Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

電子元件都硬邦邦沒彈性?輕如羽毛又可揉捏的電子感測器在這裡啦

活躍星系核_96
・2019/06/27 ・1621字 ・閱讀時間約 3 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者:蕭其峯、李昊璁、張哲維

在現代生活中,我們的周圍充滿各式各樣的電子元件。根據著名的摩爾定律預測,電子元件的體積會隨著時代的進展越來越小,甚至可以微小化植入人體中。但是電子元件若要在人體上應用,除了體積之外,另外一個重要的考量就是柔軟度。若材質是軟性且無異物感,便十分適合應用於人體等生物醫學之中。而現今的技術,電子裝置不僅可以做到可彈性變形,甚至還可以嵌合到口腔內部囉!

又軟又輕薄的電子感測器

(a)東京大學染谷隆夫等人開發的有機電子薄膜感測器示意圖(b)其輕薄程度可與羽毛相比較(c)可像紙般揉捏摺疊的電子感測器。圖/Kaltenbrunner et al, 2013

這次由東京大學工學系研究科教授染谷隆夫(Takao Someya)等人開發的有機電子薄膜感測器。上圖(a)為這項電子感測器的示意圖,是一個十分具有彈性的薄膜(塑性材料),上面包含12×12個像素的感應器。電子感測器有諸多應用,可以作為壓力(觸覺)感測、溫度感測器,現行市面上的的壓力、溫度感測器都是以堅硬材質製成。

有機電子薄膜感測器的輕薄程度甚至可以媲美羽毛,能用比羽毛更緩慢的速度降落到地面上。並同時具有最小達 2μm的極薄厚度,更早之前的技術僅能將這樣的電子感測器做到厚度 25μm,技術上有許多突破。

上圖(c)即是實際電子感測器揉捏後的照片,經過揉捏仍能正常運作,而這項以前技術中不存在的力學性質,使得利用這項技術生產出來的物件適用範圍更廣。因為具有可任意變形的特性,這個電子感測器可以貼合任意形狀的物體,甚至是貼合人體。不難想像,如果可以貼合人體皮膚,搭配上重量輕盈以及彈性舒適等等優點,這樣的裝置非常適合應用於生物醫學、運動科學等領域,進行許多監測或調控。

-----廣告,請繼續往下閱讀-----

薄膜電晶體製造技術的突破

薄膜電晶體 (TFT) 的主要材料,相對於傳統電晶體多用矽,這裡主要使用DNTT(一種有機化合物)[註1]圖/Kaltenbrunner et al, 2013
為發揮更大的應用價值,一般希望將薄膜電晶體(thin film transistor ,以下簡稱TFT)製作得越輕薄越好。原先的製程上必須在薄膜電晶體上多鋪一層「平坦化膜」讓粗糙的基板變得光滑,因為電介質的厚度是奈米尺度,如果表面過度粗糙易影響薄膜電晶體在製程上的成長,然而塗上「平滑化膜」使得整體厚度加厚了。

比起舊技術來說,新技術省略了「平坦化層」,讓這層增加厚度的兇手消失了,厚度得以從 25μm 下降到 2μm。然而,要讓電子元件做到更薄的厚度,其突破關鍵在於直接氧化部分閘極端的鋁金屬作為電介質,因為金屬氧化物會有很乾淨的平坦面,如此一來便可省略平坦化膜。

優秀的材料性質:

  1. 抗折、抗揉捏,折疊半徑(bending radius)小達 5μm,韌性十足
  2. 抗拉伸,承受 233% 的拉伸應變(tensile strain)
  3. 可承受反覆多次的拉伸,經 200 次的拉伸,性質的改變小於 4%
  4. 耐高溫,可達攝氏 170 度
  5. 耐鹽,可以承受生理食鹽水的浸泡長達二週的時間
應用於生物醫學作為人體的健康感測裝置。

這種有機電子薄膜能耐高溫,又可承受生理食鹽水的浸泡。集合上述許多優點特性,包括對不同環境條件的適應能力(例如不同的溫度、鹽分)、超輕薄的體積和質量,且具有韌性的力學性質,還能直接黏貼於待測表面(例如直接黏貼或包裹在人體的肌膚上,進行溫度感測),使得這項電子元件能應用的範圍十分廣泛,諸如生物醫學、健康管控、機器人等等。

-----廣告,請繼續往下閱讀-----
  • 本文源自於臺灣大學物理學系電子學的課程報告,感謝朱士維教授與程暐瀅助教的協助。

 

  • 註1:本次介紹的薄膜電晶體主要使用DNTT為形成通道(channel)的地方,其他零件的材質如下:閘極(gate):鋁(Al);源極(drain)、汲極(source):金(Au);基板substrate:PEN(一種塑膠);閘極端的電介質:共兩層,鋁的氧化物層和SAM層(單層的磷酸分子)。
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
半導體晶片的微小奇蹟:原子層沉積技術(ALD)
PanSci_96
・2024/09/02 ・1842字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

在半導體技術的快速進步中,晶片的製造已經達到了前所未有的微小尺度。當今的晶片不僅需要高度集成,還要求每層薄膜的厚度縮小至僅有幾層原子厚。這樣的挑戰驅使半導體產業不斷探索新技術,如環繞式閘極、3D 封裝以及極紫外光(EUV)曝光技術等。

然而,這些技術的成功依賴於一個至關重要的基礎步驟:製作極其薄的材料層,而這正是原子層沉積(ALD)技術的核心所在。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼需要如此精細的薄膜製程?

半導體製造是一個高度複雜的過程。晶片的每一層都需要精確的材料沉積,以確保其功能和性能。在半導體產業中,即便是台積電這樣的領先企業,也無法單獨完成所有製程。從晶圓到光阻劑、曝光機等材料和設備,都需要來自全球各地的供應商。這樣的龐大產業鏈反映了製造晶片的難度,正如著名科學家石神千空所言,半導體製造猶如「地獄級」的挑戰。

在半導體製程中,微影製程是核心技術之一。微影製程的基本概念是將一層層材料「蓋」在晶圓上,通過沉積、曝光和蝕刻三個步驟,逐步構建出完整的晶片。首先,工程師會在晶圓上製造一層絕緣層,然後進行沉積,添加所需材料(如絕緣體、半導體或金屬層)。接著,塗上一層光阻劑,並通過曝光技術(例如 EUV 極紫外光曝光機)刻出所需圖案。最後,進行蝕刻,去除未被保護的材料,留下圖案。這個過程會重複進行,以構建出複雜的結構。

-----廣告,請繼續往下閱讀-----

薄膜技術的挑戰

在製造薄膜時,選擇合適的技術是至關重要的。薄膜製程大致分為物理和化學兩大類。物理方法包括蒸鍍、濺鍍和分子束磊晶等,而化學方法則有化學氣相沉積(CVD)和化學液相沉積等。在半導體行業中,化學氣相沉積(CVD)是一種常見的薄膜製程技術。CVD 過程中,氫氣、氬氣等載氣將原料氣體帶入反應室,經過化學反應後,材料會在基板上沉積成膜。

然而,隨著半導體技術的進步,晶片結構變得更加複雜,例如從平面電晶體到現今的 FinFET 鰭式場效電晶體,再到 GAA 環繞式閘極電晶體。這些複雜的結構對薄膜技術提出了更高要求。CVD 在處理這些結構時可能會遇到困難,尤其是在高精度和均勻度方面。這時,原子層沉積(ALD)技術便成為了解決這些問題的關鍵。

隨著晶片技術進步,晶片複雜的結構對薄膜技術有了更高要求。圖/envato

ALD 技術的原理與優勢

原子層沉積(ALD)是一種改進的化學氣相沉積技術,它將沉積過程分為兩個步驟。首先,注入第一前驅物,與基板表面反應。此階段需確保前驅物只與基板產生反應,形成一層原子厚的薄膜。當表面飽和後,注入第二前驅物,與已附著的前驅物反應,形成目標材料,完成薄膜的製程。

例如,製作氧化鋅薄膜時,第一前驅物是二乙基鋅。二乙基鋅在基板上反應後,會形成一層單分子厚的二乙基鋅。隨後,用氬氣沖洗掉多餘的前驅物,再通入水,水與二乙基鋅反應,生成氧化鋅。這樣的過程能確保薄膜的厚度均勻且精確。

-----廣告,請繼續往下閱讀-----

ALD 技術的主要優勢在於其能夠精確控制薄膜的厚度,即使在非常複雜的結構中,也能確保每一層薄膜達到預期的厚度。這使得 ALD 在製造先進的半導體元件中具有不可替代的地位。

ALD 的未來與 ASM 的角色

ALD 技術自 1977 年由芬蘭材料學家圖奧莫.松托拉開發以來,已經歷經了近 50 年的發展。1999 年,松托拉將 ALD 技術出售給荷蘭半導體設備公司 ASM,這使得 ALD 技術得以在 ASM 的支持下持續進步。ASM 目前在 ALD 市場中擁有超過 55% 的市場份額,這反映了 ALD 技術的重要性和廣泛應用。

隨著半導體技術的不斷進步,ALD 技術也在不斷演化。除了傳統的 ALD 技術,電漿增強型 ALD(PEALD)也逐漸成為新興技術。PEALD 通過電漿技術來提高反應效率,解決了 ALD 在某些情況下反應率不足的問題。這使得 PEALD 能夠更好地應對複雜的薄膜製程需求。

原子層沉積技術(ALD)在半導體製程中扮演了至關重要的角色。隨著技術的不斷進步,ALD 技術已經能夠應對更加複雜的製程要求。ASM 作為 ALD 技術的領導者,不斷推動技術創新,以維持在半導體產業中的領先地位。面對未來,ALD 技術必將繼續發揮重要作用,推動半導體技術向更高的精度和性能邁進。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
0

文字

分享

0
4
0
從真空管到晶片:科技革命的關鍵里程碑
數感實驗室_96
・2024/05/25 ・670字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

奇幻故事中常見的魔法石可以輸出源源不絕的能量,其實在現實生活中的 20 世紀末期,人類真的發明了魔法石!

想像一下,手機開啟視訊,可以看到遠方的景色和親友,這不就像遙視、千里眼嗎?或者問 AI 上網查資料,就像內建大賢者。連開手電筒都像是探索地底迷宮的照明法術一樣!這些譬喻讓我們意識到,許多看似理所當然的科技實際上就像魔法一樣神奇。

晶片的原理

晶片進行的是邏輯運算,就像我們做的數學計算一樣。它裡面有許多微小的電子元件,類似於樂高積木一樣,用來進行各種運算。過去的電子元件是大型真空管,後來發明了電晶體,但仍需大量使用。直到有人提出了積體電路的概念,將許多電晶體整合在一起,這才開啟了晶片時代。

-----廣告,請繼續往下閱讀-----

從真空管到奈米晶片,科技的進步無所不在。現代的魔法石就是這些晶片,它代表著工程師的智慧和創造力。科技或許是一種新型的魔法,由無數工程師代代相傳,用理性和創意塑造出來。所以,現代的魔法並非來自大自然或神秘的力量,而是來自人類的智慧和努力。

喜歡這系列將影片或有其它想法,歡迎留言分享喔!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/