0

0
0

文字

分享

0
0
0

自己的和牛自己養!「源興牛」是怎麼培育的呢?

活躍星系核_96
・2020/08/04 ・3235字 ・閱讀時間約 6 分鐘 ・SR值 531 ・七年級

  • 文、照片/中央畜產會企劃組 王淑瑛、陳雨馨
  • 本文轉載自財團法人中央畜產會畜產報導月刊 2019 年 4 月第 224 期,原文標題為《隱藏的大明星 新光兆豐農場的源興牛》。由於採訪時間為2019年2月底,因此有部分數據可能與現況不完全相符。

在新光兆豐農場的一隅,約莫 4 公頃多的面積,飼養著一群乳牛和名氣響叮噹的「源興牛」。

105 年李登輝基金會買下放牧於擎天崗的 19 頭源興牛後,就將牛遷置新光兆豐農場,進行純種繁殖,並與農場原本的乳牛群進行雜交育種試驗。2019年 2 月底拜訪牛場時,已見數頭雜交一代小牛誕生,「原原種但馬牛」源興牛也相當適應了花蓮的氣候環境。李登輝基金會王燕軍秘書長對編號「101」的源興牛似乎特別有感情,稱牠為「第一代牛王」。養牛場並未開放觀光,就讓我們跟著王秘書長的腳步,認識隱身農場的牛明星,並期待臺灣新品種肉牛的誕生。

用擠乳收益  支援源興牛飼養與育種

養牛場主要分為兩個場域,一是乳牛區,一是肉牛區,乳牛原本屬於新光兆豐農場,有 300 多頭,李登輝基金會買下後,隨即更新牛群,包括淘汰低產乳牛、自澳洲進口 50 頭懷孕女牛等,以提高乳牛泌乳性能,也同步改善擠乳設備,確保生乳品質,所產生乳則仍舊交乳給統一公司。

不是要培育肉牛新品種嗎?為何購買乳牛和雜交?王燕軍秘書長表示,買乳牛這件事曾讓農委會官員一陣緊張,擔心這 2、3 百頭乳牛會被當成肉牛屠宰,影響國產鮮乳產銷平衡。王燕軍秘書長則是向農委會保證,不僅會持續經營乳業,而且要提升奶量,屆時奶量增加了,反而希望農委會確保有乳廠收購。

-----廣告,請繼續往下閱讀-----

李登輝基金會養乳牛其實有兩大用意,一是要用擠乳收益來支援飼養肉牛,二是要「借腹生子」,以源興牛(人工取精)與乳牛(母)雜交,逐步培育適合臺灣的新品種肉牛,並形成肉牛產業鏈。王燕軍秘書長表示,乳牛體型大,但骨骼大、肉少、脂肪多;肉牛雖體型小,但骨骼也小,所以取肉率反而高。源興牛與乳牛雜交,就是希望培育出具兩者優勢:體型大、骨骼小、取肉率高、耐濕熱氣候,且具黑毛種和牛外觀性狀的新品種肉牛。

王秘書長對場內雜交一代小牛的性狀表現是滿意的,小牛外觀全部為黑毛,出生體重最輕者也有 36.4 公斤,難產死亡的一頭則重 40 公斤。這些具 50% 源興牛血統的雜交一代小牛採公、母分開飼養,公牛將選留遺傳性狀優良者作為種牛,其餘作為肉牛飼養,種公牛與母牛未來將會再回交源興牛,並測試不同遺傳比例雜交後代的肉質、飼料效率,找出最有利臺灣的肉牛新品種及飼養模式。

雜交育種小牛,新品種肉牛未來的希望。

王燕軍秘書長表示,源興牛人工取精、精液品質與授精技術確立後,雜交牛因會不斷誕生,當時預計至2019年底,牛隻總頭數就會超過牧場登記的頭數 350 頭,因此基金會當前要務是在附近另覓場地,移置源興牛,作為種原保存、研究和培育中心,並著手選種的工作;原原種但馬牛除在該中心活體保存外,未來還將進行冷凍胚胎等試驗,以提高族群量,無繁殖力的老牛則擬送回擎天崗,以安養天年。新光兆豐牛場現址先期會作為雜交牛的肥育基地,之後會回歸單純的乳牛場。

王秘書長強調:「我們不可能什麼都做!只能做到種牛的培育,至於繁殖、肥育和牛肉的生產,必須由其他人共同塑造一個完整的肉牛產業鏈。」基金會的目的,只是希望找出對養牛戶、對整個臺灣肉牛產業結構有幫助的牛種與飼養模式。

-----廣告,請繼續往下閱讀-----
王燕軍秘書長:源興牛很乖。

種原認定 畜產試驗研究機構動起來

源興牛被國內乳業專家形容為「天上掉下來的禮物」,主因這群牛源自 1933 年日本引進臺灣的役用牛,因族群封閉,未與其他牛種雜交,經長時間近親交配、繁殖,產生「基因純化」的結果,日本專家鑑定為原原種但馬牛(和牛),臺灣大學也確認沒有白血病的基因。反觀日本,百年來均以各個和牛品種與乳牛雜交,選育經濟價值高的和牛品種,結果過度雜交,反而造成原始但馬牛基因「飄移」、不見了。正因如此,當王燕軍秘書長因緣際會找到這 19 頭牛,並知道鑑定結果時,如獲至寶,積極拜訪育種和飼養管理專家,期待發展出臺灣的新品種肉牛,而因源興牛早已在臺生根,比日本的但馬牛更適應臺灣濕熱的氣候。

根據畜牧法第 12 條第 1 項規定:「發現、育成或自國外引進新品種或新品系之種畜禽或種原者,應向中央主管機關申請登記,經審定核准登記後,始得推廣、銷售。」農委會畜產試驗所已安排召開「源興牛種原品種外表特徵標準之訂定」籌備會,未來如通過認定為種原,畜試所將協助進行保種,再通過農委會的命名登記審查,才能商業利用,推廣民間飼養。

每頭源興牛有編號、有紀錄。

適合臺灣的肉牛品種 何妨比一比

雖然對源興牛與其雜交後代的肉質有信心,王燕軍秘書長對於養牛戶直接採購國外肉牛品種(如安格斯牛)作為肉種牛繁殖,倒也樂觀其成,但他認為,每個國家都會把最優秀種原留在國內不放,日本對於和牛也是一樣,所以這些進口牛種的繁殖後代是否還是那麼優秀?源興牛雜交育種出來的臺灣新牛種能否突圍,成為肉牛產業飼養的主流?大家不妨比比看。

認識源興牛

源興牛是李登輝前總統買下放養於擎天崗的牛隻,原本目的是研究適合臺灣肉牛的飼料、品種,後經日本學者研究證實為日本原原種但馬牛後,李前總統便希望藉此培育「臺灣和牛」,提供好的肉牛品種供農民飼養,建構新的肉牛產業鏈。這批牛隻成功繁殖下一代後,就依李前總統於臺北三芝的故居──「源興居」,將之命名為源興牛。

-----廣告,請繼續往下閱讀-----

因緣際會找到這批牛隻的是李登輝基金會王燕軍秘書長。王秘書長指出,文獻證實,1933 年日本引進臺灣 100 多頭但馬牛,主要作為耕牛;光復後,國民政府要標售這批牛,曾派駐臺北州第二牧場(擎天崗)、第三牧場(萬里馬槽)工作的黃姓(擎天崗牛)飼主的父親就出面買下,共 14 頭,與何姓同輩一同將牛趕至擎天崗飼養。

王秘書長輾轉得知擎天崗有日本來的牛後,就親自上擎天崗去看,他說「愈看愈不對」,這牛怎麼這麼小?於是拍照給日本學者看,對方也無法確定是日本和牛,但建議王秘書長,若決定要研究臺灣肉牛,未來就什麼牛都要買!於是王秘書長再上山,希望黃姓飼主售予 6 頭牛讓他研究。黃姓飼主考慮一天後,提議 19 頭全部賣給他,且依早期牛販的習慣,交錢的隔天,就要把牛載走。

據王秘書長轉述,黃姓飼主已經 80 幾歲高齡,當時又接連有颱風襲臺,無論上山趕牛、從山下扛豆漿店的豆餅餵牛,飼養、防疫種種工作都非常吃力,加上牛隻採自然放牧,小牛因淹水、天寒或被野犬攻擊的折損率高,飼養多年迄今,族群量就只有 19 頭而已,所以希望一次出清,且保證臺灣其他地方沒有該品種牛隻。

對於養牛門外漢而言,趕牛可絕不輕鬆。王秘書長費了好大的勁,一頭牛也趕不上車,因為「牛老大」一個轉身,就把王秘書長的手給甩開了;後來是由臺南麻豆來協助載牛的年輕司機,用電蚊拍輕輕拍打牛屁股,順利搞定,19 頭牛乖乖上車前往新家──位於花蓮縣的新光兆豐農場。

-----廣告,請繼續往下閱讀-----

為何選在花蓮落腳?王秘書長曾隨同李前總統到日本石垣島參觀時發現,石垣島每月約可產出 900 頭小和牛賣至日本各地再進行肥育,顯示石垣島的氣候條件是適合和牛前期飼養的;而石垣島與花蓮緯度、距離均近,所以李登輝基金會選擇了花蓮,作為「臺灣和牛」的培育基地。

這 19 頭擎天崗牛後經日本學者確認為原原種但馬牛,據王秘書長表示,日本農業部門其實也是確認的,惟無法出具證明。換言之,日本 1933 年帶來臺灣的但馬牛,雖經歷 80 多年歲月的洗禮,其基因仍完好封存於臺灣,且更耐熱、耐濕。如果長時間與不同牛種雜交,或過度改良,隱藏性遺傳疾病可能會跑出來,和牛的優異肉質也可能不如以往。

  • 依維基百科的摘述,全球知名的神戶牛肉就是出產自日本兵庫縣的但馬牛肉(必須是兵庫縣內但馬牛血統進行持續交配的後代)。但馬牛是和牛的一種,其肉為日本料理中的珍饈,具有美味、肥嫩以及外表所呈現出的大理石紋理等特性。
文章難易度
活躍星系核_96
752 篇文章 ・ 120 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

8
3

文字

分享

2
8
3
基因上的魔法師——不改 DNA 就可以調整性狀的「表觀遺傳調控」,為作物改良帶來新曙光
Jean
・2022/11/13 ・3085字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/黃湘芹、謝若微、李映漾、陳柏仰|中央研究院植物暨微生物學研究所
資料來源/中研院植物暨微生物學研究所陳柏仰研究室。圖:Nien Illustration

可以在不改變 DNA 的狀況下,調整性狀?——表觀遺傳調控,幫助植物快速適應環境變化

DNA 是生物細胞內攜帶遺傳訊息的物質,當 DNA 發生變異時,會影響基因的表現進而改變性狀。但很多生物也可以在不改變 DNA 的情況下調節基因表現影響性狀,此方式稱為表觀遺傳調控,其中常見的機制包括 DNA 甲基化、組蛋白修飾、小分子 RNA 等。

其中「DNA 甲基化」為在 DNA 特定位置上添加甲基的化學修飾,當基因前端的區域——啟動子被高度甲基化時,常會導致基因表現量較低。

而「組蛋白修飾」是針對被 DNA 纏繞的蛋白質——組蛋白,在其尾端上做的各種修飾,如乙醯化、甲基化、磷酸化等,這些修飾會影響 DNA 纏繞的緊密程度,進而加強或抑制基因表現[1]。另外,由長度約為 18 到 30 個核苷酸構成的「小分子 RNA」,也會抑制基因表現。

對生物而言,表觀遺傳調控提供生物在基因序列突變外,另一種有效適應環境變化的反應方法。而這樣的反應對植物特別重要,它能幫助植物在面對氣候、環境快速變化時,迅速調整基因表現讓植物得以生存。

-----廣告,請繼續往下閱讀-----

如果將表觀遺傳運用在改良作物性狀上,由於不需外來基因插入或是基因編輯,便能達到基因表現的變化,因此大幅減少食物安全上的諸多考量,免除基改作物對人體健康疑慮的爭議性,在農業發展上相對有利。

目前在作物中已有不少研究,分析基因體上特定位置的表觀遺傳變異,與抵抗逆境性狀之間的關聯性;例如在稻米基因體上,已發現數個特定位置的 DNA 甲基化程度與抗旱[2]、抗缺鐵[3]甚至碳儲存有顯著的關聯性。

番茄有機會作為培育優良性狀的作物。圖/Pexels

在番茄裡也發現,由小分子 RNA 對特定位點的基因調控,可影響番茄外型及抗旱性狀。顯示透過影響表觀遺傳機制,的確有機會用來培育出具有優良性狀的作物。

如何運用在作物改良上?

當應用於作物改良時,偵測表觀遺傳變異與性狀之間的關係為首要任務,其中一種用來偵測表觀遺傳變異的策略仰賴的是近年才逐漸普遍化的「全基因體定序」。由於每個作物的基因體序列不同,需逐一檢視不同作物在各種逆境條件下產生的表觀遺傳變異,然而在技術與基因體資料分析上仍是挑戰。現階段而言,利用表觀遺傳進行作物改良,雖有潛力但未能普及[4]

利用全基因體定序偵測表觀遺傳變異(圖表一):先透過外在刺激誘導表觀基因座產生變異,接著藉由分析眾多植株間表觀基因座變異的差別,並計算其與目標性狀的關聯性,進而推定能產生目標性狀的表觀基因座。

-----廣告,請繼續往下閱讀-----
(圖表一)利用外在刺激誘導植株產生遺傳變異,透過生物資訊研究與目標性狀相關的表觀基因座。

在已知可誘導表觀基因座的策略中,以 DNA 甲基化為例 ,透過伽馬射線照射、DNA 甲基轉移酶抑制劑以及組織培養,皆可在稻米基因體產生隨機且有效的 DNA 甲基化變化[4]

種子如果曝露於伽馬放射線環境下,或是浸泡在含有 DNA 甲基轉移酶抑制劑的水溶液中,均會造成基因體去甲基化,而去甲基化的程度會隨著放射線強度或是 DNA 甲基轉移酶抑制劑的添加量而不同;如果同時使用上述兩種方法處理種子,則會對於去甲基化有加乘效果[5]

表觀遺傳因子變化,可改變玉米面對熱逆境的耐受性。圖/Pexels

除了水稻以外,玉米基因體上特定位點的表觀遺傳因子變化,可改變其對於熱逆境的耐受性。玉米在幼苗時期,如果受到短暫熱處理,便能促進與基因表現有關的組蛋白修飾,使得葉片的葉綠素含量與活性氧物質提高,以增強玉米在高溫環境下的耐受性[5]

面臨的挑戰——表觀遺傳變異重現與否

表觀遺傳變異與基因變異主要的不同在於其不穩定性,由於細胞有自我修復機制,因此表觀遺傳變異在細胞複製前、後未必能維持;此外,世代遺傳間的「表觀遺傳重組」(epigenetic reprogramming)會重置表觀遺傳的分佈,使得親代的變異未必能完整保留到子代。

-----廣告,請繼續往下閱讀-----

儘管如此,不少研究仍發現部分表觀遺傳變異可以被遺傳至下一代。以茄科中常用的嫁接作物番茄、茄子與辣椒為例,這類的種間嫁接會影響 DNA 甲基轉移酶表現量,進而大規模影響接穗中的 DNA 甲基化分佈,其中有部分 DNA 甲基化的變動被證實可維持至下一代[5]

綜合上述,應用表觀遺傳在作物改良上需特別確認變異在跨世代間的一致性;植株進行處理後所產生的表觀遺傳變異,是否能在性狀植株或甚至下一代重現,以確保有效的作物改良。

甜椒的跳躍基因與 DNA 甲基化

甜椒被視為可利用表觀遺傳進行改良的高經濟價值作物之一。圖/Pixabay

甜椒 (Capsicum species)的基因體解序後,發現當中的跳躍基因(可以在基因體上移動的 DNA 序列)不僅增加了甜椒的多樣性,也能決定轉錄活性高的真染色質及不具轉錄活性的異染色質在基因體上的分佈[6],從而廣泛影響基因調控。

已知 DNA 甲基化是控制跳躍基因的主要因子,已有研究指出,甜椒基因上 DNA 甲基化程度的增加,與發芽、果實成熟及抗鹽性狀都有顯著相關[7][8];顯示透過刺激產生的 DNA 甲基化重新分佈,極可能影響跳躍基因的活性,進而引導出優良性狀。     

-----廣告,請繼續往下閱讀-----

目前甜椒的基因體資料已完備,其重要性狀與表觀遺傳變化密切相關,被視為可積極利用表觀遺傳進行改良的高經濟價值作物之一。

翻開作物育種的新篇章

綜合以上,分析及尋找與目標性狀相關的表觀基因座並不容易,需要結合農藝學、基因體學及生物資訊學的知識與技術,考量表觀遺傳變異的不穩定性因素,為實現可代代相傳的作物改良,需要了解不同植物的基因體中有哪些特定的表觀遺傳變異能夠穩定傳到下一代。因此,若要使用表觀遺傳改良作物,雖有理想但非一蹴可及。

目前主流的基因改造工程,在食品、環境、與生物安全上有著錯綜複雜的影響,僅透過調控基因表現以達到性狀改良的表觀遺傳,更能消除大眾對於作物改良的疑慮。現今對於表觀遺傳的研究資料已經越來越多,在植物面臨逆境時,表觀遺傳能有效且迅速地幫助植物適應環境。在未來環境更加極端的情況下,生產作物將會面臨更嚴峻的挑戰,如何繼續維持高產量,成為農民及研究者必須解決的問題之一。

表觀遺傳調控提供植物學家與農民新的作物改良方法,儘管當前的流程尚不完善,也有許多困難需一一克服,但看好其在未來為作物育種開啟新篇章。

參考資料

  1. Tirnaz, S. & Batley, J. (2019). Epigenetics: potentials and challenges in crop breeding. Molecular Plant, 18, 1309–1311. 
  2. Sapna, H., Ashwini, N., Ramesh, S. & Nataraja, K. N. (2020). Assessment of DNA methylation pattern under drought stress using methylation-sensitive randomly amplified polymorphism analysis in rice. Plant Genetic Resour Charact Util, 18, 222–230.
  3. Sun, S., Zhu, J., Guo, R., Whelan, J. & Shou, H. (2021). DNA methylation is involved in acclimation to iron deficiency in rice (Oryza sativa). Plant J, doi:10.1111/tpj.15318.
  4. Springer, N. M. & Schmitz, R. J. (2017). Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet, 18, 563–575.
  5. Varotto, S. et al. (2020). Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot, 71, 5223–5236.
  6. Kim, S. et al. (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet, 46, 270–278.
  7. Xiao, K. et al. (2020). DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. J Exp Bot, 71, 1928–1942.
  8. Portis, E., Acquadro, A., Comino, C. & Lanteri, S. (2004). Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 166, 169–178.
所有討論 2
Jean
1 篇文章 ・ 0 位粉絲

1

8
3

文字

分享

1
8
3
用蛋蛋喝可樂?腸道才是鼻子的延伸!——《人類與自然的秘密連結》
日出出版
・2021/07/31 ・2725字 ・閱讀時間約 5 分鐘

  • 作者 / 彼得.渥雷本
  • 譯者 / 王榮輝

我們覺得美味的東西,像是成熟的漿果與堅果,通常都是供不應求,一年之中最多只出產幾個星期。

森林的原味,怎麼就變調了

森林的味道主要就是酸味、苦味,以及介於兩者之間的細微變體。春天的嫩芽新葉起初嘗起來就酸酸的,之後還會變得又酸又苦。樹皮下有透明的形成層,用小刀就能將其剝落,形成層的營養非常豐富,含有糖分與其他碳水化合物,味道有點像紅蘿蔔,但除此之外都是苦味;森林中的食物普遍如此。

在遙遠的過去,祖先大多數的飲食嘗起來與今日截然不同。如同我們的生活環境,人類的飲食也經歷了某種演化。只有獲得顧客青睞的東西,才能持續擺在商店架上賣,所以生產者會千方百計以最能引誘味蕾的方式去調整自家的產品。他們的方法愈來愈複雜,也愈來愈準確;這也是為什麼我們很難抗拒某些食物的原因之一。糖、鹽、脂肪,所有的這一切都藉由增味劑加強,所攝取的食物已超過了人體的需求。於是乎,我們日益遺忘天然或未經加工食物的滋味。就連蔬果也因為育種,朝著類似的方向改變——愈來愈甜,苦味則愈降愈低。相較於大自然的有滋有味,我們或多或少像在吃著某種單調的雜燴,唯有某些味道特別苦或特別酸的異類能脫穎而出,例如咖啡或什錦酸菜(mixed pickles)。

人類各種感官功能與身體系統,與自然構成緊密相連的共生系統。去年的蛋蛋喝可樂迷因,讓大家發現我們能感知味道的,不只是舌頭品嘗到的、鼻子嗅聞到的。然而,我們味覺受器所品嘗到的其實不是大自然的原味,為什麼大自然的滋味會失真呢?
經育種後的蔬果,已失去原有的滋味。圖/Pexels

馬兒的味蕾數目竟是人類的 3.5 倍!

值得慶幸的是,我們的舌頭永遠無法被寵壞,抑或是讓舌頭上的味覺中樞——舌乳頭,完全麻木。一個舌乳頭含有一百個味蕾,每個味蕾又含有一百個味覺細胞;這些細胞不是很耐用,每十天就會被更新一次。因此,若在進食中造成某種損害,例如飲用過熱的飲料導致燙傷,舌頭會很快地自我修復。

在舌乳頭為數將近一百的情況下,人類具有將近一萬個味蕾。如果覺得這個數量很多,不妨去比較一下馬的舌頭:大約有三萬五千個味蕾。為何馬需要這麼多的味蕾?草場上生長種類數以百計的草和藥草,其中不乏有毒的草。此外,馬無法看到自己嘴唇正前方的東西,因為牠們又大又長的頭部擋住了視線。如果在進食時什麼也看不到,那就必須依靠自己的舌頭。為此,必須先將有疑慮的草放入口中,如果不是該吞下肚的草,就得再迅速吐出來。

-----廣告,請繼續往下閱讀-----

馬很擅於做這樣的事情,我養的兩匹母馬就是這樣:如果藥草的味道不好,就會在咀嚼過程中被優雅地推向口腔邊緣,繼而通過嘴唇退回到曠野之中,觀察這個過程十分有趣。

馬兒擅長以味蕾來辨別此草是否可吞下肚。圖/Pexels

味覺感應器可不是只有舌頭才有喔!

說到舌頭,它其實並非人類唯一能藉以品嘗味道的部位。且讓我們先回過頭來看看鼻子。迄今為止,已知在食物中約有八千種可聞的揮發性物質。令人訝異的是,這類氣味多半在呼氣時才會被聞到,人類則有四分之三的味覺印象是基於鼻子的感知。想想感冒就知道了:這時食物的味道驟然變得索然無味,頓時失去了所有吃東西的享受。

人類有四分之三的味覺印象是基於鼻子的感知。圖/Pexels

因此,下回在森林中漫步時,除了透過觀察針葉與樹葉的形狀來探索樹種之間的差異,不妨咬咬看雲杉的樹枝,看看針葉裡究竟藏著哪些味道與香氣,想必會很有意義。

如同前面所說,我們對口腔裡味覺感應器的搜索尚未結束。從字面上來說,幾乎得走到「食物之旅」的盡頭,也就是進入腸道。如同腸道會一起嗅聞,其同樣也會一起品嘗,因為腸道中也有感應器,而且還是一般認為只會出現在鼻子裡的那種感應器。這些細胞不像我們的味覺,很容易受到甜味劑的蒙蔽。為小腸所感受的糖,通常會引發激素的釋放,並會對我們的意識發出「飽足」的信號。然而,甜味劑製品所能觸發的這類信號,卻遠遠弱了許多,於是身體就會要求更多的食物。因此,光是基於這個原因,倘若想減肥,攝取使用代糖的低卡製品並不會特別有效

聽說女人一生會吃下近 300 支口紅?!

現代的化妝品、洗潔劑、薰香蠟燭和諸如此類的其他製品,不僅充斥於我們的口鼻,也充斥於我們的腸道。可是,到底誰會把化妝品、洗潔劑和薰香蠟燭吃下肚?答案很簡單:我們根本不必吃下肚,它們就能透過皮膚或呼吸道進入腸道,甚至到達人體的所有其他角落。這可謂是一支名副其實的「無敵艦隊」,藏身於調味食品中侵襲受體。根據德國聯邦風險評估研究所(Bundesinstitut für Risikobewertung)的說法,在食品生產中使用的香精約有兩千七百種,且大多為人工製造。如果把這個數目拿來與自然界中的香精相比,似乎就顯得小巫見大巫;迄今為止,人們已在自然界中發現了將近一萬種的香精。然而,這種純粹的統計數字卻是騙人的。

化妝品、薰香蠟燭等會透過皮膚與呼吸道進入體內。圖/Pexels

事實上,在日常生活中,只有當中的極少數能觸及我們的感官。畢竟,我們所品嘗的並非世上所有的水果,多半就只是家鄉所出產的水果——至少在全球貿易盛行之前是如此。

如今,我們的腸道充斥著陌生的香精,數量多到令人髮指,這也可能會導致腸道時不時「抓狂」,或是引發各式各樣的疾病;如同前面所說的,根據不同的香精類型,腸道感知到香精後,會觸發某些分泌物的分泌與某些活動的變化。然而,這一切與森林有何關係呢?別著急,因為我們已經針對這個生態系統做好了準備,連同它的氣味與味道,應該都能與之和諧相處。相反地,人工添加物卻會給身體帶來不必要的負擔,這也就是為何,時不時走入森林,並且在森林裡待上一時半會兒,藉以緩解鼻子、嘴巴與腸道的負擔,絕對非常有益。畢竟,人體之所以如此形塑,完完全全是為了適應在森林中湧入感官的一切。如果還能來點低度加工、不含添加物的天然食物當點心,森林浴的效果絕對會加倍。

-----廣告,請繼續往下閱讀-----
——本文摘自《人類與自然的秘密連結》,2021 年 6 月,日出出版
所有討論 1
日出出版
13 篇文章 ・ 7 位粉絲