形成穩固連結的理由,畢竟他們不會懷孕。

愛情激素實驗:催產素對人體的影響

我最喜歡的愛情激素實驗之一,是以一大群處於一對一關係中的異性戀男性為實驗對象。研究人員會用醫療鼻腔噴霧把催產素噴入這些男性的鼻子,然後再向他們介紹一位極有魅力的陌生女性。

研究人員會先請實驗中的男性等待幾分鐘,這是為了讓催產素可以確實與催產素受器形成鍵。(別忘了催產素是大型肽分子,所以需要一點時間才能抵達目標位置,並且與受器結合。)當研究人員確信鍵已經形成,就可以開始實驗了。

首先他們一次介紹一位男性給那位美麗的女性認識,接著觀察雙方所站的位置有多靠近。

在實驗中,研究員會觀察雙方所站的位置有多靠近。圖/pexels

針對這些處於一對一關係的男性蒐集資料之後,研究人員又找來一群單身男性。他們再次執行催產素鼻腔噴霧的實驗,然後——讓這些單身男子接受觀測。

和先前一樣,研究人員測量了男性和陌生美人之間的物理距離,想知道是否有辦法確認催產素分子對人體的影響。

研究人員發現整體而言,比起單身男性,非單身男性與美麗女性之間的距離至少多出了十到十五公分。當然,實驗難免會有離群值,不過這項研究(尤其)顯示出,男性體內的催產素會使得伴侶之間的連結明顯更穩固。

所以,下次你老公要去單身派對之前,記得往他鼻子噴一點催產素,再給他一個大大的吻,然後其他的就交給化學吧。

這項研究顯示出,男性體內的催產素會使得伴侶之間的連結明顯更穩固。圖/pexels

——本文摘自《完美歐姆蛋的化學》,2022 年 12 月,日出出版出版,未經同意請勿轉載。