0

1
1

文字

分享

0
1
1

Gogoro的馬達有比較特別嗎?–馬達技術解密

PanSci_96
・2015/10/18 ・2434字 ・閱讀時間約 5 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

source:William Li
source:William Li

「電動車」使用者一直跟行動不便的身障者、從菜市場滿載而歸的老人,或在觀光景點悠閒環湖的遊客劃上等號,只是現在,這種刻版印象應該要改觀了!

有鑑於其緩慢的速度,電動車長期被框架在既定使用模式下,但就在今年夏天,出現了一台不同於以往、甚至可以說是直攻痛處的智慧型電動車-Gogoro。究竟它是如何破解「魔咒」?這台挑戰限制的前驅者,其創新便是來自於它動能的靈魂──馬達:

馬達(又稱為電動機)是一種將電能轉化成機械能、再以機械能產生動能來驅動裝置的電氣設備。那馬達是如何運轉的呢?這要來談談「電」與「磁」之間的微妙關係,如果將指北針放在導線附近並通上電,就會觀察到指針有明顯的偏轉現象,這表示當導線中有電流通過時,其周圍會產生磁場(指受磁力所影響的場域範圍)。當通電的導線放置於以固定磁鐵產生的磁場內時,利用電流磁效應可使導線移動,若電流方向不變就會產生連續的轉動,因而產生動能。透過下圖的示意圖可以理解如何從磁場和電流方向,利用「右手開掌定則」來判斷受力方向。

未命名

知道馬達如何轉動後,該如何讓它的動力提高呢?這取決於「電磁鐵」磁場的強度,那電磁鐵又是什麼?電磁鐵便是以通電來產生磁力的裝置,從「右手安培定則」可以知道,當直流電通過螺旋狀的導體時會產生具有方向性的磁場,若在螺旋線圈中加入磁性物質(如鐵芯),此磁性物質便會被磁化且達到加強磁場的效果。一般來說,磁場的強度和電流大小、線圈匝數和磁性物質的材質有關,電流越強、線圈匝數越多,磁場就會越強,動力也會提高。

-----廣告,請繼續往下閱讀-----

未命名

未命名

和一般市面上現有的電動車相較,Gogoro 的馬達產生的動力較高,但體積卻相較小上許多,這顛覆了以往馬達「越大越有力」的想法,其原因就在於它的獨門銅線纏繞技術。為了解密其中的技術,泛科學專訪了 Gogoro 研究團隊,團隊表示 Gogoro 的馬達原以電腦先行模擬、運算出銅線編織結構,再請經驗老道的師傅手工纏繞,但以普通方法並無法在預期的體積內完成此纏繞模式,「這不是科學上的創新,而是技術上的挑戰。」Gogoro 產品管理經理王光祖語帶堅定的說Gogoro 研發團隊將整顆馬達模組化、切割成 12 等分,並在每等分上以自動化技術用更密集的方式堆疊銅線,「就像小時候玩四驅車一樣,要想辦法在一顆馬達上繞上越多銅線越好。」再以串接技術連接起所有銅線,組裝、固定成完整的馬達。

未命名

馬達在產生動能的過程中也會產生熱能,這時候冷卻系統就很重要了,冷卻系統能夠幫助動力系統在運作過程中達到熱平衡,不讓零件因過熱而損耗,尤其 Gogoro 在馬達體積縮小、維持高功率情況下,會達到發熱密度Gogoro 採用高效率的水冷系統,藉由冷卻液在水流道中循環帶走熱能,再經由散熱器的鰭片和外界的空氣進行熱能交換,以維持冷卻液的溫度。比起傳統水冷系統,這款水冷系統以模組化設計的散熱器配合車體空氣流道,來取代耗電的風扇與過長的水管,讓體積變小、質量更輕,不但提高整體的能源使用效率、導風效果更好,精簡零件避免了維修的風險,模組化設計也易於拆解、清洗。

未命名

除了動力系統本身以外,傳動系統和懸吊系統的配合也會影響馬達的功率輸出。比起需要維持扭力輸出而使變速系統損耗較大的汽油引擎,電動車的馬達只需要通電就能全扭力運轉,而 Gogoro 更是使用了輕量、高張力的碳纖維複合材質傳動皮帶,以及體積小、動力輸出平穩、效率更高的行星齒輪作為減速裝置。且不同於一般電動車將馬達置於後輪附近以利於驅動,Gogoro 則是將馬達置於車架中間,使後輪在行駛過程中所產生的跳動不會影響馬達構造,維持良好的壽命表現。

未命名

根據截自今年8月的統計,台灣的機車數量是約1,400萬輛左右,其中電動車約有3萬輛;每年各家機車廠商賣出約80萬輛燃油機車,電動機車卻不到9千輛。台灣交通環境下,一般人通勤還是以成本和功能為選擇考量,然而 Gogoro 不以車商角度自居,以自行開發設計、台灣製造和智慧化系統為賣點進軍電動機車市場。Gogoro 特製馬達的確給了電動機車彪悍的能耐,但是否能夠帶著 Gogoro 衝破現在環境、價格和使用習慣等挑戰,甚至往「行動能源」、「大數據」等願景前進,是值得關注的下一步。

-----廣告,請繼續往下閱讀-----
source:William Li
source:William Li

參考資料:

 

文章難易度
PanSci_96
1209 篇文章 ・ 1916 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
4 篇文章 ・ 2 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

4
1

文字

分享

0
4
1
越南車廠將撼動特斯拉電動車地位!?誰能在電池戰中獲勝?
PanSci_96
・2023/02/26 ・2723字 ・閱讀時間約 5 分鐘

2022 年 12 月,來自越南的 999 台 VinFast VF 8 City 型智慧電動車乘坐貨輪抵達抵舊金山貝尼西亞港,敲開特斯拉的電動車帝國大門。

除了吹響這次的電動車戰爭號角的 VinFast,眾多車廠像是通用汽車(General Motors)或是來自中國的比亞迪等,都拿起籌碼坐上桌,準備要搶攻這塊市場。而大家手上握的籌碼,就是自家生產的電池。

氫與鋰,都幾?

在電動車產業中,要掌握電動車,就得先掌握好電池。光是電池就佔了整台車 35~40% 的成本,選擇不同種類的電池,更會影響到續行里程、充電效率和安全性。而目前電動車所使用的均為「鋰離子電池」。

大家是否還記得,在十幾年前,與電動車角逐未來「環保車」位置的,還有氫能車。

-----廣告,請繼續往下閱讀-----

氫與鋰的競爭勢必發生,它們排在元素週期表最前面,原子序最小的一、三名。鋰的密度甚至僅有每立方公分 0.534 克,比水還要輕,代表在相同的重量下,可以放入更多的原子,攜帶更多的電量,這正是我們最需要的。由於氫氣的分子量小,在燃料電池中的能量轉換效率也不錯,因此「理論上」氫燃料電池的能量密度是鋰離子電池的 150 倍。

只是,就現在技術成熟度來說,明顯是鋰離子電池獲勝,不論是手機、電動車還是大型儲電設備,到處都見得到鋰離子電池的身影。

手機也是使用鋰離子電池。圖/Envato Elements

鋰離子電池

1970 年代,英國化學家惠廷翰(M. Stanley Whittingham)發明了第一個可以充放電的鋰離子電池,其單位重量的儲電效率遠超過當時的鉛蓄電池與鎳鎘電池。在電池中,金屬鋰會在負極丟下電子,以鋰離子的狀態移動到正極,並被特殊設計的二硫化鈦夾層捕捉,電路中的電子則會從負極流往正極,完成電路循環。

不過當時負極所使用的是純金屬鋰,因此,在電池充電、鋰離子會回到負極再結晶成金屬鋰的過程中,會容易形成如同鐘乳石般的晶鬚(Lithium Dendrite),當晶鬚因為反覆充放電變的更長,甚至會戳破電池的保護層,導致短路爆炸。

-----廣告,請繼續往下閱讀-----

好在後來美國的古迪納夫(John B. Goodenough)與日本的吉野彰(Akira Yoshino),分別將正極材料換成了鋰鈷氧化物,負極換成可以捕捉鋰離子的碳材料;整顆電池不再有純金屬鋰,只有鋰離子在電解液中移動,確保了安全性,讓鋰離子電池得以商業化。

而這孕育出鋰離子電池的這三位科學家惠廷翰、古迪納夫以及吉野彰,在 2019 年抱回諾貝爾化學獎,實至名歸。

2019 年諾貝爾化學獎,頒給了孕育出鋰離子電池的三位科學家。圖/The Nobel Prize

電池的負極在吉野彰將負極換成石墨烯等碳材料後,至今沒有太大的變化,鋰離子電池最主要的改良還是圍繞在正極材料的改變上,我們習慣將不同的鋰離子電池依照它的正極材料來命名,例如:將鋰離子電池的正極改為鋰鈷氧化物,則稱為鈷酸鋰電池。電池發展到現在,陸續登上舞台的還有磷酸鐵鋰電池、磷酸鋰錳鐵電池、鋰鎳鈷鋁電池、鋰鎳錳鈷電池等。

哪個才是最強的電池

「三元電池」是目前市面上可量產的產品中、能量密度最高的電池,也是現在電動車的電池首選。「三元」指的是正極材料中除了鋰以外,加進了鎳、鈷、錳三種元素,具有高容量、低成本的巨大優勢。

-----廣告,請繼續往下閱讀-----

除此之外,材料學家發現,如果提高鎳含量,可再進一步提升單位體積的電容量。許多車廠推出的高鎳電池,其鎳含量甚至高達 80 至 90%。這種高鎳三元電池的電容量可以高達每公斤 280~300瓦時(280~300 Wh/kg),相較之下,馬斯克最愛的「磷酸鐵鋰電池」每公斤只有 140~150 瓦時(140~150 Wh/kg),僅三元電池電容量的一半。

那為什麼電動車龍頭特斯拉反而選擇了磷酸鐵鋰電池呢?就是成本考量。

磷酸鐵鋰的成分除了鋰以外,只需要常見的鐵跟磷,完全移除了昂貴的稀有金屬鎳跟鈷,在俄烏戰爭爆發之初,由於俄羅斯是鎳的生產大國,導致鎳的價格在一個月內暴漲了 250%,大大增加了高鎳三元電池的成本負擔。

另外,相對三元電池,磷酸鐵鋰電池不僅成本低,安全性也較高。

-----廣告,請繼續往下閱讀-----

除了特斯拉,在 2022 年電動車銷售數量超越特斯拉的中國車廠比亞迪也很愛!比亞迪自行研發的「刀片電池」用的就是磷酸鐵鋰電池,並且透過物理結構的改良,在不過多改變材料的情況下,增加相同體積中的電容量。

特斯拉電動車用的是磷酸鐵鋰電池。圖/Wikipedia

次世代電池,Taiwan can help?

科學家預估,鋰離子電池的物理極限大約就在每公斤 300 瓦時,三元電池也差不多摸到這條線了。而這個結果離「完美」絕對還有很大一段距離,因為汽油的能量密度可是每公斤一萬兩千瓦時,鋰離子電池的 40 倍!

先別失望!隨著科技進步,鋰離子電池也將進入次世代。2022 年 3 月,Gogoro 與台灣電池廠商輝能科技共同發表,將在 2024 年導入固態鋰電池,用固態電解質來取代傳統鋰電池中的液態電解液。藉此不僅重量僅有鋰電池的一半,去掉液態成分後更大幅減少漏液、燃燒的風險;更重要的是,固態電池的能量密度上看每公斤 500 瓦時,是三元鋰電池的兩倍,車主們就可以少換幾次電池。

想開電動車的車迷也可以期待,除了 Gogoro 以外,輝能科技也宣布結盟 VinFast,可望在電動車市場上掀起一波固態電池車風潮。

-----廣告,請繼續往下閱讀-----

這邊有個更好的消息,超越固態電池,能量密度可以逼近汽油的「空氣鋰電池」已經在研發路上。空氣電池的負極使用鋰金屬,正極則替換為氧氣或二氧化碳,成為鋰氧氣電池(Li–O2 Battery),或是鋰二氧化碳電池(Li–CO2 Battery);用氣體取代了原先沉重的金屬正極,大大提高了相同重量的電容量。

雖然空氣電池仍在研發,一樣需面對負極沉積時產生的晶鬚、安全等問題;但至少在過去 20 年,鋰電池遇到的困難已經多次被解決,電化學儲能的方式大有可為。

電動車的發展持續受到關注。圖/Envato Elements

不論是市場上電動車的銷量年年攀升,還是各國政府、車廠的全力投入,電動車主導汽車市場的未來已經清楚可見。未來會不會出現顛覆市場的電池、電動車,甚至是全新型態的交通工具,都令人期待。而在工業製程與材料改革中,「電動車是否真的有比較環保」這個問題,也希望能有個解答。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1209 篇文章 ・ 1916 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

4

19
1

文字

分享

4
19
1
交流電發電機的勾勒起點,發明鬼才與他的大學生活——《被消失的科學神人‧特斯拉親筆自傳》
PanSci_96
・2020/12/12 ・2484字 ・閱讀時間約 5 分鐘 ・SR值 519 ・六年級

編按:尼古拉・特斯拉(Nikola Tesla)的父母原本一直希望他繼承衣缽、成為一位牧師,然而在他少年時期有次感染了霍亂,被醫生宣判可能回天乏術,特斯拉對父親說:「如果你同意讓我去唸工程科系,我也許會好起來。」於是後來特斯拉的父親為他安排進入奧地利史泰利亞邦 (Styria) 的格拉茲 (Graz) 理工學院就讀,這裡也是特斯拉構想交流電發電機的起點。

為不讓父親失望,一天只睡四小時

一年的身體調養期結束之後,我被父親送到奧地利史泰利亞邦 (Styria) 的格拉茲 (Graz) 理工學院就讀,他為我精挑細選了這所歷史悠久、聲譽卓著的大學。這是我期待已久的時刻,在充裕獎學金的資助下,開始我的大學學業,我下定決心一定要在課業上有傑出表現。拜父親的教導和諸多機會所賜,我的學習底子優於一般學生。

進入大學之前,我已經學會多國語言,也啃讀了不同圖書館的藏書,多多少少汲取了有用的資訊。另外,這是我第一次可以選擇喜歡的科系就讀,所以畫圖再也不會成為我的困擾。

我立志要給父母親一個驚喜,所以第一學年我每天從清晨三點一直讀到深夜十一點不間斷,連星期假日都不放鬆片刻。由於同學們抱著學而不思的鬆散學習態度,我的學業成績自然技壓群雄。第一年結束,我通過九科考試,教授們認為我的表現值得給予超越滿級分的嘉獎。

特斯拉在大學第一學年為了給父母親一張榮譽的成績單,拼命讀書。圖/Pexels

我帶著這張獲得褒揚的成績單回家,在短暫休息過後,我滿心期待著能贏得父親的稱讚,但是看到父親對於我拚了命博得的榮譽一點都不在意的時候,我深感受傷,這件事幾乎扼殺了我的鬥志和雄心。

-----廣告,請繼續往下閱讀-----

但是父親死後,我發現了一疊信件,全是學校教授寄來的,信上說除非父親把我帶離學校,否則我會因為用功過度而沒命,看完後,我悲痛難抑。

大量閱讀與討論,發明構想與科學原理的加成

此後,我全神貫注在物理學、力學和數學上,閒暇時間都泡在圖書館裡。我的習慣是只要開始做一件事情,一定會有始有終,因此常常給自己招來難題。

有一次,我開始閱讀伏爾泰 (Voltaire) 的著作,看到有將近一百卷用小字印刷的皇皇巨著正等待著我去讀,令我驚慌——這個怪物每天喝七十二杯黑咖啡支撐自己寫作!我下定決心一定要全部讀完,但當我放下最後一本伏爾泰的作品時,感到無比暢快,說:「結束了!」

特斯拉開始閱讀伏爾泰的著作後,便下定決心要讀完。圖/柿子文化

我第一年的表現贏得了教授們對我的欣賞,也與他們建立起情誼。包括了:羅格納教授,教授算術和幾何學;包施爾教授,教授理論及實驗物理學;奧勒博士,教授積分,專長在積分方程式,這位科學家的講課是我聽過最精彩的一位。奧勒博士特別關心我在學業上的進展,經常會在下課後留一、二個小時給我,出題讓我解答,我很樂意接受這樣的安排。

我跟他解釋我的飛行器構想,這項發明是建立在合理的科學原理上,不是天馬行空的幻想,我設計的渦輪機已經讓這部飛行器成真,很快就會展現在世人眼前。

-----廣告,請繼續往下閱讀-----

羅格納和包施爾兩位教授都是求知欲旺盛的學者:羅格納教授的自我表達方式很奇特,每次都會引起一陣騷動,然後是一段長長的沉默和尷尬;包施爾教授是一位有條不紊、絕對理智的德國人,他有和熊掌一樣巨大的雙手雙腳,但他的實驗都被精準無誤的執行,展現如鎖芯般精密的高超精準技巧,沒有一點閃失。

發現真理需要敏銳直覺與細心觀察

在校第二年,學校收到一部來自法國巴黎的格拉姆發電機 (Gramoe Dyname) ,它有一個馬蹄鐵狀的層壓式場磁鐵,以及一個裝有整流器的繞線電樞。通電之後,這部機器展現了各種不同的電流效應。

包施爾教授在示範時,把它當作馬達在操作,結果電刷出現故障,火花亂竄,我在一旁觀察發現:沒有這些裝置,馬達仍有可能運轉。

包施爾教授宣稱不可能,並且請我就這個主題上臺報告,他最後在做總結時如此說道:「特斯拉先生也許會有了不起的成就,但可以肯定的是他永遠不會去實踐這個構想。這麼做無異是改變一個穩定的拉力,猶如把重力轉變成旋轉力,這是一個永動機的概念,不可能成功。」

-----廣告,請繼續往下閱讀-----

但是,直覺超越知識,當邏輯推論或是其他想出來的方法都沒有用的時候,無疑的,我們大腦裡某些奇妙的神經纖維會驅策我們去發現真理。

有一段時間,我迫於教授的權威而猶疑不定,但是我很快就相信自己是對的,然後傾注所有熱情和年輕人的無窮信心,擁抱這個不可能的任務。

23 歲的尼古拉·特斯拉(Nikola Tesla),1879年。圖/STORE NORSKE LEKSIKON

首先,我在心中勾勒出一部直流電發電機,使之啟動運轉後,緊盯觀察電樞電流的變化。然後,我會另外想像一部交流電發電機,觀察在相同情況下其運作過程。接下來,我則勾畫想像馬達與發電機兩種系統,並用各種方式測試其運作情況。

我心眼所見的圖像對我而言是如此全然真實,具體可觸。我在格拉茲的理工學院的剩餘時光都在全心鑽研這個問題,直到離校前依舊毫無斬獲,我差一點就要舉白旗投降,宣判這個問題無解。

——本文摘自泛科學2020年12月選書《被消失的科學神人:特斯拉親筆自傳》,柿子文化,2019年01月。
所有討論 4
PanSci_96
1209 篇文章 ・ 1916 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。