Loading [MathJax]/extensions/tex2jax.js

1

5
0

文字

分享

1
5
0

濫用 Deepfake 製作換臉影片,有哪些法律責任?

法律白話文運動_96
・2022/01/25 ・5284字 ・閱讀時間約 11 分鐘

  • 作者:黃伊平/執業律師,台北大學法學碩士

編按:在出現Deepfake之後,網路世界進入了「眼見不為憑」的年代。

本次泛科學和法律白話文合作策畫「Deepfake 專題」,從Deepfake 技術與辨偽技術、到法律如何因應。科技在走,社會和法律該如何跟上、甚至超前部署呢?一起來全方位解析 Deepfake 吧!

網紅小玉涉嫌利用人工智能 AI「Deepfake」(深度造假)技術,把多位公眾人物的臉部圖像移花接木到色情影片的主角身上,重製成「換臉影片」,並成立「台灣網紅挖面」社群,供人付費觀看,以獲取不法利益。被害人數眾多,其中不乏藝人、政治人物、知名網紅等。

而未經當事人同意,製作「換臉」的影片,這樣的行為會觸犯那些法律呢?

https://www.youtube.com/watch?v=8g4KiSK0p4U

換臉影片觸犯《刑法》哪些罪名?

換臉影片屬於新型的數位性犯罪,在台灣還沒有處罰前例,目前大多認為可能會涉犯《刑法》的「散布猥褻罪物品罪」和「妨害名譽罪」。

「散布猥褻物品罪」包括哪些具體行為?

首先,刑法處罰「散布猥褻物品」的行為,依照實務見解是指:「客觀上足以刺激或滿足性慾,內容可與性器官、性行為及性文化的描繪與論述聯結,且引起一般人羞恥或厭惡感而侵害性的道德感情,有礙於社會風化的狀態」。

-----廣告,請繼續往下閱讀-----

具體來說,「Deepfake」換臉影片的劇情,如果含有「暴力、性虐待或人獸性交」的情節,或雖然無關「暴力、性虐待或人獸性交」,但有引起一般人羞恥的性器官裸露、性行為的內容,且缺乏適當的安全阻隔措施(例如沒有用包裝隔絕並標示「18 禁」),就會違反《刑法》的散布猥褻物品罪,刑度是 2 年以下有期徒刑、拘役或科或併科 9 萬元以下罰金。

實務上,曾有人不滿女友提分手,憤而把交往時拍攝的女友裸體照片散布在社群網站 Instagram,被法院判拘役 50 天,並以「一天 1000 元」易科罰金。

還有一則案例是前男友在兩人分手後,在網路論壇上傳親密影片供人瀏覽,被害人直到聽朋友說網路上有疑似自己的性愛影片,才知道受害。而觸法的前男友,也被法院判有期徒刑 3 月,緩刑 2 年。

將他人的裸照發佈在 IG 上,就有可能成立「散布猥褻物品罪」。圖/envato elements

另外,如果換臉影片的內容涉及「未成年人」,加害人除了違反《刑法》的散布猥褻物品罪外,還會同時觸犯保護兒少所特別制定的《兒童及少年性剝削防制條例》——如「拍攝、製造兒童或少年為性交或猥褻行為之電子訊號罪」以及「散布少年為性交及猥褻行為之電子訊號罪」。

-----廣告,請繼續往下閱讀-----

而且,基於特別法優先於普通法的原則,加害人將會被用刑責較重的《兒童及少年性剝削防制條例罪》來處罰。

舉例來說,有個案例是被告在拍攝自己跟未成年人的性愛影片後,用影片要脅被害人,又把影片上傳到色情網站。針對拍攝影片的行為,被法院處有期徒刑 1 年 1 個月;恐嚇未成年人的部分,則被處有期徒刑 3 個月,得易科罰金;最後,散布猥褻影片的部分,被處有期徒刑 6 個月,得易科罰金。

不過,並非所有傳送裸露照片的人都會被定罪,還需要達到「散布」的程度,實務就曾有被告先拍攝被害人跟自己性交時的照片,還有被害人的大腿、胸部等私密處,再將照片傳送給某位網友觀賞;法院認為,被告只有把照片傳給「1 名」網友,不算是「散布」,就不能用散布猥褻物品罪處罰。

並非所有傳送裸露照片的人都會被定罪,還需要達到「散布」的程度。圖/envato elements

換臉影片又為何符合「妨害名譽」?

所謂妨害名譽罪,包含「公然侮辱罪」和「誹謗罪」兩種類型。兩者的共同點,都是在保護人民的名譽免於侵害,但差別在於:前者是透過「表達意見」來侵害名譽,後者則是用「陳述事實」的方式來做。

-----廣告,請繼續往下閱讀-----

實務上,有法院用「事實能否驗證」的判準來區分「公然侮辱罪」和「誹謗罪」。

換言之,如果行為人的言論,語意脈絡空洞而無意義,無法客觀檢驗所依附的事實,僅讓被害人主觀評價下的感情或名譽意識受損,就屬於「侮辱」;反之,如果語意脈絡具體而有意義,客觀上可以清楚理解、辨識指摘的特定事實是什麼,此時就傷害到被害人客觀外部的名譽,就是「誹謗」要處理的範疇。

舉例來說,曾有被告在他人臉書專頁文章下留言「智障超譯的女表子」等文字,法院認為「婊子」是針對撰文者的「性別」的侮辱性用語,判被告犯刑法的公然侮辱罪,處罰金2千元。

另則案例是:被告在臉書社團爆料公社上,張貼指摘被害人是「史上地表最強小三」等內容的文章,法院認為被告用散布文字的方法,指受害人是介入他人婚姻關係的第三者,足以貶損人格尊嚴與社會評價,所以觸犯刑法的加重誹謗罪,處拘役 45 日,得易科罰金。

-----廣告,請繼續往下閱讀-----
在網路上對人謾罵,就有可能被判「妨害名譽罪」。

那 Deep fake 換臉影片到底觸犯「公然侮辱罪」還是「誹謗罪」呢?

由於影片已直接將被害人的臉置換到 AV 內容當中,雖然沒有明確使用侮辱或謾罵被害人的文字,但影片本身已足以向觀賞者傳達「羞辱、侮蔑」被害人的意味,並讓被害人感受到極大的輕視和痛苦,所以可能會成立刑公然侮辱罪。

而含有性交和裸露鏡頭的換臉影片,一旦在網路流出後,不免有人會相信影片主角有拍攝的事實,將嚴重影響被害人在一般人心中的名譽和社會地位,所以也可能會成立加重誹謗罪。

而觸犯刑法公然侮辱罪,可處拘役或九千元以下罰金;觸犯刑法加重誹謗罪,則將處二年以下有期徒刑、拘役或三萬元以下罰金。

-----廣告,請繼續往下閱讀-----

換臉影片觸犯了《個人資料保護法》!

所謂「個人資料」,依規定包括:任何足以辨識個人的資料,包括姓名、生日、特徵等。由於製作「Deepfake」換臉影片,勢必會擷取被害人的臉部照片,而可以辨識個人的「臉部特徵」,實務肯認這就屬於《個人資料保護法》所要保護的「個人資料」。

每個人的「臉部特徵」都屬於個人隱私的一部分。圖/envato elements

而個人資料的蒐集、處理及利用,原則上需要得到當事人本人的同意,僅當政府機關基於法定目的,或私人基於契約關係、或其他重要的公共利益時,才能在不經同意的前提下,合理使用,但無論如何都不能侵害當事人的利益。否則,可能就會違反「非公務機關非法利用個人資料罪」,最高可處 5 年以下有期徒刑,得併科 100 萬元以下罰金。

類似案例像是:被告未經被害人同意,就在臉書社團張貼被害人的姓名、年齡、地址、個人大頭照、生活照、住家外觀照片,同時發表「小心這個人外表會騙人,目前侵占案避不見面」等言論。法院認為,被告把自己跟被害人間的債務糾紛私怨訴諸公眾,將被害人的個人資料揭露在臉書社團專頁,顯然侵害被害人的資訊隱私或自決權,觸犯個人資料保護法罪名,處有期徒刑 3 月,得易科罰金。

此外,為了製作 Deep fake 換臉影片,勢必使用明顯能夠辨識被害人的臉部照片,且非出於任何公益目的;依個資法,加害人就該負起「損害賠償」的責任!

-----廣告,請繼續往下閱讀-----

肖像權被侵害,可依《民法》請求賠償

《民法》保障每個人的肖像權,這是一種「個人決定肖像是否公開的權利」,肖像權人可以自己決定是否揭露自己肖像,並決定在何種範圍內、何時、以何種方式、向何人揭露。

因此,如未經同意,就拍攝、重製他人的肖像等,就會侵害肖像權。

過去曾有案例,被告未經他人同意,就把被害人的照片後製,在臉上增加手掌圖案,並刊登在網路,表示「打臉」的意思,即使被告辯稱是為了評論與公益有關的事項,才製作網路圖片,但法院認為被告「並沒有」利用被害人肖像的權利,而以網路方式公開打臉圖片,已嚴重侵害被害人的肖像權。被害人除了可以請求刪除打臉圖片,也可以要求賠償自己的精神上損害。

(非當事打臉圖)

因此,那些臉部照片遭盜用、被製成換臉影片的被害人,可以依法請求製作者刪除影片,並請求慰撫金──具體來說,法院將依照實際加害情形、所造成的影響、被害人痛苦的程度、雙方的身分地位、經濟情形及其他各種狀況,以確認合適的賠償金額。

-----廣告,請繼續往下閱讀-----

換臉也是「性騷擾」,可以申訴啟動調查

什麼是性騷擾行為?《性騷擾防治法》指出:像是那些違反被害人意願,播送跟性或性別有關的影像,而有損害被害人的人格尊嚴,造成被害人感受敵意或冒犯的情境。

而換臉影片將被害人照片後製成 A 片主角,彷彿讓眾人看見赤裸裸的自己,使被害人深感冒犯和不舒服,就是一種性騷擾。

性騷擾事件的被害人可向直轄市或縣(市)主管機關提出申訴,主管機關即應開啟調查程序,並可依法對行為人處以新臺幣一萬元以上十萬元以下罰鍰。

而有鑑近年數位和網路性別暴力案例頻傳,行政院性別平等會更在今年 110 年 2 月 3 日,發布「數位/網路性別暴力之定義、類型及其內涵說明」一文,內容是參酌 CEDAW 一般性建議第 19 號第 6 段意旨,明確定義數位/網路性別暴力,明列數位/網路性別暴力的態樣,其中就包括「未經同意散布與性/性別有關個人私密資料」,並表態有意擬定相關防治政策、訂修法規,有待後續明顯進展。

「換臉 A 片」也是一種性騷擾。圖/envato elements

要求換臉影片下架,有法律機制嗎?

被害人若發現某網路平台上有換臉影片,可以要求業者將影片下架嗎?

關於網路平台業者有無管制用戶言論的責任,曾有判決指出:網路業者並非司法機關,沒有判斷用戶行為是否構成侵害他人權利的權限,且若平台判斷錯誤,將有侵害言論自由的疑慮。為了兼顧用戶的言論自由及保護被害人權利,網路業者只有在「明知或有相當理由足認確實發生侵權行為」時,才有採取防止措施(例如刪文)的義務。

換言之,在侵權事實水落石出之前,依照法院的慣例,網路平台業者可能沒有主動和積極管制用戶言論的權責,被害人除非能證明權利受到侵害,才能要求網路平台業者下架影片,較難及時避免損害繼續擴大。

為了處理這樣的進退兩難,行政院在 107 年 4 月 27 日提出《數位通訊傳播法草案》,明定網路業者對提供使用的資訊,應負擔法律責任──當被害人告知或警察機關通知有侵權的內容,網路業者就應採取適當的處置並保全證據。

業者如果確實在合理期間內移除侵權資訊,並好好保全相關證據,就可以免除後續的賠償問題。因此,本草案如經未來立法院三讀通過,可望附加網路業者更多積極管制換臉影片的措施。

圖/envato elements

此外,依照《兒童及少年福利與權益保障法》的要求,須設立「iWIN 網路內容防護機構申訴管道」。若民眾發現有害兒少身心健康的網路色情內容時,可以向 iWIN 網路內容防護機構提起申訴,iWIN 機構將依規定進行查證,如查證屬實,即通知業者移除或改善,若屆期未移除或改善,主管機關可以對業者進行裁罰。

水能載舟,亦能覆舟,科技的發展原意是要改善人們的生活,然而一旦遭有心人濫用,所造成的危害,將是遠遠超出我們的想像。

如長期氾濫的虛假訊息、以及層出不窮的網路性暴力威脅,除了有賴立法管制,也不該忽略加強對網路使用者的教育宣導,而將性別平權的概念深植到每個人的心中,才能從根本解決網路/數位的性別暴力現象。

願立法追上科技的腳步前,我們每個人都自動自發地成為 Deep fake 換臉影片的終結者。當看見非法的色情影片,不下載、也不分享,提出檢舉,終結那些血淋淋傷害持續擴大的可能性。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
法律白話文運動_96
26 篇文章 ・ 531 位粉絲
法律白話文運動」是致力於推廣法律知識與法治思想的獨立媒體,願與讀者一起從法律認識議題,從議題反思法律。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
科學新聞誰來說?當科學家與記者意見相左時!——《是炒作還是真相?媒體與科學家關於真相與話語權的角力戰》
商周出版_96
・2025/04/05 ・4280字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

同床異夢:科學家與科學記者間的緊張關係

為了新成立的科學媒體中心負責人一職準備面試期間,我讀到許多科學家的意見,他們指出媒體對MMR疫苗和基因改造等議題的報導削弱了公眾對科學的信任。然而,當我更深入閱讀當時的科學新聞時卻發現情況並不那麼單純,許多嘩眾取寵的報導出自綜合記者或政治與消費的分線記者,消息來源是善於操縱媒體的運動人士而非優秀科學家,反觀科學記者筆下的報導則多數公正平衡。

中心成立後的頭幾個月主要是諮詢,過程中我與一些傑出的科學記者交流,詢問新的科學新聞辦公室如何產生價值,他們花了很多時間回應我接二連三的提問。互動中我清楚意識到科學記者不需要別人教他們怎麼做報導,而且他們其實與科學家一樣苦惱,覺得手機、核能、複製技術等等議題有太多聳動新聞。後來討論焦點就放在科學媒體中心如何改善現況,方法包括鼓勵科學家接受訪問,以及提升科學專業在編輯室內的地位。

一種說法認為科學記者是個特別的記者類型。有人向英國廣播公司前新聞部主任弗蘭.安斯沃思(Fran Unsworth)提出疑問:為何她們的公司高層很少人有科學報導背景?她短暫遲疑後回答:英國廣播公司的科學記者大都熱愛自己的工作,喜歡報導更甚於管理。我在其他媒體也注意到同樣現象,許多科學、醫藥、環境記者在專門領域耕耘超過二十年。湯姆.菲爾登被問到為何熱愛科學報導,他的回答是:

科學報導的內容幾乎都是探索性而非指控性—代表我和科學家都能開開心心回家!而且我能在自由出入實驗室、見到地球上最聰明的一群人、對他們的畢生心血提出各種粗淺的問題,這是多麼大的特權。再來科學新聞多彩多姿,生醫、太空、氣候、生物多樣性、古生物……最後一點,科學新聞很重要,是現代社會不可或缺的一部分。

「要迅速還是要正確?」——新聞編輯室裡的艱難選擇

二○○二年科學媒體中心剛成立時,社會上針對科學和媒體之間為何緊張有過一波辯論,其中一個話題是科學價值觀與新聞價值觀的矛盾。已故的理查.多爾(Richard Doll)爵士教授是發現吸菸與癌症關聯的科學家,他曾經對著滿屋子的記者一語道破:「你們不喜歡老調重彈、報導大家都知道的事情,總想找些新鮮的。但很可惜,科學裡新的事物通常不對,真理需要透過時間慢慢建立。」

-----廣告,請繼續往下閱讀-----
科學追求真理累積,媒體偏好新鮮話題,價值觀自然衝突。圖/unsplash

另一方面,懂得反求諸己的記者通常也不諱言表示媒體反映真相有很多侷限。《華盛頓郵報》資深記者大衛.布羅德(David Broder)一九七九年曾說:「我希望媒體能一再重複、直到大家明白—每天送到門口的報紙,只是記者對過去二十四小時內聽聞的某些事情做出片面、匆促、不完整的敘述,內容不可避免會有瑕疵與偏差。」難怪科學家對記者戒慎恐懼,而記者與科學家合作時也倍感挑戰。曾經有位報紙編輯對著一房間的皇家學會成員說:在他的編輯室內,「要迅速還是要正確」這問題只會有一個答案。那些科學家的惶恐表情我歷歷在目。

我進入媒體關係工作之前拿的是新聞學學位,至今仍記得一位前記者曾在講座中告訴大家:「車禍後無人傷亡」不能成為新聞,「車禍導致五名青少年死亡」才能引起大眾關注。研究媒體的學生辯論新聞價值觀已經辯了數十年,也有人大膽嘗試不同做法,比方說《龜媒體》(Tortoise Media)之類新興平臺就訴求「慢新聞」,旨在建立有別於速度至上的新模型,透過「慢速新聞學」理念以更長時間來更加深入地製作更大、更複雜的報導。但儘管媒體業界發生許多變化,傳統的新聞價值觀仍屹立不搖。

科學媒體中心所有工作都是為了支持科學報導的高標準,不過我們在二○一一年列文森調查期間發現還有其他機會能夠撼動這些標準。該調查由布萊恩.列文森勳爵法官(Lord Justice Brian Leveson)主持,目的是在《世界新聞報》(News International)竊聽醜聞案後瞭解英國媒體業界有什麼慣例。我當時的同事海倫.賈米森(Helen Jamison)建議我們向調查庭提交證據,幾杯所謂的「女士汽油」下肚後,她操著濃厚曼徹斯特口音說:「傷害公眾利益的不是竊聽名人電話—而是糟糕的科學報導。」隔天我們發郵件給幾位科學通訊人員,詢問他們關注什麼議題,一週後就提交多頁書面證據。

我告訴同事自己被傳喚去做口頭證詞時她們還覺得我在瞎掰。小組內部連續幾週密切關注各大媒體如何報導列文森調查案,包含麗貝卡.布魯克斯(Rebekah Brooks)、阿拉斯泰爾.坎貝爾、保羅.戴克瑞(Paul Dacre)和安迪.考森(Andy Coulson)在內很多媒體界大人物都有出庭,而今居然也有我一份,令人興奮又忐忑—被傳喚的人只有我代表科學界,一定要把握好機會。

-----廣告,請繼續往下閱讀-----

標題戰爭:聳動 vs. 精準,誰來決定科學新聞的呈現?

但其實我沒進過法庭,緊張情緒一目瞭然。印象特別深的是御用大律師羅伯特.傑伊(Robert Jay)和列文森勳爵本人一再要我放慢語速。官方紀錄上,提醒我兩次還不見效,列文森這麼說:「不必因為半小時的限制就講很快,時間是可以延長的……而且我有點擔心,總覺得速記員頭上好像冒煙了。」

我的主要論點是媒體長期以來執著於同一套價值觀,在書面證詞中也有所描述:

追求引發恐慌的故事、誇大單一專家從小規模研究得出的結論、不願將令人擔憂的研究結果置於宏觀而令人安心的脈絡、為了平衡而捏造不存在的學界歧見、過分偏愛另類觀點等等。

當天《獨立報》恰好印證我的觀點,一篇跨兩頁的報導標題為:「眼盲者重見光明—患者因幹細胞『奇蹟』痊癒。」然而實際情況是患者並未痊癒,雖然回報視力小幅度改善(他們原本視力極差,已被登記為盲人),但這僅僅是一項安全性研究,而且只有兩名患者參與。當然,研究本身是值得報導的,在幹細胞研究剛起步、真人試驗剛開始的時期,這是個重要的進展。問題在於報導口吻暗示科學研究取得了巨大突破,可能給成千上萬黃斑部病變患者帶來不切實際的希望。

同一天稍晚我揪著心打電話給《獨立報》科學編輯史提夫.康諾,告知我將他的報導當作科學新聞不良案例交給列文森調查庭。他當然談不上高興,但至少沒發飆,所以我鬆了一口氣。原來前一天晚上他提交的原稿內容較精緻,但夜班編輯決定將報導放在頭版,所以文字編輯就對標題進行過加工。康諾將原稿發過來,我們倆就在辦公室玩起「找出不同點」的遊戲了。

-----廣告,請繼續往下閱讀-----

離開法庭時,《太陽報》總編輯攔住我。我在證詞中批評他們前一週煽動恐慌,報導內容是居家用品內的化學物質,但標題卻叫做「商店貨架上滿滿的乳癌『風險』」。原本我以為對方要吵架,沒想到他說《太陽報》真心想改善科學報導品質,邀請我們為報社裡的一般新聞記者開一場科學報導培訓班。隨著列文森調查案持續推進,業界標準似乎終於迎來變革,而且這一次沒有落下科學新聞。

作證時我順便提出有必要為科學報導制訂新的指導方針,還誇下海口表示只需要幾小時就能與記者和科學家共同完成草擬。一週後,調查庭將人召集起來要我們開始,沒想到折騰了整整一天,而且過程中好幾次我都擔心無法達成共識。標題就是特別棘手的項目,記者和文字編輯很堅持標題只追求簡潔和引人注目,沒必要精準總結文章內容,但科學家聽了很火大,認為這是合理化不精準的敘述。

科學家要求標題的正確性,記者堅持要簡潔吸引,雙方激辯不休。圖/unsplash

我感覺自己成了全球和平談判的調解員,必須設法安撫所有人不拍桌走人並達成協議。所幸雙方都有成就這樁美事的意願,最終相互妥協:標題不應誤導讀者對文章內容的理解,且不應以引號包裝誇大的敘述

總體來說,新指導方針鼓勵記者從協助大眾的角度切入,告訴閱聽人什麼證據是可靠的,又有什麼證據還在研究階段。例如其中有幾條的內容是:新聞故事應附上來源以便讀者查詢。應標明研究的規模、性質和侷限性。應指出研究處於何種階段,並從合理角度預估新療法或新技術能為民眾所用的時間點。

-----廣告,請繼續往下閱讀-----

我們將指導方針寄給列文森勳爵,很高興他在最終版本的報告裡也建議採用。調查案結束後成立了獨立報刊業標準組織(Independent Press Standards Organisation)在各大新聞編輯部推廣指導方針,由於制訂過程有編輯和記者的參與所以接受度很高,不至於引起反彈。

為科學家舉辦講座時,我會展示一些因為科學家參與而變得更客觀準確的新聞報導,其中個人特別喜歡的一篇出自二○○八年的《每日郵報》,內容提到一項小鼠研究發現常用的保濕霜與癌症有相關。記者費奧娜.麥克雷(Fiona MacRae)引用兩位不同專家的意見質疑這項研究與人類皮膚的相關性,並指出該研究需要能在人類身上複現才有意義。

專家之一表示:因為這項研究就停止使用保濕霜太「瘋狂」,還補充說明:「小鼠皮膚癌研究其實不太能幫助我們瞭解人類的皮膚癌。」最精彩在於標題是「保濕霜與皮膚癌相關(僅限小鼠)」,而且括號內外用了同樣大小的字體。

從這個案例來看,優秀的記者可以在講述有趣故事的同時確保讀者不會過早丟掉面霜。我還會在講座使用的幻燈片裡摻入一些小報的報導實例來挑戰學術界偏見,比方說《每日郵報》的社論或許爭議頗多,但他們的科學新聞通常品質並不差,不推廣特定立場的時候更是如此,有時甚至優於大報。我還會強調《每日郵報》在英國銷量排行第二,如果連線上版也算進去讀者數超越所有大報,因此務實一點說:如果科學家希望更有效地向大眾傳遞信息,完全沒有不與《每日郵報》合作的道理。

-----廣告,請繼續往下閱讀-----

——本文摘自《是炒作還是真相?媒體與科學家關於真相與話語權的角力戰:從基改食品、動物實驗、混種研究、疫苗爭議到疫情報導的製作》,2025 年 03 月,商周出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----