2

8
3

文字

分享

2
8
3

基因上的魔法師——不改 DNA 就可以調整性狀的「表觀遺傳調控」,為作物改良帶來新曙光

Jean
・2022/11/13 ・3085字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/黃湘芹、謝若微、李映漾、陳柏仰|中央研究院植物暨微生物學研究所
資料來源/中研院植物暨微生物學研究所陳柏仰研究室。圖:Nien Illustration

可以在不改變 DNA 的狀況下,調整性狀?——表觀遺傳調控,幫助植物快速適應環境變化

DNA 是生物細胞內攜帶遺傳訊息的物質,當 DNA 發生變異時,會影響基因的表現進而改變性狀。但很多生物也可以在不改變 DNA 的情況下調節基因表現影響性狀,此方式稱為表觀遺傳調控,其中常見的機制包括 DNA 甲基化、組蛋白修飾、小分子 RNA 等。

其中「DNA 甲基化」為在 DNA 特定位置上添加甲基的化學修飾,當基因前端的區域——啟動子被高度甲基化時,常會導致基因表現量較低。

而「組蛋白修飾」是針對被 DNA 纏繞的蛋白質——組蛋白,在其尾端上做的各種修飾,如乙醯化、甲基化、磷酸化等,這些修飾會影響 DNA 纏繞的緊密程度,進而加強或抑制基因表現[1]。另外,由長度約為 18 到 30 個核苷酸構成的「小分子 RNA」,也會抑制基因表現。

對生物而言,表觀遺傳調控提供生物在基因序列突變外,另一種有效適應環境變化的反應方法。而這樣的反應對植物特別重要,它能幫助植物在面對氣候、環境快速變化時,迅速調整基因表現讓植物得以生存。

-----廣告,請繼續往下閱讀-----

如果將表觀遺傳運用在改良作物性狀上,由於不需外來基因插入或是基因編輯,便能達到基因表現的變化,因此大幅減少食物安全上的諸多考量,免除基改作物對人體健康疑慮的爭議性,在農業發展上相對有利。

目前在作物中已有不少研究,分析基因體上特定位置的表觀遺傳變異,與抵抗逆境性狀之間的關聯性;例如在稻米基因體上,已發現數個特定位置的 DNA 甲基化程度與抗旱[2]、抗缺鐵[3]甚至碳儲存有顯著的關聯性。

番茄有機會作為培育優良性狀的作物。圖/Pexels

在番茄裡也發現,由小分子 RNA 對特定位點的基因調控,可影響番茄外型及抗旱性狀。顯示透過影響表觀遺傳機制,的確有機會用來培育出具有優良性狀的作物。

如何運用在作物改良上?

當應用於作物改良時,偵測表觀遺傳變異與性狀之間的關係為首要任務,其中一種用來偵測表觀遺傳變異的策略仰賴的是近年才逐漸普遍化的「全基因體定序」。由於每個作物的基因體序列不同,需逐一檢視不同作物在各種逆境條件下產生的表觀遺傳變異,然而在技術與基因體資料分析上仍是挑戰。現階段而言,利用表觀遺傳進行作物改良,雖有潛力但未能普及[4]

利用全基因體定序偵測表觀遺傳變異(圖表一):先透過外在刺激誘導表觀基因座產生變異,接著藉由分析眾多植株間表觀基因座變異的差別,並計算其與目標性狀的關聯性,進而推定能產生目標性狀的表觀基因座。

-----廣告,請繼續往下閱讀-----
(圖表一)利用外在刺激誘導植株產生遺傳變異,透過生物資訊研究與目標性狀相關的表觀基因座。

在已知可誘導表觀基因座的策略中,以 DNA 甲基化為例 ,透過伽馬射線照射、DNA 甲基轉移酶抑制劑以及組織培養,皆可在稻米基因體產生隨機且有效的 DNA 甲基化變化[4]

種子如果曝露於伽馬放射線環境下,或是浸泡在含有 DNA 甲基轉移酶抑制劑的水溶液中,均會造成基因體去甲基化,而去甲基化的程度會隨著放射線強度或是 DNA 甲基轉移酶抑制劑的添加量而不同;如果同時使用上述兩種方法處理種子,則會對於去甲基化有加乘效果[5]

表觀遺傳因子變化,可改變玉米面對熱逆境的耐受性。圖/Pexels

除了水稻以外,玉米基因體上特定位點的表觀遺傳因子變化,可改變其對於熱逆境的耐受性。玉米在幼苗時期,如果受到短暫熱處理,便能促進與基因表現有關的組蛋白修飾,使得葉片的葉綠素含量與活性氧物質提高,以增強玉米在高溫環境下的耐受性[5]

面臨的挑戰——表觀遺傳變異重現與否

表觀遺傳變異與基因變異主要的不同在於其不穩定性,由於細胞有自我修復機制,因此表觀遺傳變異在細胞複製前、後未必能維持;此外,世代遺傳間的「表觀遺傳重組」(epigenetic reprogramming)會重置表觀遺傳的分佈,使得親代的變異未必能完整保留到子代。

-----廣告,請繼續往下閱讀-----

儘管如此,不少研究仍發現部分表觀遺傳變異可以被遺傳至下一代。以茄科中常用的嫁接作物番茄、茄子與辣椒為例,這類的種間嫁接會影響 DNA 甲基轉移酶表現量,進而大規模影響接穗中的 DNA 甲基化分佈,其中有部分 DNA 甲基化的變動被證實可維持至下一代[5]

綜合上述,應用表觀遺傳在作物改良上需特別確認變異在跨世代間的一致性;植株進行處理後所產生的表觀遺傳變異,是否能在性狀植株或甚至下一代重現,以確保有效的作物改良。

甜椒的跳躍基因與 DNA 甲基化

甜椒被視為可利用表觀遺傳進行改良的高經濟價值作物之一。圖/Pixabay

甜椒 (Capsicum species)的基因體解序後,發現當中的跳躍基因(可以在基因體上移動的 DNA 序列)不僅增加了甜椒的多樣性,也能決定轉錄活性高的真染色質及不具轉錄活性的異染色質在基因體上的分佈[6],從而廣泛影響基因調控。

已知 DNA 甲基化是控制跳躍基因的主要因子,已有研究指出,甜椒基因上 DNA 甲基化程度的增加,與發芽、果實成熟及抗鹽性狀都有顯著相關[7][8];顯示透過刺激產生的 DNA 甲基化重新分佈,極可能影響跳躍基因的活性,進而引導出優良性狀。     

-----廣告,請繼續往下閱讀-----

目前甜椒的基因體資料已完備,其重要性狀與表觀遺傳變化密切相關,被視為可積極利用表觀遺傳進行改良的高經濟價值作物之一。

翻開作物育種的新篇章

綜合以上,分析及尋找與目標性狀相關的表觀基因座並不容易,需要結合農藝學、基因體學及生物資訊學的知識與技術,考量表觀遺傳變異的不穩定性因素,為實現可代代相傳的作物改良,需要了解不同植物的基因體中有哪些特定的表觀遺傳變異能夠穩定傳到下一代。因此,若要使用表觀遺傳改良作物,雖有理想但非一蹴可及。

目前主流的基因改造工程,在食品、環境、與生物安全上有著錯綜複雜的影響,僅透過調控基因表現以達到性狀改良的表觀遺傳,更能消除大眾對於作物改良的疑慮。現今對於表觀遺傳的研究資料已經越來越多,在植物面臨逆境時,表觀遺傳能有效且迅速地幫助植物適應環境。在未來環境更加極端的情況下,生產作物將會面臨更嚴峻的挑戰,如何繼續維持高產量,成為農民及研究者必須解決的問題之一。

表觀遺傳調控提供植物學家與農民新的作物改良方法,儘管當前的流程尚不完善,也有許多困難需一一克服,但看好其在未來為作物育種開啟新篇章。

參考資料

  1. Tirnaz, S. & Batley, J. (2019). Epigenetics: potentials and challenges in crop breeding. Molecular Plant, 18, 1309–1311. 
  2. Sapna, H., Ashwini, N., Ramesh, S. & Nataraja, K. N. (2020). Assessment of DNA methylation pattern under drought stress using methylation-sensitive randomly amplified polymorphism analysis in rice. Plant Genetic Resour Charact Util, 18, 222–230.
  3. Sun, S., Zhu, J., Guo, R., Whelan, J. & Shou, H. (2021). DNA methylation is involved in acclimation to iron deficiency in rice (Oryza sativa). Plant J, doi:10.1111/tpj.15318.
  4. Springer, N. M. & Schmitz, R. J. (2017). Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet, 18, 563–575.
  5. Varotto, S. et al. (2020). Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot, 71, 5223–5236.
  6. Kim, S. et al. (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet, 46, 270–278.
  7. Xiao, K. et al. (2020). DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. J Exp Bot, 71, 1928–1942.
  8. Portis, E., Acquadro, A., Comino, C. & Lanteri, S. (2004). Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 166, 169–178.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
Jean
1 篇文章 ・ 0 位粉絲

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3235字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

參考資料

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

1

8
3

文字

分享

1
8
3
用蛋蛋喝可樂?腸道才是鼻子的延伸!——《人類與自然的秘密連結》
日出出版
・2021/07/31 ・2725字 ・閱讀時間約 5 分鐘

  • 作者 / 彼得.渥雷本
  • 譯者 / 王榮輝

我們覺得美味的東西,像是成熟的漿果與堅果,通常都是供不應求,一年之中最多只出產幾個星期。

森林的原味,怎麼就變調了

森林的味道主要就是酸味、苦味,以及介於兩者之間的細微變體。春天的嫩芽新葉起初嘗起來就酸酸的,之後還會變得又酸又苦。樹皮下有透明的形成層,用小刀就能將其剝落,形成層的營養非常豐富,含有糖分與其他碳水化合物,味道有點像紅蘿蔔,但除此之外都是苦味;森林中的食物普遍如此。

在遙遠的過去,祖先大多數的飲食嘗起來與今日截然不同。如同我們的生活環境,人類的飲食也經歷了某種演化。只有獲得顧客青睞的東西,才能持續擺在商店架上賣,所以生產者會千方百計以最能引誘味蕾的方式去調整自家的產品。他們的方法愈來愈複雜,也愈來愈準確;這也是為什麼我們很難抗拒某些食物的原因之一。糖、鹽、脂肪,所有的這一切都藉由增味劑加強,所攝取的食物已超過了人體的需求。於是乎,我們日益遺忘天然或未經加工食物的滋味。就連蔬果也因為育種,朝著類似的方向改變——愈來愈甜,苦味則愈降愈低。相較於大自然的有滋有味,我們或多或少像在吃著某種單調的雜燴,唯有某些味道特別苦或特別酸的異類能脫穎而出,例如咖啡或什錦酸菜(mixed pickles)。

人類各種感官功能與身體系統,與自然構成緊密相連的共生系統。去年的蛋蛋喝可樂迷因,讓大家發現我們能感知味道的,不只是舌頭品嘗到的、鼻子嗅聞到的。然而,我們味覺受器所品嘗到的其實不是大自然的原味,為什麼大自然的滋味會失真呢?
經育種後的蔬果,已失去原有的滋味。圖/Pexels

馬兒的味蕾數目竟是人類的 3.5 倍!

值得慶幸的是,我們的舌頭永遠無法被寵壞,抑或是讓舌頭上的味覺中樞——舌乳頭,完全麻木。一個舌乳頭含有一百個味蕾,每個味蕾又含有一百個味覺細胞;這些細胞不是很耐用,每十天就會被更新一次。因此,若在進食中造成某種損害,例如飲用過熱的飲料導致燙傷,舌頭會很快地自我修復。

在舌乳頭為數將近一百的情況下,人類具有將近一萬個味蕾。如果覺得這個數量很多,不妨去比較一下馬的舌頭:大約有三萬五千個味蕾。為何馬需要這麼多的味蕾?草場上生長種類數以百計的草和藥草,其中不乏有毒的草。此外,馬無法看到自己嘴唇正前方的東西,因為牠們又大又長的頭部擋住了視線。如果在進食時什麼也看不到,那就必須依靠自己的舌頭。為此,必須先將有疑慮的草放入口中,如果不是該吞下肚的草,就得再迅速吐出來。

-----廣告,請繼續往下閱讀-----

馬很擅於做這樣的事情,我養的兩匹母馬就是這樣:如果藥草的味道不好,就會在咀嚼過程中被優雅地推向口腔邊緣,繼而通過嘴唇退回到曠野之中,觀察這個過程十分有趣。

馬兒擅長以味蕾來辨別此草是否可吞下肚。圖/Pexels

味覺感應器可不是只有舌頭才有喔!

說到舌頭,它其實並非人類唯一能藉以品嘗味道的部位。且讓我們先回過頭來看看鼻子。迄今為止,已知在食物中約有八千種可聞的揮發性物質。令人訝異的是,這類氣味多半在呼氣時才會被聞到,人類則有四分之三的味覺印象是基於鼻子的感知。想想感冒就知道了:這時食物的味道驟然變得索然無味,頓時失去了所有吃東西的享受。

人類有四分之三的味覺印象是基於鼻子的感知。圖/Pexels

因此,下回在森林中漫步時,除了透過觀察針葉與樹葉的形狀來探索樹種之間的差異,不妨咬咬看雲杉的樹枝,看看針葉裡究竟藏著哪些味道與香氣,想必會很有意義。

如同前面所說,我們對口腔裡味覺感應器的搜索尚未結束。從字面上來說,幾乎得走到「食物之旅」的盡頭,也就是進入腸道。如同腸道會一起嗅聞,其同樣也會一起品嘗,因為腸道中也有感應器,而且還是一般認為只會出現在鼻子裡的那種感應器。這些細胞不像我們的味覺,很容易受到甜味劑的蒙蔽。為小腸所感受的糖,通常會引發激素的釋放,並會對我們的意識發出「飽足」的信號。然而,甜味劑製品所能觸發的這類信號,卻遠遠弱了許多,於是身體就會要求更多的食物。因此,光是基於這個原因,倘若想減肥,攝取使用代糖的低卡製品並不會特別有效

聽說女人一生會吃下近 300 支口紅?!

現代的化妝品、洗潔劑、薰香蠟燭和諸如此類的其他製品,不僅充斥於我們的口鼻,也充斥於我們的腸道。可是,到底誰會把化妝品、洗潔劑和薰香蠟燭吃下肚?答案很簡單:我們根本不必吃下肚,它們就能透過皮膚或呼吸道進入腸道,甚至到達人體的所有其他角落。這可謂是一支名副其實的「無敵艦隊」,藏身於調味食品中侵襲受體。根據德國聯邦風險評估研究所(Bundesinstitut für Risikobewertung)的說法,在食品生產中使用的香精約有兩千七百種,且大多為人工製造。如果把這個數目拿來與自然界中的香精相比,似乎就顯得小巫見大巫;迄今為止,人們已在自然界中發現了將近一萬種的香精。然而,這種純粹的統計數字卻是騙人的。

化妝品、薰香蠟燭等會透過皮膚與呼吸道進入體內。圖/Pexels

事實上,在日常生活中,只有當中的極少數能觸及我們的感官。畢竟,我們所品嘗的並非世上所有的水果,多半就只是家鄉所出產的水果——至少在全球貿易盛行之前是如此。

如今,我們的腸道充斥著陌生的香精,數量多到令人髮指,這也可能會導致腸道時不時「抓狂」,或是引發各式各樣的疾病;如同前面所說的,根據不同的香精類型,腸道感知到香精後,會觸發某些分泌物的分泌與某些活動的變化。然而,這一切與森林有何關係呢?別著急,因為我們已經針對這個生態系統做好了準備,連同它的氣味與味道,應該都能與之和諧相處。相反地,人工添加物卻會給身體帶來不必要的負擔,這也就是為何,時不時走入森林,並且在森林裡待上一時半會兒,藉以緩解鼻子、嘴巴與腸道的負擔,絕對非常有益。畢竟,人體之所以如此形塑,完完全全是為了適應在森林中湧入感官的一切。如果還能來點低度加工、不含添加物的天然食物當點心,森林浴的效果絕對會加倍。

-----廣告,請繼續往下閱讀-----
——本文摘自《人類與自然的秘密連結》,2021 年 6 月,日出出版
-----廣告,請繼續往下閱讀-----
所有討論 1
日出出版
13 篇文章 ・ 7 位粉絲