2

5
2

文字

分享

2
5
2

基因上的魔法師——不改 DNA 就可以調整性狀的「表觀遺傳調控」,為作物改良帶來新曙光

Jean
・2022/11/13 ・3085字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/黃湘芹、謝若微、李映漾、陳柏仰|中央研究院植物暨微生物學研究所
資料來源/中研院植物暨微生物學研究所陳柏仰研究室。圖:Nien Illustration

可以在不改變 DNA 的狀況下,調整性狀?——表觀遺傳調控,幫助植物快速適應環境變化

DNA 是生物細胞內攜帶遺傳訊息的物質,當 DNA 發生變異時,會影響基因的表現進而改變性狀。但很多生物也可以在不改變 DNA 的情況下調節基因表現影響性狀,此方式稱為表觀遺傳調控,其中常見的機制包括 DNA 甲基化、組蛋白修飾、小分子 RNA 等。

其中「DNA 甲基化」為在 DNA 特定位置上添加甲基的化學修飾,當基因前端的區域——啟動子被高度甲基化時,常會導致基因表現量較低。

而「組蛋白修飾」是針對被 DNA 纏繞的蛋白質——組蛋白,在其尾端上做的各種修飾,如乙醯化、甲基化、磷酸化等,這些修飾會影響 DNA 纏繞的緊密程度,進而加強或抑制基因表現[1]。另外,由長度約為 18 到 30 個核苷酸構成的「小分子 RNA」,也會抑制基因表現。

對生物而言,表觀遺傳調控提供生物在基因序列突變外,另一種有效適應環境變化的反應方法。而這樣的反應對植物特別重要,它能幫助植物在面對氣候、環境快速變化時,迅速調整基因表現讓植物得以生存。

如果將表觀遺傳運用在改良作物性狀上,由於不需外來基因插入或是基因編輯,便能達到基因表現的變化,因此大幅減少食物安全上的諸多考量,免除基改作物對人體健康疑慮的爭議性,在農業發展上相對有利。

目前在作物中已有不少研究,分析基因體上特定位置的表觀遺傳變異,與抵抗逆境性狀之間的關聯性;例如在稻米基因體上,已發現數個特定位置的 DNA 甲基化程度與抗旱[2]、抗缺鐵[3]甚至碳儲存有顯著的關聯性。

番茄有機會作為培育優良性狀的作物。圖/Pexels

在番茄裡也發現,由小分子 RNA 對特定位點的基因調控,可影響番茄外型及抗旱性狀。顯示透過影響表觀遺傳機制,的確有機會用來培育出具有優良性狀的作物。

如何運用在作物改良上?

當應用於作物改良時,偵測表觀遺傳變異與性狀之間的關係為首要任務,其中一種用來偵測表觀遺傳變異的策略仰賴的是近年才逐漸普遍化的「全基因體定序」。由於每個作物的基因體序列不同,需逐一檢視不同作物在各種逆境條件下產生的表觀遺傳變異,然而在技術與基因體資料分析上仍是挑戰。現階段而言,利用表觀遺傳進行作物改良,雖有潛力但未能普及[4]

利用全基因體定序偵測表觀遺傳變異(圖表一):先透過外在刺激誘導表觀基因座產生變異,接著藉由分析眾多植株間表觀基因座變異的差別,並計算其與目標性狀的關聯性,進而推定能產生目標性狀的表觀基因座。

(圖表一)利用外在刺激誘導植株產生遺傳變異,透過生物資訊研究與目標性狀相關的表觀基因座。

在已知可誘導表觀基因座的策略中,以 DNA 甲基化為例 ,透過伽馬射線照射、DNA 甲基轉移酶抑制劑以及組織培養,皆可在稻米基因體產生隨機且有效的 DNA 甲基化變化[4]

種子如果曝露於伽馬放射線環境下,或是浸泡在含有 DNA 甲基轉移酶抑制劑的水溶液中,均會造成基因體去甲基化,而去甲基化的程度會隨著放射線強度或是 DNA 甲基轉移酶抑制劑的添加量而不同;如果同時使用上述兩種方法處理種子,則會對於去甲基化有加乘效果[5]

表觀遺傳因子變化,可改變玉米面對熱逆境的耐受性。圖/Pexels

除了水稻以外,玉米基因體上特定位點的表觀遺傳因子變化,可改變其對於熱逆境的耐受性。玉米在幼苗時期,如果受到短暫熱處理,便能促進與基因表現有關的組蛋白修飾,使得葉片的葉綠素含量與活性氧物質提高,以增強玉米在高溫環境下的耐受性[5]

面臨的挑戰——表觀遺傳變異重現與否

表觀遺傳變異與基因變異主要的不同在於其不穩定性,由於細胞有自我修復機制,因此表觀遺傳變異在細胞複製前、後未必能維持;此外,世代遺傳間的「表觀遺傳重組」(epigenetic reprogramming)會重置表觀遺傳的分佈,使得親代的變異未必能完整保留到子代。

儘管如此,不少研究仍發現部分表觀遺傳變異可以被遺傳至下一代。以茄科中常用的嫁接作物番茄、茄子與辣椒為例,這類的種間嫁接會影響 DNA 甲基轉移酶表現量,進而大規模影響接穗中的 DNA 甲基化分佈,其中有部分 DNA 甲基化的變動被證實可維持至下一代[5]

綜合上述,應用表觀遺傳在作物改良上需特別確認變異在跨世代間的一致性;植株進行處理後所產生的表觀遺傳變異,是否能在性狀植株或甚至下一代重現,以確保有效的作物改良。

甜椒的跳躍基因與 DNA 甲基化

甜椒被視為可利用表觀遺傳進行改良的高經濟價值作物之一。圖/Pixabay

甜椒 (Capsicum species)的基因體解序後,發現當中的跳躍基因(可以在基因體上移動的 DNA 序列)不僅增加了甜椒的多樣性,也能決定轉錄活性高的真染色質及不具轉錄活性的異染色質在基因體上的分佈[6],從而廣泛影響基因調控。

已知 DNA 甲基化是控制跳躍基因的主要因子,已有研究指出,甜椒基因上 DNA 甲基化程度的增加,與發芽、果實成熟及抗鹽性狀都有顯著相關[7][8];顯示透過刺激產生的 DNA 甲基化重新分佈,極可能影響跳躍基因的活性,進而引導出優良性狀。     

目前甜椒的基因體資料已完備,其重要性狀與表觀遺傳變化密切相關,被視為可積極利用表觀遺傳進行改良的高經濟價值作物之一。

翻開作物育種的新篇章

綜合以上,分析及尋找與目標性狀相關的表觀基因座並不容易,需要結合農藝學、基因體學及生物資訊學的知識與技術,考量表觀遺傳變異的不穩定性因素,為實現可代代相傳的作物改良,需要了解不同植物的基因體中有哪些特定的表觀遺傳變異能夠穩定傳到下一代。因此,若要使用表觀遺傳改良作物,雖有理想但非一蹴可及。

目前主流的基因改造工程,在食品、環境、與生物安全上有著錯綜複雜的影響,僅透過調控基因表現以達到性狀改良的表觀遺傳,更能消除大眾對於作物改良的疑慮。現今對於表觀遺傳的研究資料已經越來越多,在植物面臨逆境時,表觀遺傳能有效且迅速地幫助植物適應環境。在未來環境更加極端的情況下,生產作物將會面臨更嚴峻的挑戰,如何繼續維持高產量,成為農民及研究者必須解決的問題之一。

表觀遺傳調控提供植物學家與農民新的作物改良方法,儘管當前的流程尚不完善,也有許多困難需一一克服,但看好其在未來為作物育種開啟新篇章。

參考資料

  1. Tirnaz, S. & Batley, J. (2019). Epigenetics: potentials and challenges in crop breeding. Molecular Plant, 18, 1309–1311. 
  2. Sapna, H., Ashwini, N., Ramesh, S. & Nataraja, K. N. (2020). Assessment of DNA methylation pattern under drought stress using methylation-sensitive randomly amplified polymorphism analysis in rice. Plant Genetic Resour Charact Util, 18, 222–230.
  3. Sun, S., Zhu, J., Guo, R., Whelan, J. & Shou, H. (2021). DNA methylation is involved in acclimation to iron deficiency in rice (Oryza sativa). Plant J, doi:10.1111/tpj.15318.
  4. Springer, N. M. & Schmitz, R. J. (2017). Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet, 18, 563–575.
  5. Varotto, S. et al. (2020). Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot, 71, 5223–5236.
  6. Kim, S. et al. (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet, 46, 270–278.
  7. Xiao, K. et al. (2020). DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. J Exp Bot, 71, 1928–1942.
  8. Portis, E., Acquadro, A., Comino, C. & Lanteri, S. (2004). Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 166, 169–178.
文章難易度
所有討論 2
Jean
1 篇文章 ・ 0 位粉絲

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2220 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

8
3

文字

分享

1
8
3
用蛋蛋喝可樂?腸道才是鼻子的延伸!——《人類與自然的秘密連結》
日出出版
・2021/07/31 ・2725字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者 / 彼得.渥雷本
  • 譯者 / 王榮輝

我們覺得美味的東西,像是成熟的漿果與堅果,通常都是供不應求,一年之中最多只出產幾個星期。

森林的原味,怎麼就變調了

森林的味道主要就是酸味、苦味,以及介於兩者之間的細微變體。春天的嫩芽新葉起初嘗起來就酸酸的,之後還會變得又酸又苦。樹皮下有透明的形成層,用小刀就能將其剝落,形成層的營養非常豐富,含有糖分與其他碳水化合物,味道有點像紅蘿蔔,但除此之外都是苦味;森林中的食物普遍如此。

在遙遠的過去,祖先大多數的飲食嘗起來與今日截然不同。如同我們的生活環境,人類的飲食也經歷了某種演化。只有獲得顧客青睞的東西,才能持續擺在商店架上賣,所以生產者會千方百計以最能引誘味蕾的方式去調整自家的產品。他們的方法愈來愈複雜,也愈來愈準確;這也是為什麼我們很難抗拒某些食物的原因之一。糖、鹽、脂肪,所有的這一切都藉由增味劑加強,所攝取的食物已超過了人體的需求。於是乎,我們日益遺忘天然或未經加工食物的滋味。就連蔬果也因為育種,朝著類似的方向改變——愈來愈甜,苦味則愈降愈低。相較於大自然的有滋有味,我們或多或少像在吃著某種單調的雜燴,唯有某些味道特別苦或特別酸的異類能脫穎而出,例如咖啡或什錦酸菜(mixed pickles)。

人類各種感官功能與身體系統,與自然構成緊密相連的共生系統。去年的蛋蛋喝可樂迷因,讓大家發現我們能感知味道的,不只是舌頭品嘗到的、鼻子嗅聞到的。然而,我們味覺受器所品嘗到的其實不是大自然的原味,為什麼大自然的滋味會失真呢?
經育種後的蔬果,已失去原有的滋味。圖/Pexels

馬兒的味蕾數目竟是人類的 3.5 倍!

值得慶幸的是,我們的舌頭永遠無法被寵壞,抑或是讓舌頭上的味覺中樞——舌乳頭,完全麻木。一個舌乳頭含有一百個味蕾,每個味蕾又含有一百個味覺細胞;這些細胞不是很耐用,每十天就會被更新一次。因此,若在進食中造成某種損害,例如飲用過熱的飲料導致燙傷,舌頭會很快地自我修復。

在舌乳頭為數將近一百的情況下,人類具有將近一萬個味蕾。如果覺得這個數量很多,不妨去比較一下馬的舌頭:大約有三萬五千個味蕾。為何馬需要這麼多的味蕾?草場上生長種類數以百計的草和藥草,其中不乏有毒的草。此外,馬無法看到自己嘴唇正前方的東西,因為牠們又大又長的頭部擋住了視線。如果在進食時什麼也看不到,那就必須依靠自己的舌頭。為此,必須先將有疑慮的草放入口中,如果不是該吞下肚的草,就得再迅速吐出來。

馬很擅於做這樣的事情,我養的兩匹母馬就是這樣:如果藥草的味道不好,就會在咀嚼過程中被優雅地推向口腔邊緣,繼而通過嘴唇退回到曠野之中,觀察這個過程十分有趣。

馬兒擅長以味蕾來辨別此草是否可吞下肚。圖/Pexels

味覺感應器可不是只有舌頭才有喔!

說到舌頭,它其實並非人類唯一能藉以品嘗味道的部位。且讓我們先回過頭來看看鼻子。迄今為止,已知在食物中約有八千種可聞的揮發性物質。令人訝異的是,這類氣味多半在呼氣時才會被聞到,人類則有四分之三的味覺印象是基於鼻子的感知。想想感冒就知道了:這時食物的味道驟然變得索然無味,頓時失去了所有吃東西的享受。

人類有四分之三的味覺印象是基於鼻子的感知。圖/Pexels

因此,下回在森林中漫步時,除了透過觀察針葉與樹葉的形狀來探索樹種之間的差異,不妨咬咬看雲杉的樹枝,看看針葉裡究竟藏著哪些味道與香氣,想必會很有意義。

如同前面所說,我們對口腔裡味覺感應器的搜索尚未結束。從字面上來說,幾乎得走到「食物之旅」的盡頭,也就是進入腸道。如同腸道會一起嗅聞,其同樣也會一起品嘗,因為腸道中也有感應器,而且還是一般認為只會出現在鼻子裡的那種感應器。這些細胞不像我們的味覺,很容易受到甜味劑的蒙蔽。為小腸所感受的糖,通常會引發激素的釋放,並會對我們的意識發出「飽足」的信號。然而,甜味劑製品所能觸發的這類信號,卻遠遠弱了許多,於是身體就會要求更多的食物。因此,光是基於這個原因,倘若想減肥,攝取使用代糖的低卡製品並不會特別有效

聽說女人一生會吃下近 300 支口紅?!

現代的化妝品、洗潔劑、薰香蠟燭和諸如此類的其他製品,不僅充斥於我們的口鼻,也充斥於我們的腸道。可是,到底誰會把化妝品、洗潔劑和薰香蠟燭吃下肚?答案很簡單:我們根本不必吃下肚,它們就能透過皮膚或呼吸道進入腸道,甚至到達人體的所有其他角落。這可謂是一支名副其實的「無敵艦隊」,藏身於調味食品中侵襲受體。根據德國聯邦風險評估研究所(Bundesinstitut für Risikobewertung)的說法,在食品生產中使用的香精約有兩千七百種,且大多為人工製造。如果把這個數目拿來與自然界中的香精相比,似乎就顯得小巫見大巫;迄今為止,人們已在自然界中發現了將近一萬種的香精。然而,這種純粹的統計數字卻是騙人的。

化妝品、薰香蠟燭等會透過皮膚與呼吸道進入體內。圖/Pexels

事實上,在日常生活中,只有當中的極少數能觸及我們的感官。畢竟,我們所品嘗的並非世上所有的水果,多半就只是家鄉所出產的水果——至少在全球貿易盛行之前是如此。

如今,我們的腸道充斥著陌生的香精,數量多到令人髮指,這也可能會導致腸道時不時「抓狂」,或是引發各式各樣的疾病;如同前面所說的,根據不同的香精類型,腸道感知到香精後,會觸發某些分泌物的分泌與某些活動的變化。然而,這一切與森林有何關係呢?別著急,因為我們已經針對這個生態系統做好了準備,連同它的氣味與味道,應該都能與之和諧相處。相反地,人工添加物卻會給身體帶來不必要的負擔,這也就是為何,時不時走入森林,並且在森林裡待上一時半會兒,藉以緩解鼻子、嘴巴與腸道的負擔,絕對非常有益。畢竟,人體之所以如此形塑,完完全全是為了適應在森林中湧入感官的一切。如果還能來點低度加工、不含添加物的天然食物當點心,森林浴的效果絕對會加倍。

——本文摘自《人類與自然的秘密連結》,2021 年 6 月,日出出版
所有討論 1

3

7
4

文字

分享

3
7
4
你也討厭花椰菜,愛吃高麗菜?它們全都是一夥的啦!
拐瓜園長_96
・2021/06/07 ・3414字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

還記得小時候跟著媽媽去買菜,被問到今晚想吃什麼菜,常常只能望著架上一片綠意盎然但卻不知眾菜何名的心情,最熟悉、也最會分辨的青菜通常只有,白菜、高麗菜、花椰菜。

不曉得現在的小朋友們是否和當年的我一樣?

直到長大後多讀了一點書,這才驚覺——原來,白菜、高麗菜、花椰菜,竟然是親戚?!

風靡歐亞、愛冷的蔬菜大家族——蕓薹屬

這一家子不僅家大業大,還可說是一門忠烈,煎、煮、炒、炸、燉、烤、紅燒、生食、熱飲,無論東、西方料理都獻身無數,除了可以吃,還拿來榨油、劈砍、作拐杖,怪不得美國人為了感念這一家子的貢獻,還特地訂了一個「全國甘藍日」註1以資紀念。

這一大家族,有個文謅謅的名字——「蕓薹屬」(Brassicas)是也!

花椰菜也是蕓薹屬的一員。圖/Wikipedia

在自然狀況下,這家的成員都有類似的生命模式,通常這類植物都比較喜愛冷涼的生長環境,會在秋冬季時努力生長,直到春天來臨、氣溫回暖才開花結籽,由於這樣的生長模式會跨越人類的冬季至春季陪人類過年,所以也被稱為「二年生植物」(biennial plant)。

植物學家一直很想建立蕓薹屬家族的族譜,但最早的祖先實在難以考究,只知道大約是原生於歐洲及中東地帶,並在中國西北部、地中海地區及西歐溫帶地區獨立或共同演化成現在這樣子。

目前我們能夠確定的是,依照「染色體數目」來區分可以把蕓薹屬家族再分成三大分支,分別是:

  1. 白菜群,有 10 條染色體
  2. 甘藍群,有 8 條染色體
  3. 黑芥群,有 9 條染色體

其中的白菜群主要在亞洲地區演化,而甘藍群則主要在歐洲育成,並各自成為兩大洲人民重要的蔬菜來源。

英國的野生甘藍植物。圖/Wikipedia

油菜、泡菜、酸菜,大家都是好「白菜」

白菜群的祖先,就是「蕓薹」(Brassica rapa),至今在中東地區還找得到野生的蕓薹,很早就有人在種,原先是拿來吃,後來發現蕓薹的種子含油量高,只要經過簡單的擠壓就可以榨出油來,就有人開始專門種來榨油。

經過幾千年來人為的選擇,要吃葉子的就選葉子大又不苦的,就選出了今天的白菜,要拿來榨油的就選種子產量高油份又多的,變成了今日的油菜

無論是白菜或油菜,其實都是一個總稱而已。以白菜為例,白菜又可分成小白菜、大白菜、結球白菜、塌棵菜、京水菜,在亞洲各地都是很具代表性的蔬菜。

其中特別值得一提的是結球白菜,在中國的山東白菜做成酸菜酸香迷人、日本則做成漬白菜、德國酸白菜拿來配豬腳無人不知,在韓國被做成韓式泡菜被視為重要文化資產,我們實在不知道到底是誰先拿結球白菜來發酵的,但假如少了醃白菜,各國料理遜色得絕對不只三分啊!

蕓薹是白菜群的祖先,經由長期以來的人為選擇,就選出了這些常見的各種蔬菜。(蕓薹圖片取自維基百科,其他則由作者親自拍攝)

抓住歐洲人的胃!西方甘藍群好吃又好養

甘藍群的祖先呢,則是一種叫做「野生甘藍」(Brassica oleracea)的植物,現在也還能在地中海、英國及法國部分富含石灰質的海岸上見到。

這種植物生性耐鹽耐鹼耐貧瘠,長有厚厚的葉子和又粗又韌的根,使它可以在缺水又艱困的海岸生存。

雖然不太懂一開始拿它來吃的歐洲人在想什麼啦,但一樣經過人為選擇且歐洲人更具創意,根、莖、葉、花都有人用!

愛吃葉子的就選出了今日吃葉的羽衣甘藍、中國芥藍、高麗菜,葉子不好吃但好看的就選出葉牡丹拿來觀賞;吃莖的就選出球莖甘藍(大頭菜或稱苤蘭);崇尚美食的法國人則選出了花椰菜與青花菜註2

野生甘藍是甘藍群的祖先,經過人為選擇後產生了相當多樣的現代作物。(野生甘藍及高莖甘藍圖片取自維基百科,其他則由作者親自拍攝)

其中最有創意的非英國人莫屬了,英屬澤西島上的人們種有一種奇特的甘藍品種,它的莖長的又長又硬,最高紀錄據說可長到 5 公尺,至於它的用途呢,則是用來作拐杖的,也真是夠奇葩的了。

什麼叫做「野生」的甘藍?

順道一提,為什麼我們要叫這類植物的祖先叫做「野生」甘藍呢?野生、不野生,有什麼差別?

「野生」甘藍代表的是:它還沒有被人類馴化(domestication)!也就是說,野生甘藍的生長與生殖尚未被人類所支配、掌控。

那我們該怎麼判斷一種植物已經受到「馴化」?

在沒有人為干擾的情況下,野生甘藍需要傳播種子時,一旦它的種莢成熟後,種莢就會「自動裂開」,並將種子傳出去。

然而,當其後代漸漸被人類馴化之後,由於人類需要自己動手收穫種子來使用或種植,因此就會盡量挑選成熟之後「種莢不容易裂開」的植物。在植物育種學上,這個特徵會使用不脱粒性(non-shattering)來描述。

現代的蕓薹屬作物都是被人為馴化過的品種,為了方便採收,其種莢即使成熟也不容易開裂,使人類能夠大量搜集種子並加以繁殖,這是植物適應人為環境的結果。圖/作者提供

除此之外,被馴化的另一個指標是「對人類有用的特性越來越強化」,其中花椰菜就是其中一個極端的例子。

花椰菜能長出異常膨脹而大量的花原基,但其中大部分都無法正常分化成花朵,假如不考慮人類食用的功能,那麼這種特性完全就是浪、費、能、量,根本不可能在自然天擇環境下長期生存。

野生甘藍到底是何時被人類馴化?這仍是個未解之謎,但早在古希臘羅馬時代,就有人宣稱他家的甘藍不僅好吃、還有藥效,吃了可以減緩頭痛、解宿醉,因此可能早在羅馬時代,甘藍就已經是常見的盤中飧。 

黑芥群雜交後也是很好吃的!

至於黑芥群的祖先「黑芥」(Brassica nigra)就更少人認識了,至今仍然沒有人為了商業生產而種植。

從演化上來看,黑芥群與白菜、甘藍群的關係也要更遠一些,但黑芥與白菜雜交產生的芥菜卻是中國菜系裡不可少的一種食材,我實在很能想像客家菜裡少了酸菜、福菜、梅乾菜會是怎樣!

找出蕓薹屬錯綜複雜的關係:禹氏三角

我們現在能對蕓薹屬家族的關係稍微理出個頭緒,必須感謝韓國的現代農業之父——禹長春(Woo Jang-Choon, 1898-1959)。

透過對蕓苔屬植物染色體數目及形態分析的研究,禹長春提出一個理論:那就是在所有的蕓苔屬植物裡,凡是染色體數相同的都是同一個「種」,而其中二倍體的白菜群、甘藍群、黑芥群可以形成三個頂點,頂點兩端的物種分別雜交就產生了四倍體的芥菜、衣索比亞芥菜及現代的油菜。

禹氏三角模型是目前農學上,用來解釋蕓薹屬植物品種的演化及其相互親緣關係的主流理論。圖/取自維基百科並加註中文說明

後來我們將這個理論就稱為「禹氏三角」(The triangle of U),禹長春並在1935年成功使用野生甘藍與蕓薹雜交產生非常類似現代油菜的品種,重現了現代油菜的演化過程。

現代仍然有許多育種家使用這個理論培育新品種,例如日本就利用甘藍與小白菜雜交產生千寶菜,又用青花菜與芥蘭菜雜交產生青花筍,我們的臺南農業改良場在 2018 年也利用青江菜與耐熱的油菜雜交,推出較適應台灣夏季炎熱氣候的深綠色蔬菜品種。

看來芸薹屬家族的關係只可能更亂更複雜,但也讓人期待,未來一定會有更多奇妙又好吃的蔬菜會從這個家族中脫穎而出!

備註

  1. 美國的全國甘藍日訂於 2 月 17 日,訂定者未知。 
  2. 花椰菜與青花菜所食用的部分其實並不是花朵,花椰菜吃的是尚未分化完全的花原基,而青花菜又名西蘭花,吃的是尚未開花的花苞。

參考文獻

  1. 謝明憲、許涵鈞、王仕賢 2011 十字花科蕓薹屬蔬菜育種趨勢與生技應用概況 農業生技產 業季刊 25: 46-52。 
  2. Maggioni, L., Bothmer, R. von, Poulsen, G. & Branca, F. (2010). Origin and domestication of cole crops (Brassica oleracea L.): linguistic and literary considerations. Economic Botany, vol. 64 (2), pp. 109–123. 
  3. Jules, Janick (2009). Plant Breeding Reviews. 31. Wiley. p. 56. ISBN 978-0-470-38762-7.
所有討論 3

2

5
2

文字

分享

2
5
2
基因上的魔法師——不改 DNA 就可以調整性狀的「表觀遺傳調控」,為作物改良帶來新曙光
Jean
・2022/11/13 ・3085字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/黃湘芹、謝若微、李映漾、陳柏仰|中央研究院植物暨微生物學研究所
資料來源/中研院植物暨微生物學研究所陳柏仰研究室。圖:Nien Illustration

可以在不改變 DNA 的狀況下,調整性狀?——表觀遺傳調控,幫助植物快速適應環境變化

DNA 是生物細胞內攜帶遺傳訊息的物質,當 DNA 發生變異時,會影響基因的表現進而改變性狀。但很多生物也可以在不改變 DNA 的情況下調節基因表現影響性狀,此方式稱為表觀遺傳調控,其中常見的機制包括 DNA 甲基化、組蛋白修飾、小分子 RNA 等。

其中「DNA 甲基化」為在 DNA 特定位置上添加甲基的化學修飾,當基因前端的區域——啟動子被高度甲基化時,常會導致基因表現量較低。

而「組蛋白修飾」是針對被 DNA 纏繞的蛋白質——組蛋白,在其尾端上做的各種修飾,如乙醯化、甲基化、磷酸化等,這些修飾會影響 DNA 纏繞的緊密程度,進而加強或抑制基因表現[1]。另外,由長度約為 18 到 30 個核苷酸構成的「小分子 RNA」,也會抑制基因表現。

對生物而言,表觀遺傳調控提供生物在基因序列突變外,另一種有效適應環境變化的反應方法。而這樣的反應對植物特別重要,它能幫助植物在面對氣候、環境快速變化時,迅速調整基因表現讓植物得以生存。

如果將表觀遺傳運用在改良作物性狀上,由於不需外來基因插入或是基因編輯,便能達到基因表現的變化,因此大幅減少食物安全上的諸多考量,免除基改作物對人體健康疑慮的爭議性,在農業發展上相對有利。

目前在作物中已有不少研究,分析基因體上特定位置的表觀遺傳變異,與抵抗逆境性狀之間的關聯性;例如在稻米基因體上,已發現數個特定位置的 DNA 甲基化程度與抗旱[2]、抗缺鐵[3]甚至碳儲存有顯著的關聯性。

番茄有機會作為培育優良性狀的作物。圖/Pexels

在番茄裡也發現,由小分子 RNA 對特定位點的基因調控,可影響番茄外型及抗旱性狀。顯示透過影響表觀遺傳機制,的確有機會用來培育出具有優良性狀的作物。

如何運用在作物改良上?

當應用於作物改良時,偵測表觀遺傳變異與性狀之間的關係為首要任務,其中一種用來偵測表觀遺傳變異的策略仰賴的是近年才逐漸普遍化的「全基因體定序」。由於每個作物的基因體序列不同,需逐一檢視不同作物在各種逆境條件下產生的表觀遺傳變異,然而在技術與基因體資料分析上仍是挑戰。現階段而言,利用表觀遺傳進行作物改良,雖有潛力但未能普及[4]

利用全基因體定序偵測表觀遺傳變異(圖表一):先透過外在刺激誘導表觀基因座產生變異,接著藉由分析眾多植株間表觀基因座變異的差別,並計算其與目標性狀的關聯性,進而推定能產生目標性狀的表觀基因座。

(圖表一)利用外在刺激誘導植株產生遺傳變異,透過生物資訊研究與目標性狀相關的表觀基因座。

在已知可誘導表觀基因座的策略中,以 DNA 甲基化為例 ,透過伽馬射線照射、DNA 甲基轉移酶抑制劑以及組織培養,皆可在稻米基因體產生隨機且有效的 DNA 甲基化變化[4]

種子如果曝露於伽馬放射線環境下,或是浸泡在含有 DNA 甲基轉移酶抑制劑的水溶液中,均會造成基因體去甲基化,而去甲基化的程度會隨著放射線強度或是 DNA 甲基轉移酶抑制劑的添加量而不同;如果同時使用上述兩種方法處理種子,則會對於去甲基化有加乘效果[5]

表觀遺傳因子變化,可改變玉米面對熱逆境的耐受性。圖/Pexels

除了水稻以外,玉米基因體上特定位點的表觀遺傳因子變化,可改變其對於熱逆境的耐受性。玉米在幼苗時期,如果受到短暫熱處理,便能促進與基因表現有關的組蛋白修飾,使得葉片的葉綠素含量與活性氧物質提高,以增強玉米在高溫環境下的耐受性[5]

面臨的挑戰——表觀遺傳變異重現與否

表觀遺傳變異與基因變異主要的不同在於其不穩定性,由於細胞有自我修復機制,因此表觀遺傳變異在細胞複製前、後未必能維持;此外,世代遺傳間的「表觀遺傳重組」(epigenetic reprogramming)會重置表觀遺傳的分佈,使得親代的變異未必能完整保留到子代。

儘管如此,不少研究仍發現部分表觀遺傳變異可以被遺傳至下一代。以茄科中常用的嫁接作物番茄、茄子與辣椒為例,這類的種間嫁接會影響 DNA 甲基轉移酶表現量,進而大規模影響接穗中的 DNA 甲基化分佈,其中有部分 DNA 甲基化的變動被證實可維持至下一代[5]

綜合上述,應用表觀遺傳在作物改良上需特別確認變異在跨世代間的一致性;植株進行處理後所產生的表觀遺傳變異,是否能在性狀植株或甚至下一代重現,以確保有效的作物改良。

甜椒的跳躍基因與 DNA 甲基化

甜椒被視為可利用表觀遺傳進行改良的高經濟價值作物之一。圖/Pixabay

甜椒 (Capsicum species)的基因體解序後,發現當中的跳躍基因(可以在基因體上移動的 DNA 序列)不僅增加了甜椒的多樣性,也能決定轉錄活性高的真染色質及不具轉錄活性的異染色質在基因體上的分佈[6],從而廣泛影響基因調控。

已知 DNA 甲基化是控制跳躍基因的主要因子,已有研究指出,甜椒基因上 DNA 甲基化程度的增加,與發芽、果實成熟及抗鹽性狀都有顯著相關[7][8];顯示透過刺激產生的 DNA 甲基化重新分佈,極可能影響跳躍基因的活性,進而引導出優良性狀。     

目前甜椒的基因體資料已完備,其重要性狀與表觀遺傳變化密切相關,被視為可積極利用表觀遺傳進行改良的高經濟價值作物之一。

翻開作物育種的新篇章

綜合以上,分析及尋找與目標性狀相關的表觀基因座並不容易,需要結合農藝學、基因體學及生物資訊學的知識與技術,考量表觀遺傳變異的不穩定性因素,為實現可代代相傳的作物改良,需要了解不同植物的基因體中有哪些特定的表觀遺傳變異能夠穩定傳到下一代。因此,若要使用表觀遺傳改良作物,雖有理想但非一蹴可及。

目前主流的基因改造工程,在食品、環境、與生物安全上有著錯綜複雜的影響,僅透過調控基因表現以達到性狀改良的表觀遺傳,更能消除大眾對於作物改良的疑慮。現今對於表觀遺傳的研究資料已經越來越多,在植物面臨逆境時,表觀遺傳能有效且迅速地幫助植物適應環境。在未來環境更加極端的情況下,生產作物將會面臨更嚴峻的挑戰,如何繼續維持高產量,成為農民及研究者必須解決的問題之一。

表觀遺傳調控提供植物學家與農民新的作物改良方法,儘管當前的流程尚不完善,也有許多困難需一一克服,但看好其在未來為作物育種開啟新篇章。

參考資料

  1. Tirnaz, S. & Batley, J. (2019). Epigenetics: potentials and challenges in crop breeding. Molecular Plant, 18, 1309–1311. 
  2. Sapna, H., Ashwini, N., Ramesh, S. & Nataraja, K. N. (2020). Assessment of DNA methylation pattern under drought stress using methylation-sensitive randomly amplified polymorphism analysis in rice. Plant Genetic Resour Charact Util, 18, 222–230.
  3. Sun, S., Zhu, J., Guo, R., Whelan, J. & Shou, H. (2021). DNA methylation is involved in acclimation to iron deficiency in rice (Oryza sativa). Plant J, doi:10.1111/tpj.15318.
  4. Springer, N. M. & Schmitz, R. J. (2017). Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet, 18, 563–575.
  5. Varotto, S. et al. (2020). Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot, 71, 5223–5236.
  6. Kim, S. et al. (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet, 46, 270–278.
  7. Xiao, K. et al. (2020). DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. J Exp Bot, 71, 1928–1942.
  8. Portis, E., Acquadro, A., Comino, C. & Lanteri, S. (2004). Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 166, 169–178.
文章難易度
所有討論 2
Jean
1 篇文章 ・ 0 位粉絲