0

0
0

文字

分享

0
0
0

勇敢踏出科普寫作的第一步

林大利_96
・2014/08/02 ・2683字 ・閱讀時間約 5 分鐘 ・SR值 537 ・八年級

-----廣告,請繼續往下閱讀-----

995075_848885658497554_733880941119364964_n
第八屆人與自然科普寫作研習營台中場

一個字「寫」,就這麼簡單。

今天是第八屆人與自然科普寫作研習營台中場,參加這個活動時我很確定兩件事情:第一,聽完以後不會搖身一變成為科普高手;第二,生涯第一篇科普文章不會優秀到哪裡去。既然這樣,那這個研習營的重點在哪裡呢?即所謂師父領進門,修行靠個人啊這位施主。你總不會相信聽完林書豪教籃球、聽王建民教棒球,隔天就拿大三元或是球速150公里/小時。科普寫作也是一樣,是需要磨練的功夫。

所以說,科普寫作到底難不難呢?我想就只是萬事起頭難,踏出第一步之後,無論走的快或慢,就會一步一步地走下去了。我參加完活動後,很好奇學員們究竟是胸有成竹躍躍欲試呢?還是戰戰兢兢忐忑不安呢?從Q&A的過程和歷屆活動結束後收到文章的狀況來看,後者似乎多了些。因此,我希望鼓勵菜鳥作者下筆寫第一篇文章,那才是真正的展開磨練歷程,在此之前,聽再多的演講也沒有用。由於活動是要繳報名費的,所以我就不在此報導活動內容,敬請期待明年的精彩內容。

寫第一篇文的需要具備的事情,我認為有下幾個:掌握科學知識、熟悉目標讀者、拿香跟著拜、積極的討論。

-----廣告,請繼續往下閱讀-----

掌握科學知識

你會講故事嗎?科普寫作就是在講科學故事,以科學為基礎撰寫文章,目的在於分享科學知識,科學正是科普文章的最重要元素。以科學知識為基礎,就必須講究客觀與嚴謹這兩個特性。無法掌握客觀的敘述,文章會流於偏見;無法堅持應有的嚴謹,文章會產生漏洞。科學是追求真理的系統性活動,也是人類認識世界的方法。科普文章以科學為基礎,行文老實不豪洨、腳踏實地不嘴砲。證據到哪裡,話只能說到那裡,三分證據便不應說四分話,說七分話便是罪惡。請拿出龜毛來寫文章,對我而言,無論科學論文寫作或科普寫作,「龜毛」無疑是一種美德。

好的科普寫作者不一定要是科學研究者,但是要有能力理解最源頭的科學文獻。2012年,我有幸到印度參與保育生物學研討會,其中一個主題是「如故事般的科學:對大眾的科學普及教育 」。與談人是我唯二的科普寫作偶像之一,科普作家大衛.奎曼(David Quammen)先生(另一位是Carl Zimmer先生)。他的著作包括:多多鳥之歌鬣蜥大飛行樹在古拉旺荒原哭泣、數篇國家地理雜誌的文章,以及圖文版的物種起源

奎曼先生平時有閱讀學術期刊的習慣,也積極參與學術研討會,在會議空檔振筆疾書,記下新知與靈感。奎曼先生談到,科普作家像是科學家的發言人,必須有人對外向大眾說明科學研究的成果與進展。這些人也被稱為「科學翻譯者」(scientific translator)。「科學翻譯者」並非單純的語言翻譯,而是對科學方法、理論與限制有一定程度瞭解,不須具備相關領域的學位,首要任務是將生硬的科學研究報告「翻譯」成活靈活現的文字展現給社會大眾。他們必須瞭解知識的來源,淺顯易懂地將複雜的科學研究表達出來。

-----廣告,請繼續往下閱讀-----

哇!寫第一篇文章之前需要去讀這麼多學術文獻嗎?我倒覺得這可以與寫作的磨練過程並行,第一次寫文章,只要先掌握自己手上有幾分證據,話只能說到哪裡,這樣就夠了。後續的進步會由讀者的回饋、編輯和審查委員的意見來逐漸磨練。

300464_441086455944145_904703667_n
科普作家大衛.奎曼(中)先生(本圖純屬炫耀,跟偶像合照真害羞>////<)

熟悉目標讀者

優秀的科學翻譯者,不僅須具備清楚的邏輯思維,更需化繁為簡但不失其旨的能力。科學推廣要站在讀者的觀點,揣摩不同年齡層、教育程度的讀者吸收知識的習慣。寫作科普文章之前,要想清楚是瞭解你的「目標讀者」,才能有效的將科學新知傳達出去。例如我在自然保育季刊寫的文章,目標讀者是自然觀察愛好者、生態演化相關領域的大學生或研究生,我就不會從基礎知識談起,而是直接進入議題。如果是在國語日報科學版,就會需要從解釋名詞開始,需要帶點簡白活潑的語氣。如果目標讀者是普羅大眾,那就設定在高中三年級左右的程度來寫,不要寫得比報紙的文章還難。在泛科學的文章,會考慮添加一點網路鄉民用語和元素,增加一點惡趣味,但是不應該氾濫。

不同的寫作平台會有不同的受眾,科普文章的寫作方式和風格也應該做些許的調整。其實寫久了,會有很多跟讀者互動的經驗,作者會影響讀者,讀者會影響作者,會逐漸習慣特定的讀者群。像我就超級不擅長對小學生寫文章,那要感謝國語日報編輯的修改建議。

-----廣告,請繼續往下閱讀-----

拿香跟著拜

談到科普文章的架構和邏輯好像嚇到不少人,覺得門檻好像很高,需要具備很多條件和工夫,請承轉合聽起來很抽象。遇到這種狀況,我會建議最好的方法是「拿香跟著拜」,換句話說,我要你去模仿(不是抄襲!)好的文章的寫法。讀好的文章除了瞭解文章要傳達的訊息,更應該探討作者在段與段之間、句與句之間、字與字之間的鋪陳。讀到好的文章,不妨試著把每一段的主旨用一句話寫出來,試著參透作者的脈絡。找出一兩篇文章的脈絡之後,嘗試把自己想寫的題材以相同的脈絡塞進去看看。寫第一篇文章不用先焦慮於便當盒的設計好難,先試著把食物放到適當的格子裡。這也是為什麼,多讀好的文章,才能寫出好的文章。如果老是讀不好的文章,那寫作能力也就僅止於此,很難進步。

10590680_849032111816242_195856342041610532_n

積極的討論

科普寫作除了原則之外,還有非常多的細節,這些細節難以一一細數,最好的方法就是親身經歷。換句話說,要不斷的寫文章,並且不斷的被改、被電、多接收讀者的意見回饋。其實不太需要擔心文章寫得不好,因為絕大多數人第一篇文章都寫得不好,一開始被電是很正常的,沒什麼好害怕。而且,有人願意幫你改文章是難能可貴的一件事,沒有收到什麼修改建議,才真正需要憂心。同樣的,自己也可以給別人的文章一些建議,這裡的建議不是流於指責或批評,而是積極討論怎樣可以讓文章寫得更好。以前在練習科學論文寫作的時候,就是跟同儕交換改對方的文章,然後討論為什麼這麼改。

-----廣告,請繼續往下閱讀-----

因此,不斷的寫、被改、修正、再被改,就是鍛鍊科普寫作能力的不二法門,寫好文章的能力都是在電與被電之間被磨練出來的。因此,不必害怕被電、害怕門檻、覺得很難,這些都是必經之路,唯有知恥雪恥、屢敗屢戰才會逐漸改進缺點、形塑風格、變威變大。

趕快勇敢的把處女作寫出來,多方請教修改意見,下一篇會更好。

好康的在哪裡

-----廣告,請繼續往下閱讀-----
文章難易度
林大利_96
19 篇文章 ・ 8 位粉絲
來自森林系,目前於特有生物研究保育中心服務。興趣廣泛,主要研究小鳥、森林和野生動物的棲地。出門一定要帶書、對著地圖發呆很久、算清楚自己看過幾種鳥。是個龜毛的讀者,認為龜毛是一種科學寫作的美德。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
寫文章搞科普有什麼用!還不是輸給 youtuber?──2019泛知識節
泛知識節
・2019/05/15 ・4395字 ・閱讀時間約 9 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

前有唐綺陽國師,後有理科太太,在知識傳播上,這些「明星」總是一浪接一浪地帶來超高流量,將無數的泛科作者打趴在沙灘上──可‧‧‧‧‧‧可惡,說什麼「我們的流量總和輸給一個 youtuber」、「沒流量為什麼還要一直寫文章」或是「為什麼這群寫字的不是 youtuber」未免也太小看人了吧!你以為這就是全部了嗎?

本次知識節特地邀請了十六位講者,各以 100 秒的超短時間回答主持人辛辣且意圖使人入坑的問題──既留下自己的科普心法,也大吐 youtube 時代對知識經濟的苦水(?),到底最後這些作者是不是留下一句:「真香!」呢?

讓泛科作者們來跟你聊聊知識經濟和 youtuber 趨勢吧!

你是誰?怎麼不當 youtuber?有賺到「知識經濟」嗎?

程威銓:科的層面、普的實踐,兩者的距離值得玩味

近期「理科旋風」橫掃科普圈,先發登場的科普心理作家海苔熊(程威銓)認為,有別於泛科作者多將重點擺在「科」的層面,理科太太更在意的是「普」的實踐,而由市場給予的反饋可知,在兩種策略之間,勢必還有更多值得玩味之處。

-----廣告,請繼續往下閱讀-----

當主持人廖英凱問道,程威銓其實相當早期便開始經營臉書粉專,同時也跟唐國師合作過,在傳播科學文章時有沒有經營需要注意之處,或者另有秘訣呢?對此,程威銓認為:最重要的莫過於「你相信什麼價值觀?」這也包含了科學的價值觀在內。雖然價值觀會隨著時間變遷,但作者自己要知道自己在做些什麼?作品是否與受眾產生關聯?否則便容易侷限在自己的世界內。

黃貞祥:「科」是文章的核心概念

身為清華大學助理教授的黃貞祥老師笑稱,自己的夢想便是複製侏儸紀公園,而現在正在路上呢!至於為什麼不當 youtuber 呢?老師則是自謙顏質不高,且製作影片相當耗時、成功者也少──不過當主持人提議如果另有團隊能協助處理影片,作者只要解說自己的想法就可以時,老師卻相當爽快地答應了!

話雖如此,但在老師眼中「影片」與「文章」仍是取向截然不同的媒材,難以說換便換。以影片而言,「普」是其重心所在,需要同時兼顧娛樂;但就文章來說,「科」才是核心概念,娛樂反而是輔助了。

曾文宣:即時回饋,讓作者更有感覺

號稱「視覺系科普作家」的曾文宣,自述從開始寫文章之後,顏質與身材便漸漸走樣。而由於他的興趣在動物生殖學,所以外號又稱「陰莖王」、「乳頭王」──這別緻的稱號倒引起眾人好奇,這些知識都從哪裡來的?曾文宣解釋,其實學校所學跟科普內容關係較少,更多的是靠自己的興趣鑽研網路資源而來。

-----廣告,請繼續往下閱讀-----

而同時經營臉書社團、粉絲專頁與在泛科學都有產出的曾文宣,免不了遭主持人提問經營三者有何不同?曾文宣笑說,作為科普寫手,當「文章出不去」的時候最是痛苦了,因此泛科學較長的編輯與審理時間較容易讓人卻步,而在臉書發表文章則有人提供即時回應,會比較有感覺。至於粉專與社團的部分,則是一個發表鱷魚相關內容,另一邊則提供演化文章分享。

如果能獲得即時回饋,對於作者來說會很有感。圖/Giphy

陳俊堯:希望科學家成為 youtuber 的後盾

慈濟大學生科系最近才剛出版《細菌好朋友》一書的陳俊堯老師,被問及此書時直言:「細菌很可愛,請大家愛上細菌!」

至於為什麼是用寫書,而非當一個 youtuber 呢?陳俊堯則戲稱自己的臉不夠好看、也不夠好笑,而且製作影片會花上許多時間。陳俊堯老師認為,youtube 影片需要很多資訊,身為科學家應該成為 youtuber 的後勤,提供資訊來讓他們轉換。

-----廣告,請繼續往下閱讀-----

林大利:龜毛,是科學寫作的美德

林大利以三句話簡潔地「科普」了一下自己──在特生中心當助理研究員、在澳洲當博士生、家裡開漫畫店。林大利認為,做科普最重要的就是龜毛,這也是科學寫作的美德,有任何不妥的地方都應該修正過來;至於 youtuber… 則因為自己有全職工作,還有兩個小孩要帶,也就沒有時間與金錢來當 youtuber 了。

同時在翻譯方面也有所長的林大利被問及,與翻譯相比,自己創作需要的能力是否有差別?哪一種比較累呢?林大利解釋,寫作需要對知識的全面理解才能寫,翻譯則只需要傳達意思就好──但後者其實也經常發現作者的錯誤。

作答尾聲時被問到「對碩士生而言,既有文獻閱讀能力又有寫作能力,應該先接觸科普寫作還是翻譯呢?」林大利妙答:「先拿到畢業證書。」

各位,請先好好畢業好嗎~圖/Pixabay

-----廣告,請繼續往下閱讀-----

寒波:更喜歡文字的表達方式

經營粉絲專頁與同名部落格《盲眼的尼安德塔石器匠》的寒波,對於為什麼不做 youtuber 的問題倒是回答得相當直接,除了技術方面的問題之外,實際上由於文字與影音表達的方式不同,自己較為習慣前者,因此對於 youtuber 這條路興趣缺缺。

張瑞棋:想用喜劇做科普,大家快一起加入!

今天張瑞棋顯然是有備而來,被問到為什麼不當 youtuber 時竟然隨口就來上一段 rap,與主持人站在了同一個立場,力推眾作者跳坑。

而就在這段精彩的 rap 表演後,主持人打蛇隨棍上地問道,以 rap 當作科普媒介在國外早有先例,張瑞棋有想過要這樣做嗎?張瑞棋馬上答覆道:「這樣格局太小了。」比起做 rap 科普,他更希望弄一個情境喜劇,在其中就能夠涵蓋許多表演形式;至於自己呢?比較希望當製作人或者編劇,希望大家能一起加入!

江松樺:想成功跨域?多爬文、多提問

江松樺不僅經營臉書粉專《遠古巨獸與他們的傳奇》,也博曉許多古生物知識,但幾乎沒有人知道他原是心理學研究出身,是後來接觸到許多喜歡恐龍的小朋友,從而開始研究恐龍,才走上了古脊椎生物的領域。

-----廣告,請繼續往下閱讀-----

但跨了這麼大一個領域是怎麼成功的?江松樺答道,其實研究的方法及概念是差不多的,至於生物相關的知識則要靠自己慢慢爬文,此外,與專業人士當朋友、多請教,慢慢就知道了。但為什麼小朋友會喜歡恐龍呢?江松樺想,可能小朋友喜歡新奇事物,對日常沒接觸過的東西會抱有好奇心吧。

小朋友最愛的恐龍,只要有心也能學起來。圖/Pixabay

林希陶:想要自在,不扛偶包

作為心理師的林希陶一上來便先回答了剛剛江松樺遇到的問題──為什麼小朋友會喜歡恐龍呢?其實有些小朋友喜歡特別的分類或動物構造,這些小孩可能有一些亞斯特質,但感興趣的也未必是恐龍,例如有些人可能喜歡陰莖跟奶頭(?)

當提到為什麼不當 youtuber 的時候,林希陶則說,考量到背後所需要付出的心力,自己本身也另有正職,再加上還要帶小孩;同時也希望自己可以自在一點,沒有公眾人物的包袱,因此就暫不考慮當 youtuber 了。

-----廣告,請繼續往下閱讀-----

林宇軒:「科」不成問題,「普」較需練習

林宇軒說到,自從某次跟泛科學合作之後,便開始寫食安與農藥相關的文章了。會想要從事科學傳播的原因,主要是自己沒有那麼愛做實驗,科普傳播做起來開心許多。

不過,科普還是會遇到讀者沒有點開網站、沒有點讚等問題,同時,要推廣給許多人也有一定難度──對於科學背景的人而言,「科」不成問題,反倒是「普」較需要練習。至於不當 youtuber 的原因,還是因為自己不愛拋頭露面、比較喜歡在幕後,更希望某日可以當上編劇。

蔣維倫:沒人沒錢沒時間,與 youtuber 真無緣

說起要不要當 youtuber 這件事,蔣維倫表示因為沒人沒錢,後製剪接還需要大量時間;除此之外,就算是直播,有些東西如醫學史或醫學相關內容,沒有畫面也很難呈現,因此暫無計畫。

有趣的是,蔣維倫本身供稿的單位相當多元,為什麼會出沒在如此多的媒體呢?蔣維倫表示,一開始進入泛科學也是單純翻譯國外的新聞稿或者論文,後來覺得這樣做好無聊,因此想要來寫自己的東西,況且自己感興趣的事物在中文世界往往沒有出現過呢。除此之外,像是《鳴人堂》則是朱家安找上門來;而自己對某些社會議題看不慣,也就有投稿發表。

-----廣告,請繼續往下閱讀-----

Shark: 策展是趨勢,實際來展場聊聊吧!

身為作者中少數具策展經驗的 Shark,談起從事科普的契機是源於 2016 年的知識節,自那時起入坑寫作,寫著寫著便有人找上門來邀請策展。倒不是說是因為寫作而策展,而是因為自己本身便有在做數學藝術品,剛好藉著寫作得到這麼一個策展機會。此外,Shark 去年也剛申請到了國家文化藝術基金會的經費參展。

在台灣做科學藝術展覽算是小眾嗎?Shark 表示,其實科學藝術展覽並不少見,在文章中也多有提及。另一方面,自己也是因為寫過論文,感到單純用寫的好像有點無聊,因此才把它實際做出來。林家妤也認為,現在策展是一種趨勢,自己更偏好正面對決,邀請大家實際到展場來聊聊。

想要好好溝通數學,不妨在展場直球對決!圖/Pixabay

潘昌志:想突破文字同溫層?或許可試試影像和漫畫

不落張瑞棋後的他,一上台便開始唱起歌來。

經營粉絲專頁《震識:那些你想知道的震事》的潘昌志,自己本身是寫地球科學為主,而現在多著墨在地震方面的文章。雖然說從前不曾有過當 youtuber 的構想,但近年來確實有在考慮:如何可以讓科普傳播有更多效果?

潘昌志認為,寫字的時候會將個人的性格隱藏起來,在影像、歌唱或純文字的表現形式比對裡,雖然沒有特別的數據支持,不過影像與漫畫可以穿透文字的同溫層,接觸到不同的人。

廖英凱:單純與人講話,容易得多

麥克風終於交回到主持人手上,富有廣播經驗的廖英凱面對「為什麼不當 youtuber」的問題答道,自己可能沒辦法做到像是啾啾鞋或者理科太太的程度,因為看著鏡頭對自己來說比較困難;相反的,單純與人講話還容易得多。

至於許多創作者都會面臨到的「業配」問題,廖英凱說,撰稿與主持會有相應費用,至於業配則需要看內容物才能斷定,不希望自己在賣弄科學招牌。要如何像理科太太一般有個說故事的手法,既能獲得生意,又能不違背科學,還是有學問在的。

雷雅淇:想讓科普平台更穩定,推動創作者前行

身為泛科學的總編輯,面對「理科旋風」則有不同的看法。雷雅淇認為,單一、兩個人走紅確實有些象徵意涵,但個人發現這件事可行的做法,應該是讓這個平台更加穩定,因此,她想要做的事是去「推」這些創作者,而不是當衝在最前面的人。

而說泛科學看似沒有搭上這波風潮,倒也不那麼完全。過去兩年泛科學確實持續有在開直播、做動畫,不過在商業、推廣與科學間的界線,要抓得好也沒有那麼容易便是。

身為泛科學的總編輯,雷雅淇更希望能推著大家前行。

余海峯:乘風而行,未嘗不好

從香港遠道而來的余海峯老師自然是逃不過主持人的麥克風了。余海峯老師過去在臉書、部落格都發表過文章,對於科學傳播要改以 youtube、唱歌或漫畫之類的其他方式,認為比起文章會有更多人看、能接觸到更廣泛的族群。雖然這些媒材未必跟科普有關係,但要是能順風搭上也很好呢。

-----廣告,請繼續往下閱讀-----
泛知識節
24 篇文章 ・ 4 位粉絲
從「科學太重要了,所以不能只交給科學家」,到「科學家太重要了,所以不能只懂科學」,再到「知識太重要了,所以不能讓它關在牆裡」,「泛知識節」為泛科知識召集之年度大型活動,承繼 PanSci 泛科學年會的精神與架構,邀請「科學」「科技」「娛樂」「旅行」四個領域的專家與耕耘者,一同談說、分享、攻錯。 這是一個大型的舞台,我們在此治茶拂席,虛位以待,請你上座。