0

3
1

文字

分享

0
3
1

咖啡為何要合成咖啡因?咖啡的基因體還說了什麼

活躍星系核_96
・2015/06/09 ・1280字 ・閱讀時間約 2 分鐘 ・SR值 532 ・七年級

-----廣告,請繼續往下閱讀-----

文/ Yu-Wei Wu

Pansci關於咖啡基因體的文章《為何咖啡要合成咖啡因?讓咖啡的基因體告訴你》雖然有意思,但是並沒有詳細解釋這篇Science Paper [1] 後半段對於合成咖啡因的基因家族的演化關係。本文就試著針對這一部分來補充原來的報導。

source:pexels
source:pexels

咖啡因在咖啡的生存競爭上伴演著很重要的角色。舉例來說,咖啡葉裡的咖啡因有著防蟲的功效,而果實與種子裡的咖啡因則有著抑制其他競爭物種發芽的功能。這篇Paper的研究人員在咖啡的基因體裡面發現一組用來產生咖啡因的基因家族;而這個基因家族並不存在於茶或可可等同樣可以產生咖啡因的植物裡面。換句話說,這一組基因家族為咖啡所獨有。

研究人員也發現這組基因家族同時具備了兩個特性:正向選擇(Positive Selection)以及趨同演化(Convergent Evolution)簡單來說,正向選擇代表著因為有著對生物有著生存優勢而留下來的基因。在這個例子中指的就是因為咖啡因可以為咖啡帶來生存優勢,所以在演化的過程中一直被保留了下來。

-----廣告,請繼續往下閱讀-----

至於趨同演化就更有意思了。所謂的趨同演化指的是兩種不具親緣關係的生物因為長期生活在類似的環境,而因應需要演化出相同功能的器官。舉例來說,兩種親緣關係不近的熊貓–大熊貓與小熊貓–因為生活環境都與竹子有關的緣故,各自演化出了「偽」拇指 [2]。熊貓的拇指與靈長類的拇指完全不同:它是從腕部的某根小骨頭突變伸長而來的,這根偽拇指可以讓熊貓攀爬並進食竹子。兩種熊貓各自演化出這根偽拇指的現象就叫作趨同演化。

source:台北市立動物園
大熊貓的偽姆指。source:台北市立動物園

有趣的是在2006年,有人在西班牙發現小熊貓祖先的化石,上面已經有著這一根「偽」拇指了 [3]!在比較生存環境的資料後,研究人員認為小熊貓的祖先發展出偽拇指的原因是爬樹;而這一根偽拇指在現代的小熊貓身上出現了二次演化,目的則是為了吃食竹葉。這篇研究很有意思,因為它顯示熊貓的大拇指有可能演化了兩次。

回到咖啡。在遠古時期,咖啡樹裡形成咖啡因的基因本來都在第一條染色體上;但是隨著演化的時間流逝,這些基因逐漸地散播到其他染色體上,而主要集中在第一條與第九條染色體。更重要的是這兩段基因家族各自演化出具有類似功能的基因:都能夠合成咖啡因。這種往同一個方向各自演化的發現代表了咖啡因的合成對咖啡樹相當重要。推測大概是因為咖啡因對咖啡樹的生存優勢相當重要,所以就會有一組以上的基因家族能夠合成咖啡因。(其實功能導向的演化方向不太對–演化本身應該是沒有目的的。不過在這裡我還是套用了這個說法,因為咖啡因的確對咖啡樹有著生存優勢。)

我對這裡所說的趨同演化其實還有點疑慮。一般來說趨同演化指的是不同物種之間的各自演化。我目前還沒找到研究說明同一物種身上不同的基因片段也可以稱為趨同演化。由於我的研究方向不是演化,所以或許這個部分交給演化專家來說明釋疑比較好。

-----廣告,請繼續往下閱讀-----

參考資料:

  • [1] Denoeud et al., “The coffee genome provides insight into the convergent evolution of caffeine biosynthesis,” Science 345(6201):1181-1184, 2014.
  • [2] Stephen Jay Gould, “The Panda’s Thumb.” Excerpt can be found at http://faculty.washington.edu/lynnhank/Gould.pdf
  • [3] Salesa et al., “Evidence of a false thumb in a fossil carnivore clarifies the evolution of pandas”, PNAS 103(2): 379-382, 2006.
文章難易度
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

1

1
0

文字

分享

1
1
0
鑑識故事系列:Mark Bonnstetter 夢遊無罪
胡中行_96
・2023/11/27 ・3069字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

睡覺的時候,感覺有人手伸入她的睡褲,輕撫腹部。[1, 2]女子睜開雙眼。輕聲喚不醒身旁的男友,轉而大叫他起來開燈。突然亮起的光線下,一個約莫 178 公分高,85 公斤重的男人,站在床尾,自稱是對面鄰居。[1]

非當事人。圖/Adi Goldstein on Unsplash

感恩節週末

2006 年,38 歲的 Mark Bonnstetter 跟著懷孕的太太回娘家,[1, 2]期間第 3 個小孩誕生。全家多待一週後,[1]只有於東伊利諾大學(Eastern Illinois University)擔任首席運動傷害防護員的他,[1, 3]因為工作而提前在感恩節週末,回到伊利諾州 Charleston 市的 Woodfield 巷。[1, 2]返鄉過節的左右鄰居趁便請託,要他每日代為開燈,佯裝屋主在家,以防宵小。[1]

11 月 25 日那天,[1, 2, 4]Bonnstetter 晚上 6 到 9 點要工作。假期夜間照顧孩子,害他缺乏睡眠,還未及補足。逼得 Bonnstetter 早餐喝 2 杯咖啡;9 到 11 點再 2 杯;下午飲用 2 瓶 Diet Cokes;上班時又灌了大量 Diet Pepsi,好不容易才撐到收工。回到家即便不早,他仍記得幫忙鄰居點燈。終於就寢,卻沒睡好。凌晨 3 點醒來,睡著之後,又被聲音吵醒。[1]

循著噪音的源頭,Bonnstetter 望向窗外:對面沒有請他看家的那戶,燈亮著,前門微開。心懷守望相助的責任感,Bonnstetter 前去查勘。進入屋內,巡過一個又一個房間,關掉廚房的燈,再往主臥室走…。[1]

-----廣告,請繼續往下閱讀-----

他聽到女性微弱的說話聲,變成喊叫。房裡的燈光,瞬時明亮。Bonnstetter 被請離,走著、走著,流連於廚房。女子不得不親自把人領到門口,再目送他跨過馬路返家。Bonnstetter 躺回床上,一覺天光。醒來後,整個過程忘得乾淨,照常出門上班。另一邊,女子的母親回來,聽說此事,通報警方。[1]

夢遊病史

Bonnstetter 跟他哥,童年時共睡一房。除了爸媽之外,兩人也是彼此夢遊(parasomnia;sleepwalking)的目擊者。[1]兒童夢遊的人口比例,較成年人高:學齡前約有 1%;學童則為 2% 左右。發生的頻率,通常一週幾次。少數成人受藥物或酒精影響,抑或是睡眠品質不佳時,也會夢遊。[5]Bonnstetter 雖然沒酗酒,但是妻子與岳父母,卻不時見他在夜間晃蕩。有一回到外地參加體育賽事,住同個旅館房間的醫師,發現 Bonnstetter 迷糊地邊走邊咕噥。安全起見,還特別知會當地警方。[1]

以往頂多是在屋裡「巡邏」,或探查窗外情況,Bonnstetter 的動機似乎出於保護家人,避免他們被不存在的危險傷害。這算是成人夢遊的典型之一。[1]眼神呆滯地四處走動之餘,有些人還會執行複雜的動作,像是進食、說話或者操作機器。[6]Bonnstetter 就偶爾會無厘頭地搬弄物品,例如:溫柔地把時鐘擺在嬰兒床上。過去不管是哪種情形,結果都無傷大雅。然而感恩節的意外,竟破天荒地鬧成了刑事案件。[1]

逮捕、起訴

11 月 28 日,Bonnstetter 遭警察逮捕。[2]他放棄保持緘默的權利,反覆否認性侵,只想向受害者致歉。原以為基於先前醫師通報的夢遊紀錄,警方能理解並放人,[1]沒想到 12 月 11 日 Bonnstetter 還是被起訴了。[2]據說罪名包括非法入侵、性侵,以及蓄意強姦未遂。[1]另一說是沒有被控性侵,但加上侵入竊盜。[4]

-----廣告,請繼續往下閱讀-----

睡眠檢查

Bonnstetter 的律師建議他做睡眠檢查(polysomnography;sleep study)。[1, 2]廣義來說,涵蓋睡覺時的腦波、血氧、心律、呼吸,以及眼睛和腿的活動等;[7]而這裡大概會著重能提出證據的項目。Bonnstetter 最先拜訪的睡眠實驗室,聽說官司進行中,便拒絕了。於是,他改去若許大學醫療中心(Rush University Medical Center),找專治睡眠障礙的神經科醫師和心理師。[1]

2007 年 8 月 16 日的檢查報告,指出 Bonnstetter 罹患輕微的姿勢阻塞型睡眠呼吸中止症候群(positional obstructive sleep apnoea syndrome),[1]也就是躺著比較吸不到氣,側睡會好得多。[8]隔天計劃要再現出事那天的條件,攝取過多咖啡因,然後觀察睡眠。然而,這種作法須要大學研究委員會核可,訴訟在即,Bonnstetter 跟太太絕不能等。[1]

夢遊的條件

該醫療中心,受辯護律師委託出庭作證的 Rosalind Cartwright 醫師,手邊數據不足,只好拿既有資料,比對診斷標準。[1]睡眠有 4 個階段,前 3 個從 N1 到 N3,為非快速動眼期(non-rapid eye movement cycle;NREM);末了的則是快速動眼期(rapid eye movement;REM)。[9, 10]一般人每晚會以 N1、N2、N3、N2、REM 的順序,重複 4 至 5 輪。[9]典型的夢遊,起始於剛入睡的幾小時,即非快速動眼期的N3。[6, 9]Bonnstetter 不確定意外當天何時就寢,僅從下班時間和幫鄰居點燈等,估計應該是午夜。他可能3點和之後各醒來一次。而根據被害人的說法,Bonnstetter 約莫於早上 4 點半至 5 點之間,擅闖民宅。由此或許能勉強推測,事發時間在第二輪的非快速動眼期。[1]

為求更精確的診斷,Bonnstetter 睡眠檢查的光碟,被送往史丹佛大學(Stanford University)。該校以Christian Guilleminault 為首的 3 名醫師,於 2008 年 3 月 3 日的報告裡,寫道Bonnstetter整晚的第一輪非快速動眼期,腦部慢波活動較一般的平均值低。文獻指出,若再加上下列兩個條件,就有可能導致夢遊:[1]

-----廣告,請繼續往下閱讀-----
  1. 之前的睡眠剝奪,讓現在更需要慢波睡眠(slow-wave sleep)[1]也就是非快速動眼期的 N3[9]的確,感恩節那幾天,Bonnstetter 沒睡飽,迫切渴求補眠。[1]
  2. 有某個同步的刺激,提升從慢波睡眠醒來的機會。事發前 Bonnstetter 在 14 個鐘頭內,攝取 826 毫克的咖啡因。咖啡因會阻斷腺苷受器(adenosine receptors),睡眠剝奪後,緩慢接收 600 毫克,就足以促進清醒。甚至有研究認為,夢遊時的暴力行為,跟過量的咖啡因有關。好在他敦親睦鄰,沒有大打出手。至於輕微的睡眠呼吸中止症候群,也是會使他醒來的原因之一。[1]

除此之外,Bonnstetter 在非快速動眼期,睡睡醒醒的循環交替異常頻繁,是夢遊者典型的症狀之一。[1]

無罪釋放

2007年初,東伊利諾大學的實習刊物《每日東部新聞》(The Daily Eastern News),質疑 Bonnstetter 何以持續任職,還討論他是否曾與運動員單獨接觸。文章內容鉅細靡遺,不僅有律師和學校多位主管的名字,連被告與受害者的完整住址,都寫得一清二楚。[2]想必在校內及附近社區,掀起軒然大波。

2008 年 10 月 24 至 27 日,案件開庭。[1, 11]辯護律師以圖表說明,夢遊者跟正常人在非快速動眼期的慢波差異。陪審團專注聆聽,Bonnstetter如何意識矇矓地誤闖民宅。檢察官則以Bonnstetter在燈亮後,還能自我介紹為由,駁斥此番論述。律師隨即強調夢遊後的失憶,證明被告當時的精神狀態不佳。雙方一來一往,嚴密攻防。[1]26日《每日東部新聞》立場轉變,大量引用Rosalind Cartwright醫師等專家證人的說法,解釋夢遊的可能性。[4]27日,陪審團採信醫學證據,在傍晚6點做出無罪判定。[11]

洗清冤屈的Bonnstetter,後來繼續在原部門服務,並逐步升遷。[3]Rosalind Cartwright和Christian Guilleminault醫師,則於2013年7月的《臨床睡眠醫學期刊》(Journal of Clinical Sleep Medicine)上,介紹此案背後的學理根據。[1]

-----廣告,請繼續往下閱讀-----

  

參考資料

  1. Cartwright RD, Guilleminault C. (2013) ‘Defending sleepwalkers with science and an illustrative case’. Journal of Clinical Sleep Medicine, 9(7):721-6.
  2. Daniels M. (12 JAN 2007) ‘Bonnstetter working despite charges’. The Daily Eastern News, Eastern Illinois University, U.S.
  3. Mark Bonnstetter’. The Eastern Illinois Panthers, Eastern Illinois University, U.S. (Accessed on 14 NOV 2023)
  4. Di Benedetto S. (26 OCT 2008) ‘Doctor says Bonnstetter was likely sleepwalking’. The Daily Eastern News, Eastern Illinois University, U.S.
  5. Parasomnias: Sleepwalking’. Johns Hopkins Medicine. (Accessed on 15 NOV 2023)
  6. American Psychological Association. ‘Sleepwalking Disorder’. APA Dictionary of Psychology. (Accessed on 15 NOV 2023)
  7. Polysomnography (sleep study)’. (17 FEB 2023) Mayo Clinic.
  8. Srijithesh PR, Aghoram R, Goel A, et al. (2019) ‘Positional therapy for obstructive sleep apnoea’. Cochrane Database Systematic Review, 5(5):CD010990.
  9. Patel AK, Reddy V, Shumway KR, et al. (07 SEP 2022) ‘Physiology, Sleep Stages’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  10. Newsome R, Singh A. (15 May 2023) ‘Slow-Wave Sleep’. Sleep Foundation.
  11. Mellendorf K. (27 OCT 2008) ‘Bonnstetter found not guilty’. The Daily Eastern News, Eastern Illinois University, U.S.
所有討論 1
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
0

文字

分享

0
1
0
派大星有頭無身,不該穿褲子?!
胡中行_96
・2023/11/13 ・1778字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

經典兒童動畫系列《海綿寶寶》(SpongeBob SquarePants)裡,主要角色海綿寶寶、派大星、蟹老闆、章魚哥等,還有其他海洋生物,各個人模人樣。就算沒穿上衣,也至少套了件褲子。[1]這裡其實有個值得深思的前提:任何動物倘若想學人類穿褲子,得先搞清楚下半身在哪裡。[2]而根據 2023 年 11 月登載於《自然》(Nature)期刊的海星論文,[3]我們能大膽宣告:派大星不應該穿褲子。不是會被海水沖走的那種乾脆別穿,而是根本就不曉得該怎麼辦的只好不要穿。

派大星表示:「呃…。」圖/SpongeBob SquarePants on GIPHY

棘皮動物 vs. 兩側對稱動物

海綿寶寶有次請派大星,把新鞋穿在腳上給牠看。「你會想看我穿在…手上嗎?」派大星問。睿智又隨和的海綿寶寶覺得都可以,畢竟手套也能戴在腳上。[4]此處劇情的安排,很巧妙地迴避了一個相當關鍵的問題,那就是如何區分海星的身體部位。

如果今天討論的是狗、蝙蝠、蜘蛛、鯊魚,甚至蛞蝓,這些動物的身體,皆有明確的頭尾以及對稱的兩邊。因此,就算找不到手、腳,也能硬把褲子套在下半身。[2]海星、海膽等棘皮動物(echinoderms),跟昆蟲、軟體動物、脊椎動物一樣,都是從左右對稱的祖先演化而來。[3, 5]現代海星幼年時期的外型,也還是兩側對稱動物(bilateria)的模樣;不過長著、長著就長歪了,變成由數瓣完全相同的單位,所組成的放射狀造型。[2, 3, 5]嘴長在底部中央,肛門則於背面朝上,[2]與擬人化還迸出眼睛、眉毛的派大星,大相逕庭。

海星(左)與海膽(右)成年(上)和幼體(下)的形貌。圖/Grausgruber A, Revilla-i-Domingo R. (02 AUG 2023) ‘Evolution: Tracing the history of cell types’. eLife, 90447.(Figure 1A;CC BY 4.0

海星頭尾的假說

生物學家早已知道,海星內部有內骨骼、肌肉,以及消化、水管和中樞神經系統等。然而,過往對其頭尾的方向順序,卻有多種不同的假設,例如:某隻觸角為首,對面那邊就是尾;每隻觸角各司其職,依序繞一圈,分別擔任從頭到尾的身體部位;由正中央的頭朝末梢,箭靶般向外劃分;或是蛋糕般由下而上層疊,整隻倒栽蔥等。[3]

-----廣告,請繼續往下閱讀-----

《自然》期刊這篇論文的美、英研究團隊,抓成年的 Patiria miniata 海星,來跟兩側對稱動物,比較基因分佈,以驗證上述的假說何者正確。比方說,一個活化的基因,若通常位在其他動物的頭部;我們就可以將它出現於海星身上的區塊,也視為頭部。[3]

海星有頭無身

研究團隊在Patiria miniata海星身上,比對到一些活化的前腦(forebrain)、中腦(midbrain),以及中腦與後腦(hindbrain)交界的基因,確定海星有頭部。然後,就沒有然後了。[2, 3]尋遍不著軀幹在哪的研究團隊表示,所謂的「觸角」或「腕」,其實是頭的延伸。[5]總之,以前的那一堆假說全錯,而且海膽等其他棘皮動物,很可能也是這種只有頭的情形。[2]換句話說,符合最新科學描述的派大星,應該是顆嘴巴貼著海床,沒穿褲子的頭,靠著周圍密佈的管足移動、覓食。[5]

「哦~」派大星恍然大悟。圖/SpongeBob SquarePants on GIPHY

多數動物發展出兩側對稱的身體後,不會再走回頭路。[2]海星倒著幹就算了,還在途中搞丟了軀幹,而且不曉得是什麼時候遺失的。研究團隊等於才剛解開一個謎團,馬上又發現了新的問題。接下來可得埋首化石堆,弄清楚海星在演化的過程中,發生了什麼事。[5]

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. List of SpongeBob SquarePants characters’. Wikipedia. (Accessed on 05 NOV 2023)
  2. Nature Video. (02 NOV 2023) ‘How would a starfish wear trousers? Science has an answer’. YouTube.
  3. Formery L, Peluso P, Kohnle I, et al. (2023) ‘Molecular evidence of anteroposterior patterning in adult echinoderms’. Nature.
  4. SpongeBob SquarePants: Your Shoe’s Untied/Squid’s Day Off’. IMDb. (Accessed on 03 NOV 2023)
  5. Davis N. (02 NOV 2023) ‘Starfish ‘arms’ are actually extensions of their head, scientists say’. The Guardian, Australia.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

3
1

文字

分享

0
3
1
研究自閉症成因的新思路:環狀 RNA——專訪中研院基因體研究中心莊樹諄研究員
研之有物│中央研究院_96
・2023/09/22 ・5439字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|寒波
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

自閉症研究的新方向

臺灣民眾大概都聽說過「自閉症」這個名詞,自閉症是腦部發育障礙導致的複雜疾病,同時受到先天遺傳以及後天環境因素的影響,具體成因依然是個謎,科學家須對遺傳調控方面有更多了解。中央研究院「研之有物」專訪院內基因體研究中心的莊樹諄研究員,他的團隊結合生物學、資訊學以及統計學方法,發現自閉症的風險基因與 RNA 之間有複雜的交互作用,在自閉症患者與非患者的腦部有很大差異。如果持續研究 RNA 的調控機制,或能開闢新的方向進一步理解自閉症。

遺傳性疾病成因——致病基因

根據衛生福利部 2023 年統計數據,我國自閉症患者超過一萬九千人。自閉症的全稱為「自閉症譜系障礙(autism spectrum disorder,簡稱 ASD)」,常見症狀是溝通、表達、社交上有困難,經常出現反復固定的狹窄行為,目前尚無有效的治療藥物。雖然經典電影《雨人》的主角雷蒙或是韓劇《非常律師禹英禑》的禹英禑都令人印象深刻,不過天才或高智商的自閉症患者只是極少數,而且不同患者的症狀輕重差異很大,故稱之為「譜系」(spectrum)。

理解遺傳性疾病,可利用遺傳學與基因體學的研究方法,比較患者與非患者之間的遺傳差異,便有機會尋獲致病的遺傳成因。過往研究得知,有些遺傳性疾病只取決於單一或少數基因的強力影響,例如亨廷頓舞蹈症(Huntington’s disease)、纖維性囊腫(cystic fibrosis)等,致病原因較為單純。

自閉症自然也受到先天遺傳基因影響,然而,它涉及許多影響力不明顯的基因,而且影響每名患者的基因又不盡相同,讓遺傳與症狀的關係更加複雜。如果從 RNA 研究路徑出發呢?RNA 是核糖核酸,具有承載 DNA 訊息和調控基因等功能,相比於其他疾病,在 RNA 層次研究自閉症的另一挑戰是取樣極為困難,自閉症患者的病因位於大腦內部,通常無法直接從人腦取樣分析。所幸的是,若檢視去世者捐贈的大腦樣本,仍有機會一窺自閉症的腦內奧秘。

-----廣告,請繼續往下閱讀-----

莊樹諄分析的數據來自公共存取的 Synapse 資料庫,包括上百位自閉症患者與非自閉症者的資料。人數乍看不多,卻已是當今想同時探討同一個人的基因體(DNA 層次)與轉錄體(RNA 層次)間因果關係的最佳的選擇。藉由此一資料庫蒐集的人類腦部組織轉錄體資料,可全面探討各式各樣的 RNA,包含信使 RNA(messenger RNA,簡稱 mRNA)、小分子 RNA(microRNA,簡稱 miRNA),以及莊樹諄鎖定的研究目標:環狀 RNA(circular RNA)

自閉症成因不明,目前尚無治療用藥物。有自閉症的人需要社會與家人的支持及陪伴,透過療育和行為輔導的協助,慢慢活出自我。
圖|iStock

不能轉譯,但似乎會互相影響?非編碼 RNA

莊樹諄的教育背景是資訊學博士,博士後研究的階段投入生物資訊學,之前主要從事 RNA 與靈長類演化方面的研究,探討多樣性切割、RNA 編輯(RNA editing)等議題,環狀 RNA 則是他近年來特別感興趣的題材。

根據生物資訊學的預測,環狀 RNA 這類長鍊的 RNA 分子有數萬個,但實際上有多少仍不清楚。它們在大腦神經系統特別常見,似乎涉及許多基因調控的工作。莊樹諄目前最關注環狀 RNA 對自閉症的影響,不過他指出這番思路不限於自閉症,阿茲海默症、帕金森氏症、精神分裂症(schizophrenia)等疾病也能用同樣的方法探索。

不過,什麼是環狀 RNA 呢?按照序列長度、作用,可以將 RNA 分為很多種類。DNA 轉錄出的 RNA 經過處理,有些形成 20 多個核苷酸長的短鏈 RNA,如 miRNA 屬於此類。一些較長鏈的 mRNA 又會轉譯成氨基酸,產生各式蛋白質。還有些長鍊的 RNA 不會轉譯,仍然維持長鍊 RNA 的形式發揮作用,統稱為長鍊非編碼 RNA(long noncoding RNA,lncRNA),莊樹諄研究的主角環狀 RNA 大致上被歸屬於一種非編碼 RNA。這麼多種類的 RNA 彼此會互相影響,導致複雜的基因調控。

-----廣告,請繼續往下閱讀-----
長鍊非編碼 RNA(lncRNA)是 Pre-mRNA 選擇性剪接的產物,根據不同的生成方式,產生各種類型的環狀 RNA。
圖|研之有物(資料來源|International Journal of Oncology

由 DNA 轉錄而成的 RNA 是線形,至於「環狀」RNA 一如其名,是 RNA 長鏈首尾相接後形成的環形結構,相比線形 RNA 更加穩定,不容易遭到分解。這些長期存在的圈圈,假如序列可以和短鏈的 miRNA 互補,兩者便有機會結合在一起,讀者可以想像為類似「海綿」(sponge)的吸附作用。

miRNA 原本的工作是結合 mRNA,使其無法轉錄為蛋白質,抑制基因表現。可想而知,一旦 miRNA 被環狀 RNA 吸附,便無法再干擾 mRNA 作用,失去抑制基因表現的效果。因此環狀 RNA 能透過直接影響 miRNA,來間接參與調控其他的下游基因。這便是環狀 RNA 的許多種調控功能中,最常被研究的一種。

左圖是 miRNA 抑制 mRNA 轉譯的一般流程。右圖是環狀 RNA 像海綿一樣吸附 miRNA,讓 miRNA 原本抑制 mRNA 轉譯的「剎車」功能失去作用。因此環狀 RNA 透過直接影響 miRNA,就能間接參與調控其他的下游基因。
圖|研之有物(資料來源|Frontiers in Cardiovascular Medicine

自閉症的成因要往腦部深究,環狀 RNA 又在腦部表現最多,使得莊樹諄好奇當中的奧秘。然而儘管如今 RNA 定序已經很發達,環狀 RNA 由於結構的關係,一般的 RNA 定序方法無法抓到這類環形分子。莊樹諄指出這也是 Synapse 資料庫的一大優點,此一資料庫罕見地包含能找出環狀 RNA 的 RNA 定序資料,配合 miRNA、mRNA 與基因體等資料交叉分析,才有機會闡明環狀 RNA 的角色。

尋找環狀 RNA 和自閉症的關聯

莊樹諄率領的團隊已經發表 2 篇環狀 RNA 與自閉症的研究論文,第一篇論文著重於尋找哪些環狀 RNA 和自閉症有關,研究假設是環狀 RNA 透過 miRNA 間接影響自閉症風險基因 mRNA 的表現。由於環狀 RNA、miRNA 和 mRNA 都多達數萬個,需要統計分析的幫忙。

-----廣告,請繼續往下閱讀-----

首先,將樣本分為有自閉症/無自閉症。要注意每個自閉症患者的基因表現仍有差異,納入夠多樣本一起比較,才有機會看出端倪。

接著,尋找環狀 RNA 和風險基因有顯著相關的搭配組合。例如:高比例自閉症的人,某個環狀 RNA 含量較高時,某個風險基因的 mRNA 表達量也較高,那這組環狀 RNA 和基因就存在正相關;反之則為負相關。

不過相關性很可能只是巧合,所以莊樹諄團隊比對序列,找到符合上述相關性的中介因子「miRNA」。最後再觀察「當排除 miRNA 影響時,環狀 RNA 與風險基因的顯著關係即消失」的組合,這些消失的組合,就是真正共同參與基因調控的「三人組」(環狀 RNA、miRNA、mRNA)。

一番分析後,篩選出的環狀 RNA 共有 60 個,其中涉及與 miRNA、mRNA 的組合總共 8,170 組。人類一共 2 萬個基因,與自閉症有關的調控網路就有 8,000 組之多,數字相當可觀,顯示環狀 RNA 的重要性。莊樹諄用統計手法找出的自閉症風險基因,和過去科學家已知的部分風險基因相符合,未來可以繼續探究在這 8,000 組調控網路中,有哪幾組是真的作用在生物上。

-----廣告,請繼續往下閱讀-----

在資訊與統計分析之外,莊樹諄的團隊也有人進行分子生物學實驗,驗證 RNA 調控網路的相互影響。以體外培養的人類細胞為材料,人為誘導遺傳突變,精確分析特定環狀 RNA 在細胞內分子層次的作用。實驗證實選取的環狀 RNA,確實會結合 miRNA,又影響 mRNA 的表現。

環狀 RNA 會取消原本 miRNA 抑制 mRNA 轉譯的「煞車功能」,進而影響自閉症風險基因的表現。
圖|研之有物(資料來源|中研院基因體研究中心

基因調控是什麼?

莊樹諄強調,使用資料庫的公開資料,好處是經過多方檢視,避免資料品質不一致的問題,缺點是大家都能取得數據,必須要跳脫既有的思考模式才能發現新的結果。他在環狀 RNA 議題的新思路,成為第二篇論文的內容:探討環狀 RNA 的遠端調控(trans-regulation)對自閉症的影響

基因的表達會受到基因調控元件(regulatory element,一段非編碼 DNA 序列)的影響,若調控元件就在基因附近,稱為近端調控(cis-regulation);如果調控元件不在附近,甚至位於另一條染色體上,則為遠端調控。

研究基因調控,通常近端比遠端調控容易,因為近端調控元件(cis-regulatory element)的位置就在基因旁邊,不難尋找;但遠端調控卻沒那麼直觀,作用機制也比較難以想像。實際上常常能發現一個基因的表現,受到多處近端調控,加上多處遠端調控的影響。如果想全方位認識一個基因的表現與調控,最好能都能得知近端與遠端的影響,否則難以掌握調控的全貌。

-----廣告,請繼續往下閱讀-----

莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 參與?具體說來就是某個調控位置,先近端調控其周圍的環狀 RNA 基因,再藉由環狀 RNA 影響基因體上其他位置的基因表現,發揮遠端調控的效果。

如圖顯示,環狀 RNA 表達數量性狀基因座(circQTL)近端調控了環狀 RNA,遠端調控其他基因。莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 的參與?
圖|研之有物(資料來源|Molecular Psychiatry

為了避免用語誤解,有必要先解釋一下什麼是「基因」。基因的概念隨著生物學發展持續改變,如今一般人熟悉的定義,基因是由 DNA 編碼序列構成,能轉錄出 mRNA,再轉譯為蛋白質的訊息載體。不過若將基因定義為會轉錄出 RNA 的 DNA 序列,那麼即使沒有對應的蛋白質產物,只要其衍生的 RNA 產物有所作用,也能視為「基因」,如 miRNA 基因、mRNA 或長鏈非編碼 RNA 基因。既然是有 DNA 編碼的基因,便會受到近端、遠端調控位置影響。

探索遠端調控機制有很多想法,莊樹諄可以說又打開了一條新思路。遠端調控位置不在基因旁邊,亦即基因體任何地方都有機會。假如直接挑戰基因與遠端調控位置的關聯性,可能相關的數量可謂天文數字,而且缺乏生物性的理由支持,找到的目標往往令人半信半疑。

莊樹諄引進環狀 RNA 涉及其中的可能性,尋找「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,大幅縮小了搜索範圍。

-----廣告,請繼續往下閱讀-----
莊樹諄透過「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,找到環狀 RNA 參與遠端調控的證據。
圖|研之有物(資料來源|莊樹諄

一番分析後,研究團隊從自閉症患者的基因體上,定位出 3,619 個近端調控的 circQTLs,這些表達數量性狀基因座相當特殊,可能藉由直接或間接遠端調控兩種模式來調控遠端基因(如上圖)。而這 3,619 個 circQTLs,與環狀 RNA、遠端基因三者形成了八萬六千多組的遠端調控網路。接著團隊使用了不同的統計方法,其中 8,103 組通過多重統計測試,顯示較高的機率是屬於間接遠端調控模式。

莊樹諄團隊透過統計手法,找到相當多基因和調控路徑,雖然目前仍不清楚它們影響自閉症的具體細節,卻無疑讓我們新增一分對自閉症的認識。

莊樹諄指出,這套統計方法或可應用至人類的其他複雜疾病(如思覺失調症),找出基因調控的多個可能路徑,提供臨床醫藥研發更多線索。

生物與資訊的跨領域結合

訪談中問到:為何會從資訊科學跨入到生物領域?莊樹諄回憶,1998 他博士班畢業那年才第一次聽到「生物資訊」這個詞,他基於對生命科學的興趣,以及因為內在性格想往學術轉型的想法,引領他到了中研院。

-----廣告,請繼續往下閱讀-----

莊樹諄接著說,2003 年李文雄院士延攬他進入基因體研究中心,之前他們不曾認識。他感謝李院士帶他進入了分子演化的世界,就此打開了研究視野。在剛開始成立自己的實驗室時,缺少人力,李院士讓當時的博後陳豐奇博士(現為國衛院群體健康科學研究所研究員兼任副所長)與他共同工作。莊樹諄強調,他所有分子演化的觀念與基礎,都是陳博士幫他建立的,如果說陳博士是他的師父,那李院士就是師父的師父了。

如今,莊樹諄在中研院的研究生涯邁入第 25 年,從資訊學背景投入生物學研究,大量使用統計工具,他經常需要持續整合不同領域的觀念與工具,推動自己的新研究。在訪談中,他也感謝諸多研究同儕的協助,特別是幾年前建立分生實驗室時,蕭宏昇研究員及其團隊成員的鼎力相助。

莊樹諄的團隊包含資訊、統計、分子生物三個領域的同仁,來自不同領域,傾聽他人意見自然也特別重要,這是他們實驗室的核心價值之一。莊樹諄認為在科學面前,人是很渺小的,需要互相尊重和理解,方能一起解開科學之謎。

最後,莊樹諄特別強調他個人在相關領域的研究,仍有極巨大的進步空間,感謝研之有物的主動邀訪,期望將來能與更多先進交流學習,也企盼年輕新血加入這個生物資訊的跨領域團隊。

莊樹諄期望在環狀 RNA 與基因調控網路的研究基礎之上,可以對自閉症這個複雜疾病的調控機制,提供更多科學線索,幫助臨床上的診斷和治療。
圖|研之有物
研之有物│中央研究院_96
296 篇文章 ・ 3404 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook