0

0
0

文字

分享

0
0
0

吃綠色花椰菜也能預防關節炎

營養共筆
・2013/09/07 ・828字 ・閱讀時間約 1 分鐘 ・SR值 482 ・五年級

-----廣告,請繼續往下閱讀-----

圖片來源:stock.xchng
圖片來源:stock.xchng

作者: Casual

綠色花椰菜含有一種化合物可能有助於我們預防或是延緩最常見的關節炎。

退化係關節炎是一種因為關節的軟骨與骨頭損壞引起造成的疾病。手、腳、脊椎、髖關節與膝蓋是最常受到影響的部位。主要的症狀是疼痛還有僵硬。

有項新試驗在老鼠上發現,綠色花椰菜含有的蘿蔔硫素(sulforaphane)能延緩關節軟骨破壞的速度。

-----廣告,請繼續往下閱讀-----

雖然綠色花椰菜蘿蔔硫素的含量特別豐富,但其他十字花科的蔬菜,如甘藍菜和包心菜與綠色花椰菜等十字花科的蔬菜都能釋出蘿蔔硫素。

東英吉利大學(University of East Anglia )的研究者們表示以前的研究已經支持蘿蔔硫素具有抗癌與抗發炎的特性,不過這是第一個針對其對關節健康的作用去做的研究調查。

文獻發表在 Arthritis and Rheumatism 期刊上,研究發現蘿蔔硫素能阻斷導致關節損壞的酵素。

人類研究

由於老鼠試驗的結果相當地好,研究團隊在軟骨細胞、組織以及老鼠三種模型上證實了蘿蔔硫素的效果,他們想看看在人類身上是否也有相同的作用。

-----廣告,請繼續往下閱讀-----

研究人員目前正針對患有退化性關節炎、且預定要進行關節置換手術的病患,測試他們的研究結果。如果成功的話,研究人員未來想要進行較大型的臨床試驗,來驗證綠色花椰菜對退化性關節炎、關節功能與疼痛上的作用。

超級版的綠色花椰菜

在人體試驗的研究當中,在受測者手術兩週前,會實用特別培養含有較豐富蘿蔔硫素的綠色花椰菜。一旦手術進行,研究者們就會趁此機會觀察化合物會對關節產生什麼樣的影響。而結果相當不錯。

手術都非常的成功,不過這並不是最佳結果;一旦你罹患退化性關節炎,那麼延緩病情的發展與手術的時程相當重要。預防會是比較好的選擇,而改變生活習慣-如:飲食,很可能是唯一的對策。

關於本文

文章來源:WebMD
文章標題:Broccoli Could Help Fight Arthritis
文獻與人物:Clark, I. Arthritis and Rheumatism.
整理編譯:Sidney

-----廣告,請繼續往下閱讀-----

轉載自營養共筆

文章難易度
營養共筆
86 篇文章 ・ 3 位粉絲
應該是有幾個營養師一起寫的共筆,內容與健康議題有關。可能是新知分享、經驗分享或是有的沒的同學們~如果對寫這個共筆有興趣的話,歡迎一起豐富它的內容喔。

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
自體免疫失調引發乾癬性關節炎,併發症狀多勿輕忽
careonline_96
・2022/09/27 ・1892字 ・閱讀時間約 3 分鐘

大叔長袖衣褲不敢脫,竟因乾癬性關節炎所致

今年 50 歲的王大叔(化名)從事農夫一職,不管風吹雨淋,每日都用心種植台灣好米。幾年前手肘內側出現小塊皮屑,起初以為是濕疹,就使用皮膚藥膏解決,豈料半年後紅疹逐漸擴大蔓延全身,脫屑飄雪花的外觀,讓他飽受外界異樣眼光,出門時都要穿著長袖衣褲來遮掩,才敢勉強出門工作,對原本就木訥寡言的王大叔,人際社交更加困難。之後腳踝跟膝蓋關節出現疼痛,幾度痛到他無法下田工作,嚴重影響生活品質,最後輾轉轉診到免疫風濕科檢查,確定罹患「乾癬性關節炎」。

收治個案的竹山秀傳醫院免疫風濕科蕭育芬醫師表示,初期先幫王大叔以傳統藥物治療,甚至用到最大劑量,但症狀只有些微改善,關節痛一直反覆發作,未獲得良好控制。後來申請健保給付的生物製劑介入治療,皮膚脫屑情況大為好轉,只剩些微紅斑,另外關節痛也明顯改善,讓他能恢復正常社交生活,也能繼續下田種植好米給大家。

乾癬並非傳染性疾病,自身免疫失調引起發炎

蕭育芬醫師說,乾癬性關節炎多數發病在 30~50 歲的青壯男女,初期開始可能只有乾癬,而乾癬會造成皮膚紅疹脫屑搔癢,嚴重影響患者外觀。

由於「乾癬性皮膚炎」一開始可能無任何關節症狀,統計約 20~30% 乾癬患者會發展出乾癬性關節炎,出現關節僵硬腫痛、痠痛等症狀,好發部位為手、腳、膝蓋、手肘或中軸等關節部位,提醒乾癬患者出現類似關節等症狀應儘早就醫進一步評估。

蕭育芬醫師補充,乾癬皮膚的紅疹脫屑看起來很像皮癬,常常讓民眾誤以為乾癬是一種傳染疾病。

其實,乾癬並不具有傳染力,它是身體內的免疫系統造成的發炎反應,導致皮膚過度增厚、脫屑紅腫,而一般的皮癬是黴菌感染,是外在微生物感染所造成的,因此民眾切勿混淆。

乾癬稱皮膚科的糖尿病,併發症症狀多樣勿輕忽

蕭育芬醫師說明,乾癬性關節炎目前成因不明,誘發因子可能與先天遺傳基因,再加上後天環境刺激,如抽煙喝酒、受傷感染、生活壓力、情緒、睡眠或肥胖等所致,要避免疾病加劇,建議乾癬性關節炎患者應維持正常生活作息,並做好體重控制。

蕭育芬醫師指出,乾癬又被稱為皮膚科的糖尿病,由於乾癬是全身性發炎疾病,發炎容易引發併發症產生,例:虹彩炎、指甲病變、發炎性腸道疾病或代謝症候群(高血壓、高血糖、高血脂)。

另外,因疾病容易影響外觀,也會讓患者的身心、生活及社交活動備受衝擊,臨床常見部分患者合併情緒障礙及睡眠障礙,因此乾癬患者罹患憂鬱的機率也高於一般人。

乾癬性關節炎有藥醫,生物製劑精準抑制發炎

「現今醫藥技術發達,針對乾癬性關節炎患者的治療藥物選擇性相當多樣!」

蕭育芬醫師表示,初期先使用傳統免疫調節藥治療,若超過半年並達到一定劑量,但療效仍然不佳時,就會進一步向健保申請生物製劑介入治療。生物製劑就像是標靶治療,針對發炎的細胞或細胞激素精準抑制,同時能改善皮膚及關節症狀。

蕭育芬醫師補充說明,目前生物製劑的種類相當多,包含皮下注射的抗腫瘤壞死因子、口服標靶藥物……等,會評估患者狀況使用適當的治療藥物。另外,目前已有適合懷孕及哺乳使用的生物製劑,對於有備孕計劃的患者,也可以提早與醫師溝通調整藥物,但切勿擅自停藥造成病情加劇!

蕭育芬醫師提醒,乾癬患者若出現關節腫痛症狀,應儘快至免疫風濕科檢查診斷,只要配合醫師積極治療,相信疾病都可以獲得良好的控制,患者也能維持良好生活品質,繼續開心工作!

careonline_96
494 篇文章 ・ 275 位粉絲
台灣最大醫療入口網站