0

2
6

文字

分享

0
2
6

感覺晚上精神特別好?癌細胞也是——趁你熟睡時偷偷進行的「癌症轉移機制」

Charlotte 熊_96
・2022/08/17 ・2780字 ・閱讀時間約 5 分鐘

我們都知道:癌症轉移,是惡化的開始
癌細胞轉移是幾乎是所有癌症狀況變糟的開始。

當癌細胞開始轉移的時候,情況可能會變得不太樂觀。 圖/elements.envato

臨床上,癌症期別最常使用的是 TNM 分期系統:

T(tumor)為腫瘤大小
N(node)為淋巴結侵犯
M(metastesis)為遠端轉移

其中,轉移對於癌症期別的估測極為重要,「遠端轉移」的意思,便是癌細胞由原本的器官組織,跑到另一個器官。

癌細胞從原發器官脫落後,經過重重障礙,包括基底膜、細胞骨架、細胞外基質等,進入到淋巴或是血液循環,而抵達遠方組織,長出新的腫瘤。譬如說大腦本身原發的癌症非常少,如果發現病人腦中出現癌細胞,合理的推論是這個癌細胞來自其他器官,常見的腦轉移可能來自肺癌、乳癌等等。這些轉移可能導致病情更難以控制,到最後演變成多重器官衰竭。

-----廣告,請繼續往下閱讀-----

癌細胞轉移的先鋒部隊——循環腫瘤細胞

循環腫瘤細胞(Circulating tumor cells)是癌細胞遠端轉移的前驅[1],血液中的循環腫瘤細胞量可以預測腫瘤的轉移能力,是一個腫瘤的生物指標。這些循環腫瘤細胞由原發的腫瘤剝落下來,進入血液循環。上皮細胞間質化(Epithelial to mesenchymal transition)是一個例子。

大部分的上皮細胞癌(譬如說大部分的乳癌、卵巢癌等等)都喜歡聚在一起,當細胞被打散反而生長得比較差,甚至無法生長。但是當這些細胞準備要遠端轉移時,他們會由表皮細胞轉換成間質細胞,脫離原本的基質,進入血液循環。

循環腫瘤細胞由原發的腫瘤剝落下來,進入血液循環。 圖/wikipedia

當他們準備好要「定居」在新的目標器官時,再由相反的程序–間質細胞上皮化而穩定下來。大部分的循環腫瘤細胞會在血液循環系統中死亡。但是少部分的癌細胞可以保持其繁殖的能力,在找到下一個器官並成功附著後,就是所謂的遠端轉移。

因此很多癌症只要有遠端器官轉移,就屬於三期癌症以上,無法進行局部治療(譬如手術切除),而必須要進行系統性治療,譬如像是化學治療、賀爾蒙治療、標靶治療、免疫療法等等。

-----廣告,請繼續往下閱讀-----

晚上不睡覺的癌細胞又凶又積極

在 Nature 醫學新知中[2],密西根大學的 Harrison Ball 以及 Sunitha Nagrath 兩人對於癌症如何轉移有新的發現。

Harrison Ball 以及 Sunitha Nagrath 發現這些循環腫瘤細胞有他們特別喜歡出沒的時機當人沈睡之時

Masked thief using lock picker to open locked door stock photo
看來睡覺的時候除了小偷要防,還要小心癌細胞。圖/istock

主宰人類晝夜規律的,是一個複雜的系統。其中包括許多賀爾蒙,如褪黑激素和皮質醇。研究者在 30 人組成的乳癌受試者中,分別在凌晨 4 點(休眠期)以及上午 10 點(活動期)取血液樣本,發現 78% 的循環腫瘤細胞在休眠期出現。

在他們建立的小鼠模型也發現一致的結果。這些模型包括使用藥物控制老鼠褪黑激素濃度、控制燈光以改變老鼠活動/休息期、基因改造過的紊亂晝夜週期老鼠等等。實驗的結果都指向循環腫瘤細胞在老鼠休息時表現特別活躍。

-----廣告,請繼續往下閱讀-----

這些休眠期取到的腫瘤循環細胞,不僅在原宿主體內表現得比活動期取到的腫瘤循環細胞更具侵略性,當注入下一個小鼠體內時,一樣表現得比較惡形惡狀。

Harrison Ball 以及 Sunitha Nagrath 發現,這不是一個「被動」的原發腫瘤剝落過程,而是一個「積極」侵略的號角。在小鼠休眠時,這些腫瘤細胞內的蛋白質表現基因變得更活躍,可以產生更多的蛋白質,以利其生長及繁殖。

了解他們,打擊他們

知道這些細胞比較喜歡在哪個時機出沒有什麼好處呢?難道都不要睡,腫瘤就不會遠端轉移?大多數的醫學研究,基本上都會回歸到臨床治療中,而這項發現對於腫瘤科醫師而言,潛在很多益處。

大家不要因為睡覺的時候癌細胞比較容易出現就不睡覺喔!圖/elements.envato

癌症的檢驗方式。Harrison Ball 以及 Sunitha Nagrath 的研究告訴我們,在宿主休眠時,循環腫瘤細胞的表現會增加,被診斷出癌症的機率也就上升。

-----廣告,請繼續往下閱讀-----

目前要診斷癌症,僅有少部分可以用影像直接判斷(譬如肝細胞癌),但絕大部分都是需要透過取組織樣本進行病理鑑定(就算是血癌,雖然可以由抽血做初步判斷,但很多時候仍要取骨髓樣本)。畢竟癌症的治療,需要用到很多副作用強大的藥物,或是進到手術房切除身體的一部份。在這種狀況下,醫生絕對不能亂槍打鳥的判斷。

但取組織樣本是一個非常具有侵略性的醫療措施,比較「表淺」的部位,譬如皮膚、子宮頸、口腔等等的還比較好處理,如果是大腸癌可能就要借助大腸鏡,胃癌要胃鏡,肺臟等其他「深層」組織,就得要進到開刀房了。如果抽血就可以檢驗得到循環腫瘤細胞,絕對是非常有幫助的發明。

再來,治療疾病。當軍師算準了敵軍何時現身,我們就可以來個迎頭痛擊。

目前還沒有證據說循環腫瘤細胞大量表現時,施打藥物會比較有效果。也尚未有研究表明,一天之中施打藥物的最佳時機是什麼時候。相信這是將來另一個非常值得探討的議題。

-----廣告,請繼續往下閱讀-----
目前尚未有研究表明,施打藥物的最佳時間點。 圖/elements.envato

最後是追蹤。當治療到一定階段,病人被認定「康復」,實質意義上是「由目前的醫療技術無法偵測出體內有無癌細胞殘餘」。所以後續的追蹤是非常重要的,以免前期的辛苦,被後來的復發給全部抹滅。

如果將來可以用循環腫瘤細胞當成血液生物指標,那麼我們也可以根據這項研究,調整抽取血液樣本的時間,以期達到最精確的檢測結果。

不過就如所有必須應用到人體的研究一般,這項研究還是屬於早期萌發階段的研究。小鼠的模型建立起來,並且經過反覆認證還只是第一階段。如果真的要適用在臨床,還要經過醫學倫理委員會、第一期臨床、第二期臨床……等等漫漫長路。

然而這項研究,絕對開啟了血液樣本生物指標的一片新天地。也道出了癌症轉移的各項可能變因,包括賀爾蒙以及生物晝夜規律。這些積累,在日後都將是癌症治療的進步動力。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Poudineh, M., Sargent, E.H., Pantel, K. et al. Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat Biomed Eng 2, 72–84 (2018). https://doi.org/10.1038/s41551-018-0190-5
  2. Nature 607, 33-34 (2022) doi: https://doi.org/10.1038/d41586-022-01639-6
文章難易度
Charlotte 熊_96
5 篇文章 ・ 7 位粉絲
著迷於世界的多彩,也希望帶給人對生命的熱愛。現任美國愛因斯坦醫學中心小兒科住院醫師,畢業於台大醫學系。目前最希望成為小兒心臟科醫師,也沒忘從高中就想去無國界醫生當臨時醫師的夢想。 https://www.instagram.com/charlottethesunbear/

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
腦腫瘤新對策:微創開顱手術避免傷及重要神經
careonline_96
・2024/07/10 ・2039字 ・閱讀時間約 4 分鐘

劉育志醫師:大家好,我是劉育志醫師,歡迎林亞銳醫師來到照護線上。

林亞銳醫師:大家好,我是林亞銳醫師。

劉育志醫師:請問顱底腫瘤可能產生哪些症狀?

林亞銳醫師:基本上顱底腫瘤會牽涉到顱底的一些神經跟血管,所以大部分造成的症狀,都是顱神經的症狀,比如說壓迫到視神經,就會造成視線的模糊,壓到眼球運動的神經,就會造成複視的狀況,如果壓到聽力、顏面神經,就會有一些相對應的顏面神經癱瘓,或是聽力受損,進而如果是在比較接近頸椎的部分,有時候就會有吞嚥,跟聲音沙啞的狀況,因為顱底也有一些腦幹的解剖構造,所以也會造成步態偏移的症狀。

劉育志醫師:顱底腫瘤的手術會面臨哪些挑戰?

林亞銳醫師:顱底腫瘤附近有很多重要的神經血管,因此要在這些重要的神經血管中,移除腫瘤,同時保存這些重要的神經血管,這是其中最重大的挑戰。

劉育志醫師:目前有哪些工具,能輔助顱底腫瘤的手術?

林亞銳醫師:以顱底手術而言,都會需要借助高畫質的顯微鏡,可以幫助我們更清楚,分辨重要神經血管的位置,跟腫瘤相對應的關係,也必須藉由一些高速的氣鑽,幫助我們將旁邊的一些骨頭移除,才可以把腫瘤安全的拿掉,其中當然還是需要一些,精密的術中神經功能監測,可以讓我們在手術中,更能知道重要的血管,或是重要的神經的位置,這樣我們就可以更放心,把腫瘤移除。

劉育志醫師:請問什麼是微創鑰匙孔開顱手術?

林亞銳醫師:顧名思義就是藉由比較小的傷口,以一個像鑰匙孔大小的開顱手術,來進行腫瘤的移除,因為電腦斷層跟磁振造影,影像的進步,讓我們可以知道這些腫瘤附近,有沒有重要的神經血管,再經由比較高畫質的顯微鏡,我們就可以經由比較小的傷口,去看清楚腫瘤的位置,也在手術的切除過程當中,可以更安心的把周圍的神經血管看清楚,可以更小心的剝離,達到微創的開顱手術。

劉育志醫師:相較於傳統手術,微創鑰匙孔開顱手術有哪些優勢?

林亞銳醫師:傳統的開顱手術通常傷口會非常大,也會將骨頭做大規模的移除,這樣來講病人的失血量,跟未來的美觀上面,都會遭受到很大的影響,因此現在有微創的開顱手術,傷口可以縮小到 3 至 5 公分,骨頭可以只鋸掉大概 2×2 公分的大小,經由這個切口就可以進去移除腫瘤,這樣對於病人來講,未來的外觀上面會相當美觀,整個手術的進行,也會讓失血量相當少,病人的恢復也會相當快,可以把住院的天數也同時縮短,優點很多。

劉育志醫師:請問微創鑰匙孔開顱手術,會如何進行?

林亞銳醫師:我們通常是藉由眉毛上面,劃一個 3 至 5 公分的切口,把傷口藏在眉毛裡面,從這邊去做一個小的開顱,進而進到我們的顱底,可以經由這麼小的傷口,移除一個相當巨大的顱底腫瘤。

林亞銳醫師:有一位大概 50 幾歲的男性,因為頭暈、頭痛就到急診求診,同時伴有噁心、嘔吐、視力模糊,做電腦斷層,發現有蜘蛛網膜下腔出血,這種最常見的就是動脈瘤破裂出血,因此在急診,我們就有給他做電腦斷層的血管攝影,電腦斷層的血管攝影,發現他有前交通動脈瘤的破裂,在它旁邊剛好也有一顆小顆的動脈瘤,因此他同時有兩顆動脈瘤,因為位置正好在附近,我們就進行了鑰匙孔開顱手術,去針對這兩顆動脈瘤做夾閉的手術,進行的過程非常順利,病人恢復也很快,在術後的第一天,就從加護病房轉到普通病房,並在術後的第七天就出院回家,現在在門診追蹤都恢復得相當好,傷口也相當美觀,病人相當的滿意。

林亞銳醫師:微創鑰匙孔開顱手術,從 2011 年開始引進林口長庚,至今我們大概已經有累積將近 200 個病例,隨著技術的成熟與演進,目前我們已經將微創鑰匙孔開顱手術,應用在很多,除了腫瘤之外,包括動脈瘤的手術上面,如果我們經由一個微創鑰匙孔開顱手術,讓病人可以恢復得很快,以外科手術來夾閉動脈瘤,會讓動脈瘤的復發率降到最低。

劉育志醫師:感謝林醫師來到照護線上,我們下次再見,掰掰。

林亞銳醫師:掰掰。

討論功能關閉中。

careonline_96
494 篇文章 ・ 275 位粉絲
台灣最大醫療入口網站