1

21
2

文字

分享

1
21
2

要電子產品輕薄、方便攜帶?那就印在紙上吧!

活躍星系核_96
・2021/02/02 ・2351字 ・閱讀時間約 4 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

文/黃湘娟、劉若愉、蔡宜臻|國⽴臺灣⼤學物理學系電⼦學課程學生

嫌電路板太厚?把電⼦元件印在紙上

近年來,電⼦學領域在新材料與新製程上突⾶猛進,把許多過去無法想像的應⽤變 成可能,例如:穿戴式電⼦裝置、可彎曲且活動性佳的電⼦元件、體積極⼩的積體電路……等,因此對於電⼦元件基質的要求,也逐漸往重量輕易塑形厚度薄等⽅向發展。

⽽⼈類歷史上最古⽼的材料之⼀:紙,恰好完美地滿⾜以上條件!

紙張符合重量輕易塑形厚度薄的條件。圖/Pexels

以紙作為基質的電⼦產品,不但擁有優異的靈活性相對⼤的表⾯積—質量比,甚 至還有原料便宜且易取得、製作技術易掌握、製程中排放有毒物質少等優點,廢棄後的元件也容易進⾏回收處理,對環境更加友善。因此,在注重永續發展的今天,越來越多研究者開始投入紙基電⼦產品的開發。

然⽽要將複雜的電路印在薄且脆弱的紙上⼀點也不容易,若電路本身使⽤的材料過於厚重,不但對塗層技術是很⼤的挑戰,也很難製作出耐⽤的電⼦元件。於是科學家們便把腦筋動到了⼆⼗⼀世紀興起的新材料 ——⼆維材料上

-----廣告,請繼續往下閱讀-----

什麼是⼆維材料?

所謂的⼆維材料僅由⼀層原⼦或化合物組成,單層厚度通常⼩於數奈⽶,層與層之間只以非定向的凡德瓦⼒連結,相較於化學鍵與水分子間存在的氫鍵等都微弱得多,導致層與層間相對容易滑動、分離,因此又稱為凡德瓦材料。現今的⼆維材料,除了最早發現的⽯墨烯以外,還有其他多樣的族群,像是過渡⾦屬⼆硫族化物 (TMDs)、六⽅氮化硼、⿊磷等等。

⼆維材料不但僅有原⼦等級的厚度,也具有極⾼的柔軟度、可調控的電性,更特別的是,在過渡⾦屬⼆硫族化物 (TMDs) 中,可藉由改變組成、厚度與應⼒等調控能隙 (bandgap) 間距,因此,二維材料的可塑性與輕薄特性,讓他成為紙基電子元件塗料的不二人選。

現今⼆維材料的主要種類:六⽅氮化硼 (h-BN)、過渡⾦屬⼆硫族化物 (TMDs)、⽯墨烯 (graphene)、⿊磷 (BP)、過渡⾦屬碳氮化物 (MXenes) 等。圖/參考文獻 1

以紙為基質的二維電晶體,製造也是用印的嗎?

如果將電⼦元件以紙基型態⽣產,元件性能很容易被紙張易於潮濕的特性影響,再 加上紙張的耐熱度不佳,所以紙基電⼦元件⼀直很難以⼯業製程等級製造。

MoS2 是屬於過渡⾦屬⼆硫族化物 (TMDs) 的其中一種二維材料,作為場效電晶體有著良好的電學與光學表現,但經由溶液處理的 MoS2 場效電晶體的⽣產過程中,包含酸液洗滌以及 200°C 以上的退⽕處理,而前段提及的紙張特性,顯然無法承受這兩道製程。所以若想要將場效電晶體以紙基⽅式⽣產,勢必得另闢蹊徑。

-----廣告,請繼續往下閱讀-----

於是科學家們想出了⼀個新的⽅法:通道陣列 (Channel Array)。這個⽅法結合了 兩種已知的技術:化學氣相沉積 (CVD) 以及噴墨印刷

所謂化學氣相沉積技術,也就是指將兩種或兩種以上的氣態原物料導入到⼀個反應室內,使之產⽣化學反應,形成⼀種新的物料,並沉積到晶⽚表⾯上。透過化學氣相沉積,就可以⽣產出⾼品質的 MoS2 通道;⽽噴墨印刷使製作者在電路設計上擁有很⼤的⾃由度。通道陣列既不⽤經過酸液洗滌不需要⾼溫處理,顯然更適合應⽤在紙上。

以化學氣相沉積法製作 MoS2通道,並將通道轉移到紙上。圖/參考資料 2

⾸先,以化學氣相沉積技術在基板上⽣成 MoS2,然後⽤化學物質將 MoS2 蝕刻成條帶狀,接著將條帶狀 MoS2 轉移到紙張上,作為電晶體的通道。⽽電路所需要的其他元件,可以透過含有⼆維材料的墨⽔,以噴墨技術在已布置 MoS2 通道的紙上印刷。

研究結果指出,透過通道陣列⽅法製造出的紙基場效電晶體,與⼀般⽅法製作的場效電晶體有著不相上下,甚至更優秀的電⼦移動率,以及微乎其微的漏電和良好的電流開關比。而這些結果代表著,紙基場效電晶體對電流的調控能力相當出色

在紙張上⽤含有⼆維材料之墨⽔,以噴墨印刷技術列印電路元件。圖/參考資料 2

此外,科學家們設計了更複雜的電路,比如:數位和類比積體電路模塊、邏輯閘 以及電流鏡等,來測試通道陣列的應⽤廣度,而電路運作良好,顯⽰通道陣列對於多元應⽤的可⾏性。 

-----廣告,請繼續往下閱讀-----

更重要的是,化學氣相沉積以及噴墨印刷都適合⼤⾯積製造,所以將此兩種技術結合的通道陣列⽅法,有極⾼機會應⽤於⼯業製程。

紙基電子產品發展,讓生活更輕便環保

待未來技術成熟時,不論從類比電路到數位電路,下⼀代「紙上」電⼦產品上都具有巨⼤的潛⼒,不只在相關的科學與科技領域中⽴下⼀個新的⾥程碑,在友善環境上,更是有大幅的躍進。

總⽽⾔之,透過新的通道陣列技術,以及⼈們對環保的追求,以紙作為基質的電⼦產品,往後的⽇⼦將⼤放異彩,就讓我們拭⽬以待吧!

致謝

本⽂源⾃於國⽴臺灣⼤學物理學系電⼦學之課程報告,感謝朱⼠維教授與程暐瀅助教的建議與協助。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Dong, Z., Xu, H., Liang, F., Luo, C., Wang, C., Cao, Z.-Y., Chen, X.-J., Zhang, J., & Wu, X. (2018). Raman Characterization on Two-Dimensional Materials-Based Thermoelectricity. Molecules, 24(1), 88.
  2. Conti, S., Pimpolari, L., Calabrese, G. et al. Low-voltage 2D materials-based printed field effect transistors for integrated digital and analog electronics on paper. Nat Commun 11, 3566 (2020).
文章難易度
所有討論 1
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

1

1
1

文字

分享

1
1
1
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3446 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

52
3

文字

分享

0
52
3
耳背腦就鈍?解密聽力受損與失智的關係
雅文兒童聽語文教基金會_96
・2024/02/17 ・4232字 ・閱讀時間約 8 分鐘

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

阿明是位 65 歲的退休長者,總是積極參與各種社區活動,是熱心的志工。然而,近來他開始意識到自己在大型聚會中,必須使勁聆聽他人的話語,有時還是會錯過一些關鍵的內容,這使得他逐漸對大型活動感到焦慮,害怕因聽不清楚別人的對話而與人生分。隨著聽力問題逐漸浮現,他開始注意到自己的思緒也跟著變得混亂。比如說,他常常忘記事情發生的順序,甚至有時候不記得已經說過的話,這種記憶的衰退讓阿明感到十分困擾。最終,阿明去看了醫生並接受相關的測試,被診斷出患有中度聽損與早發性失智症。

在日常生活中,聽覺扮演了重要的角色,是我們與外界交流的管道之一。然而聽力受損不僅僅是一種單純的生理障礙,更可能與失智症之間存在著密切的關係。

關於失智症的二三事

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。有些失智症患者甚至無法控制情緒,個性也可能發生轉變。失智的症狀隨程度不同而有所改變,從最輕微的階段開始影響一個人的基本能力(如記憶),到最嚴重的階段,患者完全需要仰賴他人進行日常活動 [1]。失智症不僅對患者本身造成巨大的影響,也帶給家人和照顧者極大的負擔。

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。圖/Pixabay

2023 年世界衛生組織(WHO)的統計數據顯示,世界上目前約有 5,500 多萬的人口患有失智症,而每年全球正以 1,000 萬人的速度增加 [2],預計到 2050 年,全球失智症患者數量將達到 1.53 億人口 [3]。Livingston 等學者於 2020 年在國際著名的醫學期刊《刺胳針》(The Lancet)發表了一篇關於失智症的預防、介入與照護的研究 [4],列舉了 12 項風險因子,包括教育程度較低、聽力損失、創傷性腦傷、高血壓、酗酒、肥胖症、吸煙、憂鬱症、社交隔離、缺乏運動、空氣污染與糖尿病,將近 40% 的失智症都與這些因素有關(另 60% 為風險因子不明),其中,聽力損失佔最大宗,約有 8% 的比例。另一項研究更進一步指出,罹患失智症的風險會隨著聽損程度越重而增加,例如輕度、中度與重度聽損者罹患失智症的風險分別是聽常者的 1.27、3.00 與 4.94 倍 [5]。由此可見,聽損與失智症的關係不容小覷。

-----廣告,請繼續往下閱讀-----
失智症的風險因子,聽力損失約佔 8%。圖/引自HearingLife

聽力出包時,失智症有可能找上門!

聽損與失智症關聯的機轉究竟是什麼呢?綜合現有的研究文獻,大致可歸納出三大觀點:

一、聽損會耗費大腦的認知資源

聽損常使一個人在吵雜的環境下聽不清楚聲音,此時,大腦便會進行代償作用,將負責思維和記憶區塊所需的資源移轉用來處理這些模糊的音訊,而導致前述二項高階的認知功能受到影響,進而增加失智的風險 [6]。以上的論述主要來自 Mishra 等人的研究 [7],該研究比較輕度聽損年長者與聽常年輕人在「認知備用容量測驗(Cognitive Spare Capacity Test)」的表現:受試者聽完(無視覺提示)一串由男女穿插錄製之二位數的數字列表(如下表所示)後,要說出這串列表中由男生所錄製的奇位數數字(如 13 與 59,以圓圈標示)。要順利完成此項作業,受試者必須排除女生所錄製奇位數數字的干擾(如 77、89 與 61,以底線標示)。

數字5036774496895240612066
男/女
「認知備用容量測驗」實例(來源:Mishra 等人 [8]

結果顯示,在安靜的環境下,兩組受試者的表現無顯著差異,但在噪音環境下,聽損年長者的表現則顯著落後於聽常年輕人,研究者認為聽損年長者為了排除噪音的干擾以獲取正確的答案,其大腦會將高層次的認知資源挹注於彌補聽損所帶來的負面影響,而致使認知功能下降。長此以往,漸漸便埋下了失智症的導火線。

另一個較為直觀的證據則是透過腦造影技術觀察聽損者大腦活動的狀況。Glick 與 Sharma [9] 讓聽常與聽損老年人觀看電視螢幕的光影變化,並透過高密度的腦波圖(high-density electroencephalography;EEG)記錄其對視覺刺激反應的皮質視覺誘發電位(cortical visual evoked potentials;CVEPs),再透過電流密度源重建技術(current density source reconstruction)定位大腦皮質活動的區塊;此外,研究也評估了受試者的認知功能。結果顯示,相較於聽常者,聽損者觀看視覺刺激物時,腦部發生了視覺跨模重組(visual cross-modal reorganization)的現象:除了主司視覺的枕葉區被活化外,主司聽覺的顳葉與主司認知功能的前額葉也被活化用以輔助處理視覺訊息,這會為大腦帶來極大的負擔而增加認知負荷,並耗盡用以記憶的認知資源,最終可能引發失智症。

-----廣告,請繼續往下閱讀-----

二、聽損會使大腦組織萎縮

此外,聽損與否也可能會影響一個人大腦的結構與功能。美國約翰霍普金斯大學的研究人員 [10],利用「巴的摩爾老化長期研究(Baltimore Longitudinal Study of Aging)」的資料,針對聽損與腦容量的關係進行了一項有趣的研究,他們分析了一群受試者在逐漸老化時,其腦容量的變化。受試者在研究之初,做了聽力評估,接著接受為期長達十年、每年一次的核磁共振檢查。結果顯示,研究開始時就患有聽損的受試者,相較於聽常者,其大腦有較大幅度的萎縮,平均以每年一立方釐米以上的速度流失大腦組織,而這些大腦組織恰好與輕度認知功能退化和早期失智症所表現出的記憶衰退的行為有關 [11]

三、聽損會引發社交隔離

社交隔離(social isolation;意旨與他人很少有社交互動或是社交圈窄小的現象 [12])也可解釋為何聽損與失智症有關。一項由英國所進行的研究 [13] 追蹤了一群 50 歲以上成年人的聽損、社交隔離的程度與認知的狀況,並分析這三個因素間的關係,結果發現雖然聽損與認知功能下降有直接且顯著的關聯,但當加入了社交隔離程度的影響後,聽損與認知關聯的強度降低了近三分之一,此結果說明聽損可能會導致社交隔離,間接造成認知功能下降而引發失智症。這也顯示大腦須要透過適當的社交刺激,才能維持其活力,進而保持正常的認知功能。值得注意的是,當聽力閾值達到 25 分貝或以上(即輕度以上的聽損,亦為影響社交溝通的起始閾值)時,聽損所帶來的失智風險就會明顯地增加 [14]

如何預防聽損所帶來的失智風險

一般而言,聽力是與他人溝通互動不可或缺的元素之一;然而,聽力問題不僅僅是關乎聽覺本身,如前所述,它也可能與失智症存在直接或間接的關係,若能適時地做好聽力保健,或許就可避免老年時,讓失智找上你。那麼要如何維持良好的聽力呢?以下幾點可供參考:

  1. 定期聽力檢查是維護耳朵健康的重要關鍵。許多人並不瞭解即便是輕微的聽損也可能對認知功能造成負面的影響。在一般的情況下,聽力下降是漸進且微小的,而人類的大腦有極強的適應能力,這使得聽力衰退不易被察覺 [15]。透過定期的聽力檢查,有助於追蹤聽力狀況,即使是微小的變化也能及時掌握,並處理潛在的聽力問題,進而降低聽損所帶來的失智風險。
  2. 減少長期暴露在噪音環境中。噪音環境除了會加速聽損的惡化外,同時也會誘發海馬迴受損的記憶功能障礙,這也是失智典型的症狀 [16]。因此,避免長時間處在高分貝的環境下,或者適時地佩帶耳塞或耳罩,便是保護聽力健康進而降低失智風險的良方之一。

然而,就聽損人士而言,難道就只能坐視自身認知功能逐漸退化而毫無作為嗎?其實不然。還記得 Glick 與 Sharma 的研究 [9] 提到聽損者大腦的視覺跨模重組與其認知功能衰退息息相關嗎?但令人振奮的是,這些聽損者在穩定配戴助聽器六個月後,逆轉了視覺跨模重組的現象,其認知功能也隨之改善,這表示聽損者配戴助聽器後,失智風險也可能跟著降低。 

-----廣告,請繼續往下閱讀-----
聽損人士配戴助聽器後,失智風險可能會跟著降低。圖/iStock

雖然失智症並不全然與聽力問題相關,但就聽力而言,我們可做的就是聽力保健,如定期做聽力檢查、遠離噪音環境、適度保護耳朵,以及必要時配戴助聽輔具是維持良好聽力的重要關鍵,若能確實執行上述建議,或許就可降低那 8% 的失智風險。請記住,保護耳朵就是保護大腦,讓我們一起努力維護聽力,為未來的大腦健康奠定穩固的基礎吧!

參考資料

  1. National Institute on Aging (n.d.). What is dementia? Symptoms, types, and diagnosis. https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis
  2. Dementia (2023, March 15). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
  3. The Institute for Health Metrics and Evaluation (2022, January 6). The Lancet Public Health: Global dementia cases set to triple by 2050 unless countries address risk factors. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-public-health-global-dementia-cases-set-triple-2050
  4. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet396(10248), 413-446.
  5. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  6. Fulton, S. E., Lister, J. J., Bush, A. L. H., Edwards, J. D., & Andel, R. (2015, August). Mechanisms of the hearing–cognition relationship. In Seminars in Hearing (Vol. 36, No. 03, pp. 140-149). Thieme Medical Publishers.
  7. Mishra, S., Stenfelt, S., Lunner, T., Rönnberg, J., & Rudner, M. (2014). Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience6, 96.
  8. Mishra, S., Lunner, T., Stenfelt, S., Rönnberg, J., & Rudnera, M. (2013). Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research56, 1120-1132.
  9. Glick, H. A., & Sharma, A. (2020). Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Frontiers in Neuroscience, 93.
  10. Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., … & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage90, 84-92.
  11. Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., … & Liu, Y. (2016). Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease49(4), 1051-1064.
  12. Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences110(15), 5797-5801.
  13. Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing. The American Journal of Geriatric Psychiatry27(12), 1348-1356.
  14. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  15. Audiology Associations of DFW. (August 31, 2023). Regular hearing tests could decrease your risk of getting dementia. Hearing Test Info. https://www.audiologyassociates.com/hearing-test-info/hearing-test-reduce-risk-dementia/
  16. Paciello, F., Pisani, A., Rinaudo, M., Cocco, S., Paludetti, G., Fetoni, A. R., & Grassi, C. (2023). Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiology of Disease178, 106024.

討論功能關閉中。

雅文兒童聽語文教基金會_96
55 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

1

5
2

文字

分享

1
5
2
馬斯克不屑一顧;比爾蓋茲卻視若珍寶!氫能源會成為永續發展的救世主嗎?
PanSci_96
・2024/02/04 ・5542字 ・閱讀時間約 11 分鐘

馬斯克的「氫能愚蠢說」被打臉了嗎?

馬斯克曾多次斷言發展氫能是個愚蠢的決定,更說氫氣不會自然出現在地球上。

然而今年 7 月,美國新創公司 Koloma 從比爾蓋茲與其他投資者手中,獲得了總計 9100 萬美元的融資,準備開採地下氫氣。今年 9 月,地質學家更是直接在法國的地底下發現大量氫氣,總量估計有 4,600 萬噸。
而且比起需要搭配綠能或是熱裂解設備才能製造的綠氫與灰氫,這些氫氣價格將會十分低廉,難道,氫氣的時代要到來了嗎?為了環保,我們得挖呀挖呀挖?

地球上真的還有氫氣嗎?

這張照片就能證明地底中含有氫氣?

這拍攝於澳洲的珀斯盆地,大大小小的圓圈被稱為仙女圈,在仙女圈內沒有植物生長,甚至向內凹陷形成鹽湖。當科學家調查這些仙女圈,他們意外發現土壤中竟然含有氫氣。氫氣與仙女圈之間的確切關係還未知,有人推測可能氫氣抑制了植物或是微生物菌落的生長,使得該區光禿甚至土壤流失。

我們知道氫氣是世界上最輕的氣體,一旦進入大氣,就會向上飄散,直至被拋至太空,離開大氣層。然而地球的大氣層中還是有少量的氫氣被束縛住,大氣濃度約為 0.55 ppm ,是臭氧的 13 倍。

-----廣告,請繼續往下閱讀-----
圖/pexels

但只要沒有進入大氣,還是被封在地底的氫氣因為不容易溢散,至今存量還很豐富。不只在澳洲,世界各地都觀察到了氫氣從地底向地表洩漏的情形。

第一炬奧運聖火至今還在燃燒?

位於土耳其奧林匹斯山山谷,就在希臘火神赫菲斯托斯的神廟廢墟上方,大大小小的火焰從土石間冒出,就好像赫菲斯托斯至今都還存在在該處一樣。該地的冒火處有十幾個,總燃燒面積高達 5000 平方公尺。

根據地質學家推估,這片火焰已經燃燒了 2500 年,根據史料比對,很有可能就是最早奧林匹克聖火的發源地。

圖/wikipedia

地質學家調查了這股火焰的形成原因,發現從岩石中噴出的氣體,除了含有 87 % 的甲烷以外,還含有百分之 7.5 到 11 是氫氣。這股持續 2500 年間不斷冒出的氣體,根據地質學家推估,與石油、天然氣成因不同,並不是因為遺骸或微生物等生物原因才產生的。而是大地之母地球源源不斷提供給我們的,這又是怎麼一回事?

-----廣告,請繼續往下閱讀-----

氫氣知多少:哪來這麼多地底氫氣?

地底的氫氣怎麼來?

這與岩石的變質作用息息相關,我們知道火成岩、沉積岩會在高溫高壓下產生變質作用,轉為性質截然不同的變質岩。而富含鎂與鐵的矽酸鹽類礦物,例如橄欖石、輝石,當他們在高溫環境下與水作用,會轉為蛇紋石、水鎂石、磁鐵礦等礦物,這個過程稱為蛇紋石化作用。

圖/wikipedia

這種作用是一種化學反應,會將大量的水吸入岩石,讓岩石的密度下降。在反應結束後,除了礦物特性產生變化以外,還會生成副產物,也就是氫氣。如果地層中又剛好有二氧化碳存在,就會在高溫的環境下進一步甲烷化,將氫氣與二氧化碳轉成甲烷。

目前科學家認為,大部分地層中非生物性原因產生的的氫氣與甲烷,多是由這樣的過程產生的。奧林匹斯山的聖火,推測也是這樣產生的。

而對於地質學家來說,也代表尋找天然氫氣這一目標,也可以從盲目搜尋,轉為限縮在尋找有經歷過蛇紋石化作用的地層上。

-----廣告,請繼續往下閱讀-----
圖/usgs

但除了蛇紋石化作用以外,大自然還有兩種生產氫氣的主要方式:深層蘊藏與水的輻解。

地球內的氫氣

在地底深處,推測蘊藏著大量氫氣。它們深達地底,甚至可能存在於地函與地核之中。

我們現在的技術當然無法直接來個地心探險開採這些氣體,但科學家陸續從美國、俄羅斯、東歐等地的岩石鑽探結果可以觀察到,在越深的地方氫氣濃度越高。因此地質學家推測這些氫氣可能來自更深的地方,並正從橄欖岩緩緩地擴散,進入靠近地表的岩層之中。

然而,因為我們還無法進入地底,因此即便我們知道它們存在,但對於這些氫的形成原因目前還未有結論。有些科學家放眼整個太陽系的形成過程,推測在原始地球形成時,整顆行星包含地核之中就有氫的存在。而也有人認為,地核中的鐵元素與水反應,形成氧化鐵與一氫化鐵兩種物質型態,將氫存在地核之中。

-----廣告,請繼續往下閱讀-----

這個問題的解答,就等待地球科學家為我們帶來解答吧。而且了解這些元素存在於地核、地函的形式,也可以解開許多未知謎團,例如地核的詳細組成分、地函存在異常低電阻區的原因、改善地函動力學模型,以及找出哥吉拉到底在哪裡等等。

圖/giphy

輻射也能產生氫氣?

地殼中的釷、鈾等放射性元素,在漫長的衰變過程中,會緩慢地將地層中的水分子鍵結破壞,形成氧氣與氫氣。例如一顆 1 MeV 的 α 粒子,平均足以讓 10 個水分子解離。而當岩石擁有更高的孔隙率, α 粒子會更有機會與水分子產生作用,會有更高的氫氣產量。

但其實,考慮到衰變的速度以及放射性元素存在於地底的超低含量,這個方式的效率並不高,而且實際上 α 粒子用來解離水分子的能量只消耗了 1 % ,剩餘的能量都還是被附近的岩層吸收,以熱的形式消耗掉。

除了產量不高以外,理論來說在輻射發生的地方,應該要能看到氫氣與氧氣同時存在,但目前實地調查的結果,都只有發現氫氣。氧氣是否進一步參與了其他反應,或是已經逸散,或甚至這個理論需要再做調整,還需要更多的研究。

-----廣告,請繼續往下閱讀-----

好的,我們知道氫氣是怎麼產生的,那麼重點是,我們到底有多少氫氣能用呢?

地底有多少氫氣?

世界各地都有發現自然氫氣的存在。對了,雖然這張地圖看起來氫氣的發現地點都集中在北亞與東歐,但這只是因為目前的探勘都聚集在這邊,並不代表真實的氫氣分布。

這些來自地底的氫氣,我們稱為地質氫,如果用顏色來分類,則稱為白氫或是金氫。如果氫氣的開採規模能像天然氣一樣龐大,白氫的價格,預計會落在每公斤 1 美元。

相比之下其他的氫氣生產方式,例如我們上次提到,由蒸汽重組產生的灰氫,售價約為 0.9~3.2 美元。由綠能生成的綠氫則是 3~7.5 美元。因此,如果白氫正式被大量使用,將大幅降低現在的氫氣價格,甚至帶動氫氣運輸、儲存、發電機組等產業鏈的發展,連帶降低其他顏色氫氣的隱含成本。

-----廣告,請繼續往下閱讀-----

比爾蓋茲與氫能產業

與馬斯克看衰氫能不同,比爾蓋茲不僅投資白氫的開發,也投資了不少氫能產業。

例如他就投資了西班牙公司 H2SITE ,一間致力於氫能運輸與氫氣製造的公司。因為現在運輸氫氣的成本是製造氫氣的三倍,如果能降低運輸成本,將有助於整個氫氣產業的發展。在開採方面,各國也都開始投入地質氫的調查與開採技術研發。

美國地質調查局初步估計,全球地底下可能藏有百億噸的氫氣等著被開發,能滿足全人類數千年的能源需求。當然,這個數字並沒有考慮到開發的困難度,只是單純地以全球存量作分析。

但也有人正打算轉個念頭,何不將熱水注入富含鐵的岩層中,促使更多的氫氣產生?類似於地熱發電會使用的增強型地熱系統,只是我們獲得的不是直接的熱能,而是氫氣。

-----廣告,請繼續往下閱讀-----

什麼?氫氣也是溫室氣體?

話說回來,氫氣真的會成為救世主嗎?先等等,事情可能沒那麼簡單。

氫氣作為最輕的氣體,存在於大氣的壽命大約只有兩年。但氫氣在存在的這段時間中,會與大氣中的羥自由基和其他氣體作用,產生一系列的反應。造成的結果包含增加甲烷停留在大氣的時間、臭氧的增加、與平流層中水氣的增加。

圖/wikipedia

因此,氫氣屬於一種「間接」溫室氣體,氫氣的一百年全球暖化潛勢 GWP 100 ,被評估為 11.6 ,也就是以 100 為區間進行評估,氫氣的溫室效應是二氧化碳的 11.6 倍。

此外,我們對氫氣的研究還太少,所以才到現在才發現它就在我們的身邊。而就跟我們上次提到的一樣,大量使用天然氣,就意味會有許多天然氣洩漏。而伴隨著氫氣被大量開採,一定會有更多的氫氣被釋放到大氣之中。這對我們的大氣是否會產生負面效應,甚至於弊大於利,都還需要更多研究。

最後想問問大家,馬斯克與比爾蓋茲,對氫能的看法十分兩極。你呢?你認為氫能會改變未來的能源形式嗎?

  1. 會,不論是什麼顏色的氫,大家都很認真的在進行研究,一定很快就有好結果。
  2. 不會,氫能運輸、儲存成本怎麼看都還太高
  3. 不論有沒有氫能,人類懂不懂得節制,才是關鍵中的關鍵

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1220 篇文章 ・ 2220 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。