Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

「訓練有素」的科學人,請多講點廢話!揭密科普寫作三大心法──2019泛知識節

旻諭_96
・2019/05/06 ・2903字 ・閱讀時間約 6 分鐘 ・SR值 469 ・五年級

-----廣告,請繼續往下閱讀-----

你想分享很多有趣的科學知識嗎?

你可能是自然組高中生、念自然科學相關科系的大學生、研究生,總是想告訴大家科學有多好玩,卻發現別人都聽不懂自己在說什麼QQ

科學知識這麼複雜又難懂,怎樣才能用淺顯文字好好傳播、讓讚數多多呢?《2019 泛知識節》邀請到慈濟大學生命科學系,江湖上人稱「細菌人」的陳俊堯教授,來聊聊寫科學故事的三大心法,講個「非專業人士願意聽的科學故事」。

從前從前,與科普文的初相見

科普文章這麼難寫,怎麼有傻瓜要做這種事?根據陳俊堯的觀察,總結了以下幾種接觸科普文的起點:

1. 老闆交代的任務:「阿就單位要做科普推廣,長官想要發新聞稿,打知名度,所以被要求的。」(無奈貌)

-----廣告,請繼續往下閱讀-----

2. 想分享所學:聽到有趣好玩的新知,想把所學跟別人分享。「我覺得這東西太棒了,我想要全世界的人都知道!」

3. 做筆記反思自爽:還有一種人,是為了做筆記反思用的。像是創部落格來記錄自己的學習筆記,除了怕十年後的自己忘記之外,也為了「逼迫自己搞懂」。當真的自己思考、重組過後,才是真的懂了,也才有辦法講一個完整的故事給別人聽。「我寫東西是為了讓自己更懂,你們看不看跟我沒有關係!」

「因此,我們得證,大學生、研究生都應該交科普文當各科作業,占百分之五十不然就全部當掉!」(陳俊堯,2019)

好了各位,沒交科普文的就當掉喔!圖/Pixabay

什麼科學故事才吸眼球?把握說故事的 4C 原則!

不管你是被老闆推下坑,或是想告訴全天下你的新發現,還是為了反芻筆記寫爽的,要怎麼寫吸引人的科學故事呢?請參照寫故事的 4C 原則:

  1. Causality(因果關係)
  2. Conflict(衝突)
  3. Complication(複雜難題)
  4. Character (主角)

仔細想想,一篇科學研究論文就包含其中三個奧義:有清楚的因果關係,有要解決的研究問題(故事中的「衝突點」),也有研究意料之外的發展(複雜難題)。

-----廣告,請繼續往下閱讀-----

「你看,研究論文裡,好故事的條件四項有三項都符合!你不覺得這就是天生最好的素材可以讓你練習寫科普文嗎!」陳俊堯老師眼睛閃閃發亮地說。可是,研究論文中有一大堆專有名詞,一個研究裡面又有好多複雜概念,該怎麼起筆才好呢?

今天就要來公開科普寫作的三大秘辛:話不能省、料不能多、深埋爆點。

話不能省:訓練有素的科學家們,請多講點廢話

陳俊堯分享,科學家過去的科學訓練總是要求「精簡」,但是寫科普文時,是要寫給非專業人士看的,為了預防讀者腦子轉不過來,勢必要把事情解釋清楚。「任何別人可能會不知道的背景科學知識都要講清楚。不要只講重點、不要只講結論,過程描述清楚,那才是吸引人的地方。」陳俊堯說。

除了避免過於精簡,科學家更要避免掉進「專有名詞的詛咒」。進行科學寫作時,留下和科學故事最相關的專有名詞,把它還原成一般人的語言,好好解釋,至於不重要的名詞,就跳過它吧!

舉例來說,如果你想說:「Bacteroides thetaiotaomicron 屬於腸道裡的優勢菌群,可在大腸分解食物裡的多醣,如纖維素。」

不如改成:「Bacteroides thetaiotaomicron 是我們腸子裡最多的細菌,我們先叫它 Bt 菌。我們吃的菜裡有不能被消化的纖維。Bt 菌本事高強,可以吃這些纖維長大。」

當專有名詞被轉換之後,讀者認知上的負擔就減少了!如果能再跟生活結合:「纖維就是你昨天吃的那個菜裡面,咬不爛的東西。」那讀者對於科學新知的恐懼感就會下降。

-----廣告,請繼續往下閱讀-----
別用專有名詞,把困難概念簡單說。圖/flickr

同樣的,我們也可以「善用比喻」來消滅專有名詞。舉例來說:「運用次世代 DNA 定序技術對土壤樣本進行大量平行定序。」就可以用「幫泥土裡的細菌點名」來類比。

最後,陳俊堯在批改科學家文稿的過程中發現:科學家們看了很多研究論文,寫出來的文章就容易變成「英文文法的中文」。因此寫科普文章時,切記不要被英文綁架了不要倒裝、不要雙重否定、砍掉贅字

料不能多:太多想講的重點,讀者會拉肚子的!

雖說寫科普文章時,話不能省、廢話多說一些,但一定要記得「料不能多」,別給讀者太多硬科學知識,若是用知識淹死讀者,可是會嚇跑人的!萬一想說的重點一集講不完,還可以有續集嘛~

為了讓一集科學故事的知識份量剛剛好,陳俊堯建議科學家使用「派大星揮一拳結構」:「試試看每個故事只上三道菜,也就是破題之後只講三件事情。第一和第二件事是為了鋪陳第三個重點,資訊量不用太多;第三個才是超級無敵大重點,要仔細、認真講!」

-----廣告,請繼續往下閱讀-----
想要文章精簡有趣?試試「派大星貓一拳」結構吧!圖/講者ppt

另外,包裝「料1、料2、料3」的破題跟收尾要怎麼寫呢?陳俊堯說:「破題是把讀者從人間拐進來」也就是先聊生活上的例子,讓讀者知道接下來要講的科學知識跟他們的生活有什麼關係。收尾也要記得把讀者送回人間,就算真的跟生活很無關,不管怎麼樣一定都要牽拖到,讓讀者感覺到回到人間。

而若要將讀者送回人間,可別忘記來點「調味」、加一點人的味道,試著放入能夠引起讀者情緒的內容,像是自己的生活經驗。「有人味的科普文章,人家才會想讀!」

深埋爆點:把驚奇埋在最後引爆

我們說,每個故事只上三道菜,第一和第二道菜,是為了第三道料理的出現。也就是說,寫科普文章時,要慢慢引導大家去嚐嚐第三道菜──就是你深埋在最後的爆點!

那要怎麼做呢?陳俊堯說,「讀者是被拉著走的,他唯一接受到的訊息是你給的文字。請用文字去引導讀者,先把問號塞進讀者腦袋裡,讓讀者在心中產生疑問,最後再把謎底揭曉!」

-----廣告,請繼續往下閱讀-----

另外,科普寫作也可以耍點小心機!為了要抓住讀者的注意力,也可以在文章前段刻意誤導讀者,給讀者很多歪掉的資訊,文末再拉回來解釋到底正確答案是什麼,將正解深埋在最後引爆。

在文章最後請 set 一個爆、點 (boom!) 圖/giphy

教練,我想寫科普文!別急,熟悉主題、設定觀眾再開始

「話不能省、料不能多、深埋爆點」,領會科普寫作的三大秘訣之後,今天回家就可以動筆開寫科普文啦!不過在打開 Word 檔之前,陳俊堯老師還有幾點想提醒大家。

首先,在動筆之前,請先設定對象,想想「你想對誰講故事?」是高中自然組學生、國中生、還是小學五年級的小朋友?

設定好觀眾群之後,記得針對讀者們的知識背景來調整用字,用他們懂的、覺得有興趣的梗來舉例或比喻。萬一忘了針對讀者群調整用字,讀者可能會覺得:「會用這個字一定是老人家,我才不要看這個東西!」因此動筆之前,試著想想自己想要吸引怎樣的人來看文章,寫作的時候,時時把這群人的形象放在心裡。

-----廣告,請繼續往下閱讀-----

再者,寫特定主題的科普文章之前,必須確定自己已經完全搞懂這個主題。「就像各大內容農場或媒體翻譯的科學報導,在對該主題一知半解的情況下,可能會寫出很奇怪的東西。」

如果你都已經準備好了,那就快接受陳俊堯的推坑吧:「今天回家就可以把一篇研究論文寫成 1000 字上下的科普文了!」

-----廣告,請繼續往下閱讀-----
文章難易度
旻諭_96
14 篇文章 ・ 2 位粉絲
大學主修生科,研所跳槽科學教育,目前正努力想要聰明又科學的活著。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
2

文字

分享

1
2
2
原住民祖先見過明亮的南方之星?傳說是真的,而且超過一萬年!
寒波_96
・2023/11/08 ・2777字 ・閱讀時間約 5 分鐘

有些故事代代相傳之下,經歷非常漫長的時光。過去很久以後,五百年、三千年或一萬年,都已經是「很久很久以前」,難以判斷到底多久。2023 年發表的一項研究認為,澳洲南方的塔斯馬尼亞島,有個故事似乎能追溯到超過一萬年前。

塔斯馬尼亞的祖傳故事

大英帝國的調查隊抵達塔斯馬尼亞初期,估計島上約六千到八千位居民;原住民們統稱為「palawa」,不過又能分成多個有所區別的族群。英國人在公元 1803 年建立第一個殖民地,然後,不意外地起爭議。

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

殖民者與原住民的衝突加劇後,1823 到 1832 年間導致約兩百位殖民者及九百位原住民身亡。有些英國人希望能和平解決問題,最終勸誘加上強迫,1829 到 1835 年間將島上的原住民,都成功遷移到位於塔斯馬尼亞和澳洲之間,巴斯海峽的弗林德斯島(Flinders)。

-----廣告,請繼續往下閱讀-----

英國人認為這是一次「友善」的轉移任務。以當時狀況而言,確實算是相對和平的收場,但是慘遭強制搬遷的原住民依然損失慘重,人口以外,他們脫離原本的家園「Lutruwita」,文化、語言幾乎喪失殆盡。

遷徙計畫中,英國人魯賓遜先生(George Augustus Robinson)可謂關鍵角色。他走訪塔斯馬尼亞各地,說服原住民搬家,也對當地風俗文化非常好奇,留下大量紀錄。

這些 1830 年代的紀錄,就像塔斯馬尼亞傳統文化的切片。後來有些原住民重返塔斯馬尼亞,試圖擺脫殖民時,英國殖民者當初搜集原汁原味的資料,也成為重建傳統的材料之一。

魯賓遜等人搜集的紀錄來自多位原住民的說法,其中一個故事相當費解,至少當年魯賓遜無法理解,新問世的論文總算揭開奧秘。

-----廣告,請繼續往下閱讀-----

情節湊不上,是因為發生在太久之前

祖先的遷徙故事,提到他們來自一片大陸;後來大陸被海水淹沒,當時岸邊附近有冰山漂浮。那時望向南方的天空,可以見到一顆很亮的星。

塔斯馬尼亞與澳洲之間的地形。兩地之間原本存在陸橋,海水上升後形成巴斯海峽。圖/參考資料1

塔斯馬尼亞原住民一代一代仰望星空,也建立一些自己的天文學知識,被魯賓遜忠實收錄。那顆南方大星星卻令人費解,因為星空中根本沒有符合描述的那顆星。最可能的對象是老人星(Canopus),也稱為船底座α(α Carinae)。

星空中最亮的是天狼星,第二就是老人星,顯然它非常顯眼,可是位置明顯有差。是原住民唬爛,還是魯賓遜唬爛,或是魯賓遜紀錄錯誤呢?新的分析指出,他們都是正確的,因為一萬兩千年前的星空,老人星確實處於故事中的那個位置。

-----廣告,請繼續往下閱讀-----

首先,故事提到祖先前來的道路被大海淹沒,冰山在岸邊漂浮。對照現代科學知識,能輕易推論這講的是冰河時期結束,海平面上升,淹沒澳洲與塔斯馬尼亞之間的陸橋,形成巴斯海峽,讓塔斯馬尼亞成為一個四面環海的島。

接著是星空為什麼不同?從地球表面仰望夜空,星星的分布位置會由於「歲差」緩慢改變。回溯調整成一萬多年前的星空,老人星的確就在那兒。

地表很多位置都能見到南方明亮的老人星,不同民族、文化各有自己的想像。台灣人即使沒有親眼注意過,也肯定知道老人星,因為這就是福祿壽中的「壽星」,形象化叫作南極仙翁。

有趣的是,中文名字叫老人星,英文名字 Canopus 則來自特洛伊戰爭傳說中的一位年輕人,他是航海家,後來不幸在埃及被毒蛇咬死……所以中國想像這顆星是老人,歐洲卻想像是年輕小夥。

-----廣告,請繼續往下閱讀-----

回溯塔斯馬尼亞 1831 年 8 月 1 日,凌晨 5 點時的星空。圖/參考資料1

難以理解的時候,先忠實紀錄

考慮到魯賓遜紀錄的日期是 1830 年代,更加深故事的真實感,因為當時英國人還不知道「冰河時期結束導致海面上升」。阿加西(Louis Agassiz)首度宣稱冰川歷史的想法要等到 1837 年,更多年後取得較多支持,十九世紀後期才廣為人知。

魯賓遜等歐洲人對聽到的故事內容難以理解,他們或許會聯想到聖經的大洪水,但是完全想像不到冰河時期。所以這些內容,大概更能免於印象或偏好影響,反映忠實的紀錄。

據此推敲,塔斯馬尼亞祖傳故事講的是:「大約 1.2 萬年前海水上升之際,明亮的老人星在那個位置」。如果推論正確,這便是傳承 1.2 萬年的口述歷史,堪稱全人類罕見的文化遺產。

-----廣告,請繼續往下閱讀-----

有人或許會好奇,一些研究認為早在四萬年前,已經有人穿過澳洲,抵達塔斯馬尼亞。可是島上原住民的祖先故事,卻是一萬多年前?

我想可能是因為,記憶對於愈久遠的事情常常會愈壓縮,把更早發生的事情疊加到比較近期,印象很深的事件中。或許原住民的祖先很早就過去,但是海水上升淹沒陸橋令人印象太過深刻,就變成故事的素材。

另一件啟示是,世界上不知道的事情太多了,當你不太理解聽到什麼的時候,不要試著腦補,就照聽到的忠實紀錄下來!

延伸閱讀

參考資料

  1. Hamacher, D., Nunn, P., Gantevoort, M., Taylor, R., Lehman, G., Law, K. H. A., & Miles, M. (2023). The archaeology of orality: Dating Tasmanian Aboriginal oral traditions to the Late Pleistocene. Journal of Archaeological Science, 105819.
  2. Rising seas and a great southern star: Aboriginal oral traditions stretch back more than 12,000 years
  3. GEORGE AUGUSTUS ROBINSON
  4. 老人星名字來源神話人物 Canopus 維基百科

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
激盪全民對科普的想像!Open Call 成果展 5 月 26 日盛大登場
PanSci_96
・2023/05/10 ・1712字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

國科會首度向全國高中職及大專院校廣下英雄帖,舉辦「Open Call 科普 創意松」,得獎名單已揭曉,並將於今(112)年 5 月 26 日在臺北松山文創園區一號倉庫進行頒獎及展示得獎作品,當日將結合國科會科普活動計畫及科普產品製播計畫成果一同展出,讓各界能藉此機會相互激盪對科普的想像!

兼顧科普傳播與社會需求,將學生科普創意轉換為未來社會影響力

聚焦校園年輕世代所舉辦的「Open Call 科普創意松」徵件活動,分「科普創意提案」及「科普短片徵件」兩類,鼓勵高職中職及大專院校學生,透過多元科普傳播模式和影音創作發揮社會影響力。

自去(111)年 8 月底啟動徵件,有將近 90 所學校、400 多隊報名、超過 1200 人次的師生參與。在學子創意孵化的過程中,國科會也邀請業界各領域執牛耳的輔導業師,透過業師陪伴及前後世代的交流互動,優化學子的提案創意並強化其作品未來之可行性。

「科普創意提案」獲獎案例展現出青年學子對於科學教育、環境永續、生 態保育、偏鄉孩童心理輔導等議題的關注與熱情,並嘗試透過創新的科普傳播手法為在地社會議題尋求新解方。

-----廣告,請繼續往下閱讀-----

大專組金獎由來自臺北醫學大學及中國醫藥大學合組團隊「醫線教育」獲得,該團隊跨區域、跨校號召志同道合夥伴,針對疾病診斷邏輯,設計互動式教具與課程,幫助國內外大學生模擬情境以銜 接基礎知識在臨床的應用,獲評審們一致認同是難能可貴的社會實踐行動。

高中職組金獎,由彰化二林工商的「哇哈哈科學服務團」團隊獲獎,該團隊以在地高中職學生為出發點,率先成立科學服務社團,學習科技教育知識,再教導鄰近國中小學童,達到自助人助,進一步儲備種子志願團,由受助者變成助人者,形成良善循環機制,不僅將科學教育資源帶入偏鄉,培養在地科學人才, 且結合科學教育與地方文化,對地方經濟和社會發展有正面且積極的影響。

科普短片類大專組金獎作品為清華大學「清大天文社」之〈進擊的黑洞:類星體〉,該創作短片從熱門的科學新聞切入,呼應天文迷對於黑洞的好奇心, 片中穿插許多令人會心一笑的譬喻與橋段,風趣又不失其意涵。

高中職組金獎作品,是由虎尾高中「動感光波」團隊所創作之短片〈光通訊〉,主要講述以 發射器(燈泡)產生之光訊號,經由接收、轉換成電訊號,進而發出特定音階, 透過生動活潑的表演和拍攝手法,故事情節可愛清新,搭配簡易動畫和資訊圖卡,讓影片具知識性及趣味性。

-----廣告,請繼續往下閱讀-----

當日除了展示 21 個來自校園學子的獲獎科普創意,下午在舞台區會放映獲獎的 11 支科普短片及科普產品製播計畫影片,內容生動更兼具知識性與教育性,讓民眾沉浸於深入淺出的科學知識寶庫與科普視聽饗宴。

精選年度科普活動計畫作品及科普產品製播影片成果同步展出

國科會為持續推動全民科普,使科學教育不僅走入校園、更深入大眾生活,今年首度集結科普相關計畫 45 個團隊共同展出成果,國內長期推動科普、第一線面對學子的科普推手,為本次展覽設計豐富多元的科學演示,將深奧的科研成果轉化為各年齡層易懂的手作互動實驗等,包括循環材料與物件微展覽、 原住民文化數學數位教材、科普桌遊、AI 自駕車模擬行駛、植物染手作體驗、 蝴蝶科普解謎遊戲等有趣又豐富的科普體驗;此外,「數感盃中英文數學詩創作競賽」的創作成果,也將在展場中幻化為 24 公尺長的「數學詩牆」,當縝密精準的數學與柔軟詩意的文學交會,迸發出跨域創作的科普新火花!歡迎大小朋友帶著好奇心一同共襄盛舉!

活動官網

Open Call 頒獎典禮暨科普成果展」活動資訊

  • 時間:2023 年 5 月 26 日(星期五)上午 10:00 ~ 下午 5:00
  • 地點:臺北松山文創園區一號倉庫(信義區光復南路 133 號)
  • 展覽活動詳情請上活動官網:www.opencall-nstc.org.tw
-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。