0

0
0

文字

分享

0
0
0

變大變複雜-《能量、性、自殺:粒線體與我們的生命》

貓頭鷹出版社_96
・2013/06/24 ・1805字 ・閱讀時間約 3 分鐘 ・SR值 563 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

根據有氧代謝能力假說,哺乳類和鳥類,不管最大代謝率還是靜止代謝率都必須要比蜥蜴高出一大截。而眾人皆知這是事實*。蜥蜴很快就會體力透支,而且有氧代謝能力很低。即使牠們可以移動得非常快速(身體暖和的時候),但這時牠們的肌肉大部分是靠產生乳酸的無氧呼吸所驅動的(見第二單元)。牠們爆發性的速度,最多只能維持三十秒,足以讓牠們奔進最近的洞穴躲藏起來,接下來牠們通常得花上數個小時才會復原。相形之下,相同大小的哺乳類和鳥類,有氧性能至少是蜥蜴的六到十倍。雖然牠們反應不會比較快,腳步也不會比較迅捷,但牠們可以維持這個速度,時間遠比蜥蜴來得長。正如班奈特和盧本在他們發表於《科學》的獨到論文裡所說:「活動力提高一事在天擇上的優勢不容小覷,在生存和生殖方面都很重要。耐力較佳的動物在在篩選上的優勢一目了然。追捕或逃命的時間可以拉得更長,有利於蒐集食物或是避免成為別人的食物。在保衛或是侵略領土時更有優勢。求愛或是交配時更容易成功。」

一隻動物要做些什麼才能提升耐力和速度?首要之務是,牠必須提高骨骼肌的有氧能力。要做到這一點,需要有更多的粒線體、更多的微血管和更多的肌纖維。我們立刻就遇到了空間分配的問題。如果整個組織都被肌纖維占滿了,就沒有多餘的空間留給催動肌肉收縮的粒線體,或是輸送氧氣的微血管了。組織的空間一定得好好分配才行。將這些元件塞得緊一點,某種程度也可以提高有氧能力,但超過這個範圍之後,只有提高效率才能使它繼續提升。實際的情況也確實是如此。澳洲新南威爾斯,臥龍崗大學的赫伯特和艾瑟研究指出,哺乳類的骨骼肌含有的粒線體數目,比同量級的蜥蜴肌肉多上一倍,而且牠們的粒線體上有更多的膜和呼吸複合體。老鼠骨骼肌的呼吸酶活性也大約是蜥蜴的兩倍。合計起來,老鼠肌肉的有氧性能幾乎是蜥蜴的八倍──這樣的差距完全足以說明牠為什麼會有比較高的最大代謝率和有氧代謝能力。

以上是關於有氧代謝能力假說的第一部分:針對耐力所進行的篩選,提升了肌肉細胞的粒線體動力,使得最大代謝力也變快了;那假說的第二部分又是如何?為什麼最大代謝率和靜止代謝率之間會有關聯?原因至今仍然不清楚,目前沒有任何可能的解釋曾獲得證實。即便如此,也有個很直觀的理由讓我們預期它們是有關聯的。我曾提過蜥蜴就算才劇烈活動了數分鐘,可能就要花上數小時才會從脫力的狀態恢復過來。如此緩慢的復原速度與其要怪到肌肉頭上,不如歸因於臟器,例如肝臟和腎臟,它們負責處理激烈運動所產生的代謝廢物和其他分解產物。這些臟器運作的速率取決於它們自己的代謝能力,也因此取決於它們的粒線體動力──粒線體愈多,恢復得愈快。想必,耐力上的優勢也會反映在復原時間的長度上:既然哺乳類肌肉的有氧能力提高為八倍,要是臟器的功能沒有補償性的改變,運動後的復原期就不僅僅是數小時,而是得花上一整天。

臟器不像肌肉,不會遇到空間分配的難題──肌肉中的粒線體密度不會隨體型而改變,但臟器會。當動物體型變大,上一章討論過的冪次定律告訴我們,牠們器官中的粒線體會分布得較為疏鬆。這是個現成的大好機會。大型動物的臟器要取得能量,不需要像肌肉那樣重新調整組織結構,只要增加粒線體的數目就好了。這個機會似乎推動了恆溫動物的誕生。赫伯特及艾瑟透過傳統的比較研究,證明哺乳類的器官內所含的粒線體是同量級蜥蜴的五倍,粒線體的其他層面則完全相同,例如呼吸酶的的效率,就是完全一樣的。換言之,相對於肌力增強的得來不易,平衡這新得來的力量簡單多了,只要在空間充足的臟器中裝入更多的粒線體就好了,這也能確保耗氧活動後的快速恢復。總之,這裡重點是,肝臟這類器官的功能和肌肉的需求有關,而不是為了保持溫暖才存在的。

* 換算的公式是代謝率= aMb,a是因物種而異的常數,M是體重,而b則是換算指數。哺乳類動物的常數a比爬蟲類大了五倍,不過兩類動物的代謝率仍是隨體型改變(兩條曲線是平行的)。碎形模型無法解釋為什麼不同的物種會有不同的常數a,也就是哺乳類和爬蟲類各種器官的微血管密度與靜止代謝率為什麼會不一樣;它也無法解釋恆溫動物的崛起。這個問題的解答,依舊在於組織需要更多的氧氣來驅動更高的有氧性能。這樣的驅動力造成肌肉及器官組成結構的變化,進而導致內部的碎形輸送網改變。

(全文未完)

摘自PanSci 2013 六月選書《能量、性、自殺:粒線體與我們的生命》,貓頭鷹出版。

文章難易度
貓頭鷹出版社_96
50 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

0

1
0

文字

分享

0
1
0
環境 DNA 猛獁象現蹤,化石消失幾千年後才真正滅團?
寒波_96
・2023/01/13 ・3572字 ・閱讀時間約 7 分鐘

一萬多年前冰河時期結束後,許多地方的生態系明顯改變,例如歐亞大陸和美洲的猛獁象都滅絕了,僅有少少倖存者,殘存於北冰洋的小島一直到 4000 年前。

上述認知來自對化石遺骸的判斷,可是最近由環境沉積物中取樣古代 DNA 分析,卻指出猛獁象等幾種生物,在亞洲和美洲大陸其實又延續了好幾千年。這些證據可靠嗎,猛獁象到底什麼時候滅絕?

距今 200 萬前的格陵蘭,生態想像圖。圖/Beth Zaikenjpg

古時候的環境 DNA,創下 200 萬年紀錄

DNA 原本位於生物的細胞之內,生態系中有很多生物,時時刻刻留下各自的 DNA,從土壤、水域等來源取樣分析所謂的「環境 DNA」(environmental DNA,可簡稱為 eDNA),能得知環境中包含哪些生物。

如果環境樣本能保存成千上萬年,那麼定序其中的 DNA 片段,再加上化石、花粉等不同線索,便有希望窺見古時候的生態系。

威勒斯勒夫(Eske Willerslev)率領的一項研究,藉由此法重現來自格陵蘭沉積層,距今 200 萬年之久的 DNA 片段,2022 年底發表時成為年代最古早的 DNA 紀錄,也得知當年存在格陵蘭的眾多植物與動物。[參考資料 5]

最出乎意料的莫過於乳齒象(mastodon),由於缺乏化石,古生物學家一直認為那時候的乳齒象,並未棲息於這麼北的地帶,此一發現充分展示出古代環境 DNA 的價值。然而 DNA 的探索範圍也明顯有侷限,例如該地區出土超過 200 個物種的昆蟲化石,DNA 卻只能偵測到 2 種。

猛獁象化石無存後幾千年,依然有留下 DNA

當時間尺度是百萬年時,實際是 200 萬 3300 年或是 199 萬 8700 年,也就是 200.33 或 199.87 萬,幾千年的誤差範圍無關緊要。但是當探討對象是最近一萬年,猛獁象的 DNA 究竟存在於 9000 或 6000 年前,意義就差別很大。

這兒的「猛獁象」都是指真猛獁象(woolly mammoth,學名 Mammuthus primigenius)。由另一位古代 DNA 名家波因納(Hendrik Poinar)和威勒斯勒夫各自率隊,同在 2021 年底發表的論文獲得類似結論:猛獁象化石消失的幾千年後,沉積物中仍然能見到 DNA,可見還有個體又存續幾千年。[參考資料 1, 2]

威勒斯勒夫主導論文的取材地點。以北極為中心,視角和台灣人習慣的地圖很不一樣。圖/參考資料 2

波因納率領的研究探討白令東部,也就是如今加拿大的育空地區,距今 4000 到 3 萬年前的沉積層;結論是原本認為早已消失的美洲馬、猛獁象,一直延續到 5700 年前。威勒斯勒夫戰隊取材的地理範圍廣得多,包括西伯利亞西北部、中部、東北部、北美洲、北大西洋,判斷猛獁象生存到 3900 年前。

更詳細看,威勒斯勒夫主導的論文指出,猛獁象在西伯利亞東北部最後現蹤於 7300 年前,西伯利亞中北部的泰梅爾半島(Taimyr Peninsula)為 3900 年前,此一年代和北冰洋的外島:弗蘭格爾島(Wrangel)之化石紀錄相去不遠。而北美洲則是 8600 年前,比波因納戰隊的 5700 年更早。

如果兩隊人馬的判斷都正確,意思是猛獁象(與某些大型動物)在北美洲延續到 5700 年前,在亞洲大陸與外島到 3900 年;比起當地出土最晚化石的時間,皆更晚數千年。

只有 DNA 不見化石,會不會是死掉好幾千年仍一直外流 DNA?

根據化石紀錄,冰河時期結束後,仍有少少生還的猛獁象在弗蘭格爾島一直延續到 4000 年前。由此想來,當大多數同類已經滅團時,某些地點還有孤立的小團體延續,並不意外。只是我們不見得能見到化石。

然而,威勒斯勒夫主導的論文受到挑戰。質疑者提出,猛獁象這類動物住在寒冷的環境,去世後遺體如果被冷凍保存,又持續緩慢解凍,在接下來的幾千年便有可能不斷釋出新鮮的 DNA,讓我們誤以為仍有活體。[參考資料 3]

舉個極端狀況。假如 2 萬年前死亡的猛獁象,去世後一直冷凍在冰層中,現在被我們取出解凍,也許其中仍保有不少生猛 DNA,可是實際上牠已經去世很久了。

上述質疑,應該是這類研究手法共通的潛在問題。發生在一百萬年前無關緊要,一萬年內卻會導致不小的誤判。

喔~~喔喔~~喔喔~~喔喔~爪爪

距今 1 萬多年前的育空,生態想像圖。圖/Julius Csotonyi

化石消失的時刻,往往比生物滅團更早

威勒斯勒夫戰隊則回應表示:論文結論沒有問題,沈積層中取得的古代 DNA 確實來自那時在世的動物。我覺得不論觀點是否正確,回應的思路都值得瞧瞧。[參考資料 4]

為什麼動物依然存在時,見不到當時的化石紀錄?主因是動物去世後,只有極低比例的個體會變成化石。一種動物在滅團以前,通常個體數目持續降低,少到一個程度後,還能留下化石的機率已逼近 0 。所以化石紀錄最後的時間點,早於動物實際消失的年代。

和化石相比,動物遺留 DNA 的機率遠高於化石。活生生的動物就會持續排放 DNA,死亡身體分解後又會釋出不少; DNA 未必會留在原本生活的地點,不過如今的偵測技術足夠敏銳,即使只有幾段也有機會抓到。

猛獁象,活的!

是否有可能,猛獁象去世幾千年仍持續釋出 DNA 片段?的確無法排除可能性。不過這項研究中有 4 個方向,支持沉積層之 DNA 源於族群規模大減,卻依然活跳跳的猛獁象。

不同時間,各地猛獁象的粒線體 DNA 型號。可以看出趨勢是,猛獁象分佈的範圍愈來愈窄,遺傳型號也愈來愈少。圖/參考資料 2

第一,如果環境中的 DNA 來自死亡多時的動物,那麼各地區應該都會見到類似現象。實際上只在少部分取樣地點偵測到。

第二,假如猛獁象遺骸緩慢分解,DNA 持續進入沉積層,同一地點的不同取樣應該都能見到。可是同一處地點,只有少數樣本能抓到猛獁象 DNA。

第三,不同沉積層取得的環境樣本,包含當時生態系中很多生物的 DNA。存在猛獁象 DNA 的樣本,也能見到適合猛獁象生態系的其他植物;表示猛獁象的命運,很可能與適合牠們生活的環境同進退。

第四,倘若較晚沉積層的猛獁象 DNA,直接源自較早去世的個體,遺傳多樣性應該不會變化。然而較晚出現的粒線體型號明顯變少,後來只剩下一款。

實際狀況沒人可以肯定。我覺得前三點,都涉及樣本保存的潛在問題,干擾因素較多。第四點大概是最有力的證據,支持環境沉積物中留下的 DNA 並非源於死象遺骸,而是活體猛獁象。

研究日新月異,腦袋也要趕上

科學研究日新月異,不少人見到論文寫什麼就信以為真,卻不了解做研究其實有很多限制,即使是結論「正確」的論文,也會處處碰到解釋的侷限。

持續搜集證據,反覆思考才能進步。腦袋要靈活運用,但是也不要胡亂腦補!

延伸閱讀

參考資料

  1. Murchie, T. J., Monteath, A. J., Mahony, M. E., Long, G. S., Cocker, S., Sadoway, T., … & Poinar, H. N. (2021). Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nature Communications, 12(1), 1-18.
  2. Wang, Y., Pedersen, M. W., Alsos, I. G., De Sanctis, B., Racimo, F., Prohaska, A., … & Willerslev, E. (2021). Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 600(7887), 86-92.
  3. When did mammoths go extinct?
  4. Reply to: When did mammoths go extinct?
  5. Kjær, K. H., Winther Pedersen, M., De Sanctis, B., De Cahsan, B., Korneliussen, T. S., Michelsen, C. S., … & Willerslev, E. (2022). A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature, 612(7939), 283-291.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
178 篇文章 ・ 703 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

1
0

文字

分享

1
1
0
動物其實吃不出甜食!因「偏食」而消逝的味覺演化——《舌尖上的演化》
商周出版_96
・2023/01/02 ・2011字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本喵不懂甜食啦!

貓即便有了甜味受器,也不會更容易存活或繁殖,如果牠們花更多時間吸花蜜,吃獵物的時間就會變少,如此一來還可能會影響生存。因此,即便貓的祖先的甜味受器失去功能,牠依舊可以存活。

時任蒙內爾化學感官中心研究員的李夏發現:這個演化對貓不僅有存活的意義,更是現代貓科動物的味覺濫觴,沒有任何一種現代貓科動物具有活化的甜味受器,充滿花蜜與甘甜果實的森林對貓沒有一絲口慾上的吸引力。

如果你給一隻貓一片糖霜餅乾,呃,牠也不會理你;就算牠吃了餅乾,也沒辦法感受到糖霜帶來的愉悅感,因為這個餅乾對牠來說沒有甜味。

貓咪其實無法分辨甜味。圖/envatoelements

除了貓以外,其他肉食動物如海狗、亞洲小爪水獺、斑鬣狗、馬島長尾狸貓以及瓶鼻海豚,牠們的甜味受器也沒有作用,只是這些甜味受器基因出現的破壞性突變都屬於獨立的演化事件,不過也共屬於一種基因功能缺失的趨同演化。

有人可能會想問,為什麼其他肉食性動物的甜味受器沒有失去功能?例如貓的鹹味味覺受器,就跟其他肉食性動物一樣依舊安在,但牠們獵物體內鹽分的含量就足以應付生理所需,所以牠們的鹹味味覺受器喪失功能可能只是時間早晚的問題。

海獅已經喪失了甜味跟鮮味的味覺,海豚也是,而且海豚的無味人生開始得更早,牠們根本無法嚐出甜味、鹹味或是鮮味。對海豚來說,存在的只有飢餓感與飽足感,餓了就去吃飽,而牠們相信海裡任何長得像魚而且會動的東西都可以餵飽自己。

有人可能也會好奇,到底海豚的獵物要有什麼特色才能為牠們帶來進食的愉悅感?我們不知道。海豚的愉悅感從哪來、是什麼,至少到目前為止都是科學謎團。

不吃肉改吃素的大貓熊

特定味覺受器失去功能的情況,並不單發生在肉食性動物身上,也發生在食物選擇非常專一的動物身上。大貓熊的祖先屬於熊科動物,也跟現代的熊一樣是雜食性動物,會狩獵,會吃酸酸的螞蟻,也會吃甜甜的莓果。但到了大貓熊身上,新的食物偏好出現了,就是愛吃竹子,牠們吃竹子就可以活。

其實,當牠們才剛開始喜歡吃竹子時,竹子跟肉都是牠們愛吃的食物,但久而久之,仍然愛吃肉的大貓熊就變得難以生存或難以交配繁殖,或另一個機率較小的可能是,牠們的食物偏好無法符合生理需求,所以在覓食時無法專心致志。一段時間後, 大貓熊的鮮味受器就失去功能了,就像貓兒的甜味受器。現在就算你把肉端到大貓熊面前,牠們也不會碰上一口。

即便在多年後的未來,貓、海獅或海豚的後代也不太可能會嚐到甜味,大貓熊也依然無法嚐到鮮味,雖然隨著竹林減少,大貓熊對吃竹子的執著也讓牠們的數量不斷減少。從這些日常生活中的演化故事中我們學到:當某些東西成為需求時,比起破壞,建設是更困難的。但從頭做起雖然很難,也並非完全不可能。

現在的熊貓不在吃肉,演化成只吃竹子。圖/《舌尖上的演化》

過了三億年,蜂鳥才嘗到了「甜」的滋味

以甜味受器為例, 它在某些動物身上曾經失去功能, 但後來又重新復活了。三億年前,現代鳥類、哺乳類與爬蟲類的祖先,應該可以嚐到食物中的鹹味、鮮味與甜味,然而現代鳥類的甜味味覺沒了,不知是什麼原因,牠們的甜味受器都失去了功能。因此鳥類無法嚐出甜味,至少大多數鳥類都無法。

蜂鳥是從古燕演化而來的,而古燕跟現代的燕子一樣專門吃昆蟲,喜歡品嚐蟲子體內會出現的鮮味,對於糖分則沒什麼興趣。但在大約四千萬年前,有一群燕子開始以花蜜與含糖物質為食,可能只是為了解渴。一般鳥類並無法嚐出花蜜的甜味,所以牠們吸食花蜜就像在喝水,但花蜜畢竟不是水,裡面可富含著糖分。

因此有一假說猜測,那些喝到比較多花蜜的鳥可能獲得更多能量,因此更有機會將牠們的基因傳給後代,而牠們的鮮味受器在演化過程中,變成不只辨識原本的鮮味成分﹙像麩氨酸或是某些核苷酸﹚,也可以同時偵測糖分。

出現這種特徵的古燕就是最早的蜂鳥。蜂鳥跟一般鳥類不同,不僅能嚐出胺基酸,也能嚐出糖分。不過牠們只靠同一種味覺受器,所以胺基酸跟糖分對牠們來說,應該是同一種味道,一樣是帶來愉悅感的「鮮甜味」。

動物吃下新食物而產生美味感受的同時,也滿足了營養所需,這類美妙的演化故事,正是生物藉由愉悅感以精巧調控的生化機制滿足需求的例子。只要持續研究味覺受器的演化,我們就會發現更多類似的故事。

——本文摘自《舌尖上的演化》,2022 年 12 月,商周出版出版,未經同意請勿轉載。

所有討論 1
商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

2

2
0

文字

分享

2
2
0
蟻巢營養內循環,螞蟻的蛹不動也能貢獻社會
寒波_96
・2022/12/20 ・2477字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

人類對螞蟻可謂無比熟悉,許多人還不識字就認識螞蟻了;相關的科學研究也十分豐富,產出如威爾森(E. O. Wilson)這類科學大師。2022 年底問世的一篇論文,卻出乎意料地報告一條普遍存在,此前卻一直受到忽視的現象:

螞蟻的蛹會分泌液體,作為成蟲與幼蟲的營養液。

圖/drawception

螞蟻社會的內循環營養液

螞蟻是完全變態的昆蟲,有卵、幼蟲、蛹、成蟲 4 個階段。眾所皆知螞蟻是社會性昆蟲,整個蟻巢運轉精密,但是蛹有好幾天固定不動,除了佔空間以外,在蟻巢裡好像沒什麼存在感。

這項研究主要的對象是畢氏粗角蟻 (Ooceraea biroi) ,近年成為探索螞蟻奧秘的主力。照論文的寫法,一開始目的很單純,就是把蛹從蟻巢中移出,看看孤獨對螞蟻有什麼影響。

被移出巢穴的蛹,羽化成蟲的比例有 90% ;即使周圍沒有同儕,絕大部分的蛹似乎也能成功轉大蟲。然而過程沒這麼簡單。

將螞蟻的蛹由巢中取出,搜集分泌液體的裝置。羽化前幾天,蛹會由白轉而黑化,羽化前 6 天開始分泌液體。圖/參考資料 1

蛹在成功羽化的前幾天會黑化,論文觀察到當蛹開始黑化不久,也就是羽化的 6 天之前,每天都會分泌出液體。留著液體會害蛹被自己淹死,人為將液體移除,蛹才能順利羽化。

如果是在原本的蟻巢中,蛹排放的液體還來不及把自己淹死,就會慘遭黴菌入侵感染而亡。所幸慘劇實際上不會發生,因為成年螞蟻會將液體去除。

將藍色染劑注入蛹,一天後觀察到成蟻的消化道都出現藍染,可見蛹產生的液體,都隨即轉移進入前輩同儕的肚子。分析蛹產生的液體,得知營養十分豐富。

把食用藍色染料注入蛹,便可觀察蛹分泌液體的轉移。圖/參考資料 1

完全變態的昆蟲,從幼蟲到成蟲的過程中經過蛹的階段,將幼年的身體砍掉重練。螞蟻蛹分泌的液體顯然來自蛹期分解的身體,可謂原汁原味的液化螞蟻。這些容易吸收的成分,在巢穴中直接轉移給同類,毫不浪費。

這些幼體原汁原味形成的液體營養豐富,其他會化蛹的昆蟲也會產生類似的產物,為什麼不會把自己淹死,或是被黴菌感染?應該是由於那些昆蟲會將其回收利用,轉化為成年身體的建材。社會性生活的螞蟻卻是直接排放出去,變成其他個體的食物。

同時餵養更老與更小的同儕

成年螞蟻以外,蛹產生的液體也是寶寶的營養補充液。螞蟻幼蟲移動能力有限,成年螞蟻會將寶寶放到蛹的旁邊,方便它們液來伸口。沒有液體也能正常長大,不過有得吃的幼體,生長速度更快、存活率更高。

幼蟲破蛋出生的之後一天,蛹也開始分泌液體。圖/參考資料 1

近來在台灣出名的紅火蟻(Solenopsis invicta)雖然兇狠,卻也是畢氏粗角蟻的菜單美食之一。有個實驗是給予紅火蟻和蛹,讓成年蟻選擇,結果大部份都優先將寶寶放在蛹旁邊,可見它們認為蛹提供的善液,是更佳的育幼食品。

換句話說,螞蟻在幼年階段到成年之間的蛹,同時支持更老與更小的同儕。

奧妙還不僅如此,和一般印象不同,畢氏粗角蟻沒有特定蟻后,也缺乏男生,所有成員皆為工蟻,再透過孤雌生殖進入生殖時期。

奇妙的是,蟻巢中處於不同階段的螞蟻,時程非常協調。當卵孵化出寶寶的一天後,蛹也開始分泌液體。也就是說寶寶從出生以後,馬上就能獲得營養補充液,概念實在很像哺乳動物的哺乳。

檢視螞蟻大家族 5 大群各自的代表,都觀察到蛹分泌類似的液體。圖/參考資料 1

畢氏粗角蟻只是一種螞蟻,論文還調查螞蟻分類上其他 4 大群的成員,發現各種螞蟻的蛹都會分泌液體,而且內容物極為相似。由此推敲,這是螞蟻大家族的普遍現象,可能在眾蟻尚未分家之前已經存在。

螞蟻巢穴的內部循環如此協調,充分反映出社會性昆蟲的優點,但是同為社會性昆蟲的蜜蜂沒有。這應該是螞蟻演化為社會性的重要一步,卻不是其他社會性昆蟲的特徵。

想來也很奇妙。人們對螞蟻很熟,研究螞蟻、養螞蟻的人一大堆,可是這回報告的現象儘管普遍,卻只是首度被明確指出。我猜以前應該有人發現這件事,只是沒有深入鑽研。

等待探討的問題,無所不在,只要有心。

延伸閱讀

參考資料

  1. Snir, O., Alwaseem, H., Heissel, S., Sharma, A., Valdés-Rodríguez, S., Carroll, T. S., … & Kronauer, D. J. (2022). The pupal moulting fluid has evolved social functions in ants. Nature, 1-7.
  2. A fluid role in ant society as adults give larvae ‘milk’ from pupae
  3. Anatomy of a superorganism: Ant pupae secrete fluid as ‘milk’ to nurture young larvae
  4. Pupating ants make milk — and scientists only just noticed

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 2
寒波_96
178 篇文章 ・ 703 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。