0

2
3

文字

分享

0
2
3

就算沒吃過,也一定聽過的「牛樟芝」,到底是在吃什麼?為什麼又貴又有名呢?

Bei
・2022/07/26 ・2528字 ・閱讀時間約 5 分鐘

台灣特有藥用真菌——牛樟芝

早期台灣的原住民在森林中打獵,無意間發現,在牛樟木腐朽的中空樹洞中,長出了橘紅色的真菌,採來食用後發現味道雖苦,卻有生津止渴的效果。他們還發現在食用完後可以緩解宿醉、體力透支、肝臟病變等症狀,經口耳相傳後,居民們將其作為藥用真菌,它就是鼎鼎大名的台灣特有真菌「牛樟芝」。

牛樟芝(學名:Taiwanofungus camphoratus)簡稱樟芝,又名樟菇、牛樟菇等,是擔子菌門(Basidiomycota)傘菌綱(Agaricomycetes)多孔菌目(Polyporales)台芝屬(Taiwanofungus)的一種多孔菌類,屬於臺灣特有的藥用真菌,有「森林中的紅寶石」之美稱。

1987 年,台大藥學系首次進行研究,分析牛樟芝的天然物成分;2017 年的《分類學》期刊也正式宣布 Taiwanofungus camphoratus 為牛樟芝唯一且合法的學名。

牛樟芝有「森林中的紅寶石」之美稱。圖/鼎久生技

牛樟芝為什麼這麼神奇?功效來自特殊的三萜類

繼 1987 年的研究後,近年也陸續解開了牛樟芝的成份之謎。

-----廣告,請繼續往下閱讀-----

牛樟芝含有腺苷、多醣體、球蛋白、維生素 B 群、三萜類(triterpenoids)、超氧歧化酵素(SOD)、鈣、磷、鍺、硒、鐵、核酸等活性因子,且每一項活性因子在生物技術及醫學研究皆有特殊功效,其中最有價值的便是三萜類

至 2012 年為止,科學家們從牛樟芝中分離及鑑定出的三萜類共有 39 種,且有 31 種已確定其化學結構。

三萜類正是牛樟芝價格不斐的原因。陸續有研究指出,三萜類可以抑制細胞內活性氧(ROS)的生成,降低體內自由基(free radical)含量,同時帶有抗發炎的功效,目前已知因為體內自由基過高而造成的疾病,包括動脈粥狀血管硬化、糖尿病、高血壓、癌症,以及老化現象。

目前已知因自由基過高而造成的疾病,包括動脈粥狀血管硬化、糖尿病、高血壓、癌症,以及老化現象。 圖/envato

俗話說:「良藥苦口」,三萜類不僅使得牛樟芝有神奇的功效,同時也是牛樟芝「子實體」苦味的來源,不苦的牛樟芝可能代表它的三萜類含量較低。

子實體 v.s. 菌絲體

前面提到了牛樟芝的「子實體」,這是什麼呢?

-----廣告,請繼續往下閱讀-----

菇蕈類的部位大致可分為「子實體」(Sporocarp)與「菌絲體」(Mycelium)。子實體指的是菇蕈類的繁殖器官,可以利用孢子(Spores)進行有性生殖,就像是植物的花朵與種子;菌絲體則類似植物的根與莖,是吸收養分的器官,在營養成分充足、環境與氣候適當的條件下,菌絲團會出菇形成子實體,就像是毛毛蟲破蛹而出,變成美麗的蝴蝶一樣。

與所有真菌類一樣,牛樟芝藉由散布孢子繁殖,並以分解牛樟木的纖維為食。在適當的溫濕度下,可以長成菌絲體,其成分大多是多醣體。當菌絲體數量達一定程度時,就會出菇形成子實體,成分除了多醣體外,還有三萜化合物等多種營養素。

牛樟芝的子實體,經濟價值最高

市售牛樟芝「子實體」產品的價格通常比「菌絲體」產品高,有如此大的價差主要原因是牛樟木資源有限、數量稀少、栽培不易、原料成本差異等。另外,因原料及製程不同,三萜類、多醣體等主要成分的含量多寡,也會影響其價格與功效。

以下為目前較常見的牛樟芝栽培方法:

一、原生椴木栽培法

-----廣告,請繼續往下閱讀-----

由於牛樟木被過度砍伐,野生的牛樟木已經相當稀少,目前被列為「台灣一級國寶級保育樹種」。原生椴木栽培法是將含有牛樟芝菌絲體的原生椴木加以培養繁殖,進而栽培出成分與野生牛樟芝相同的子實體。可惜這種栽培方法曠日費時,也較容易有雜菌產生。

二、椴木植菌栽培法

椴木植菌栽培法是利用牛樟椴木作為培養基,植入牛樟芝菌,栽培出子實體。生長期約一年半至三年,能栽培出與野生相類似的牛樟芝,但其缺點除了耗時太長、產量有限以外,椴木來源的合法性也具有爭議。

三、固態太空包培養法

-----廣告,請繼續往下閱讀-----

市面上的固態培養主要是利用太空包,而太空包的類型又依照不同的技術有不同的成分,主要為木屑、五穀雜糧及其他碳氮源。相較於前面提到的原木栽培法,雖然這種培養法所需時間縮短許多,只要將牛樟芝菌絲種入太空包後,培養約 120 天即可,但僅能獲得與野生牛樟芝三萜類相似的成分,且含量會因為製程不同而有影響。

四、液態發酵法

液態發酵法是利用噸級以上的液體作為基質,在發酵槽中進行菌種發酵,以收取菌絲體。這個方法雖然快速、成本低廉,但只能取得大量多醣體,無法取得三萜類。

五、皿式培養法

-----廣告,請繼續往下閱讀-----

皿式培養法是以培養基作為基質培養牛樟芝菌株,而培養基的成分為麥芽、蔗糖、葡萄糖及洋菜膠等。這種培養法的優點是操作簡單、成本低廉、培養時間短,而且品質穩定、富含多醣體,但缺點是三萜類的產量仍有限。

台灣牛樟芝教父——賴敏男博士

身為台大農業化學博士,賴敏男是國內知名菇蕈類專家。他在 1991 年創立康建生技,從食用菌菇一路研發至藥用菌菇,在生技產業界占有一席之地,在牛樟芝的研究領域也大有貢獻,被稱為「牛樟芝之父」。

賴敏男博士被稱為「牛樟芝之父」。圖/Facebook

今年五月,康建生技發表了皿式培養牛樟芝的專利技術,改善了目前牛樟芝在培養上遇到的困難。賴敏男博士成功利用皿式培養法培育出富含活性三萜類的牛樟芝子實體,將原本需耗時兩、三年的過程,改良縮短成四個月,也大幅降低了牛樟芝產品的成本價格。

迄今,有越來越多生技公司及研究團隊紛紛投入皿式培養牛樟芝子實體的開發。有了品質與價格優勢,皿式培養法將成為牛樟芝產品開發的主要趨勢。

-----廣告,請繼續往下閱讀-----

參考資料

  1. 牛樟芝與人類
  2. 牛樟芝子實體和菌絲體的差異
  3. 牛樟芝|康建生物科技
  4. 牛樟芝學堂|鼎久生物科技
-----廣告,請繼續往下閱讀-----
文章難易度
Bei
3 篇文章 ・ 1 位粉絲

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
2

文字

分享

1
1
2
素肉怎麼做?讓菌絲體開啟素食新境界!——《真菌大未來》
積木文化
・2024/02/23 ・2964字 ・閱讀時間約 6 分鐘

以菌絲體作為食物

意外誕生的美食?

人類應用發酵已有很長一段歷史,也產生許多令人驚訝的結果,其中一個令人愉快的意外之作就是天貝(tempeh)。天貝是 1800 年代初起源於印尼的一種素食主食 1。歷史學家經考究認為,天貝是無意間產生的食物,很可能是在試圖將大豆隔夜保存免受熱影響時被發現的。2

天貝是 1800 年代初起源於印尼的一種素食主食。圖/wikipedia

在保存大豆的過程中,少孢根黴菌(Rhizopus oligosporus)的孢子落到大豆上,引起發酵過程並形成天貝的緻密餅狀物。少孢根黴菌將大豆或其豆類基質結合在一起,形成 100 % 可食用又富含蛋白質、礦物質和維他命的網狀棉質菌絲體。

靠真菌製造的最佳素食漢堡?

諾馬餐廳(Noma)前發酵負責人大衛・齊爾伯(David Zilber)將天貝帶往新的境界。素食運動的推動,讓世界各地的廚師都在嘗試使用肉類替代品來複製漢堡中的牛肉餅。齊爾伯開發出一種由藜麥製成的天貝,作法是將藜麥穀物接種菌絲體,並在露天下發酵以降低水分含量,只留下足以在烹飪時保持多汁的水分,最後在天貝上塗抹一層諾馬餐廳以真菌發酵自製的酵母魚醬和蠶豆醬油,就大功告成了。

這款漢堡被品評專家譽為「最佳素食漢堡」。齊爾伯對此評論:「三種真菌和一種穀物,證明也許只要掌握一點技巧,好的烹飪就可以幫助拯救和養活一個需要療癒的世界」。3

-----廣告,請繼續往下閱讀-----
天貝富含蛋白質、碳水化合物、來自大豆的脂肪以及種人體無法合成的必需氨基酸、纖維、維他命和礦物質,熱量低且不含膽固醇。圖/unsplash

是什麼讓天貝富含營養?又為什麼,它會成為一種神奇的食物?天貝不僅含有飲食中的一些基本成分,也就是蛋白質、碳水化合物和來自大豆的脂肪,其中的菌絲體,更提供類似於菇類的益處:富含全部九種人體無法合成的必需氨基酸、纖維、維他命和礦物質,熱量低且不含膽固醇。天貝的例子讓我們瞭解到,不僅菇類可以吃,菌絲也是可以吃的。最棒的是,一些真菌菌絲體與肉的質地非常相似,成為素食饕客餐盤裡的熱門選擇。

菌絲體革命:植物肉的新面貌

溫斯頓・丘吉爾(Winston Churchill) 1931 年發表的文章〈五十年後〉(Fifty Years Hence)裡,他預測「將發展出新的微生物菌株,並為我們量產化學物」,並總結道「當然,未來也將會使用合成食品」。4 現在看來,丘吉爾的說法完全正確。

1985 年,馬洛食品(Marlow Foods)推出闊恩素肉(quorn),這是一種以真菌菌絲體製成的素食派餅產品系列,品牌名稱為「真菌蛋白」(Mycoprotein)。「真菌蛋白」的商業成功歸功於鑲片鐮孢菌(Fusarium venenatum),其能迅速將澱粉轉化為高含量的蛋白質。

該公司對這種生產工藝的專利已在 2010 年過期,所以其他有興趣的廠商可以進入生產真菌蛋白的領域了。然而,如今闊恩素肉在超市中仍隨處可見,且提供越來越多的無動物肉類和大豆成分所製造的禽肉、牛肉和魚肉。

-----廣告,請繼續往下閱讀-----
如今闊恩素肉在超市中仍隨處可見,且提供越來越多的無動物肉類和大豆成分所製造的禽肉、牛肉和魚肉。圖/pexels

艾本・拜耳(Eben Bayer)和蓋文・金泰爾(Gavin McIntyre)於 2007 年創立生態創新生物技術公司(Ecovative),正利用真菌製造用於包裝、紡織品和肉類替代品的菌絲體材料。他們最新的獨創觀念是「最終食品」(atlast food),也就是控制溫度、氣流、二氧化碳供應和濕度,藉以促使菌絲體的纖維組織長成各種形狀的合成肉。這個複雜過程也是一種發酵形式,使菌絲體在十天內就能形成具有不同質地、強度和纖維的成分,口感類似於動物肉。

菌絲體肉的開發,是希望能減輕畜牧業對地球造成的負擔。「最終食品」的生產設施由垂直農業基礎設施組成,與傳統肉類生產相比,土地需求少了十倍、產生的二氧化碳也降低許多。「最終食品」的第一個產品「菌絲體培根」,其用水量就比傳統豬肉生產少了一百倍。

菌絲體肉的開發,是希望能減輕畜牧業對地球造成的負擔。「最終食品」的第一個產品「菌絲體培根」,其用水量就比傳統豬肉生產少了一百倍。圖/unsplash

生物技術的進步使該工業能找到可行的解決方案,為未來創造永續的食物來源。如果可以使用更少的資源,且對自然造成更少的傷害來人工種植食物,就不必再從大自然中做擷取。當時拜耳對所有等待菌絲體肉的人們說,希望三年內就能實現全球供應。5 菌絲體革命即將到來。

如何自製維他命 D 營養補充品?

只要十五分鐘,幫你補充滿滿維他命 D?

維他命 D 對於保持骨骼、牙齒和肌肉健康來說相當重要。《澳洲醫學雜誌》(The Medical Journal of Australia)建議,如果無法曬太陽,那每天至少要補充 400 IU6 的維他命 D。對於照射陽光不足的人來說,菇類是唯一天然、非動物性的維他命 D 來源。只要將菇類暴露在陽光下就可以產生維他命 D 7,這是在家裡就可以辦到的工作。

-----廣告,請繼續往下閱讀-----
把菇類放在窗臺上讓菌褶朝向陽光,放置 15 分鐘後再烹調,這樣的簡單步驟即可將菇類變成維他命 D 的絕佳來源。圖/pexels

把菇類放在窗臺上讓菌褶朝向陽光,放置 15 分鐘後再烹調,這樣的簡單步驟即可將菇類變成維他命 D 的絕佳來源。僅 84 公克新鮮、暴露於紫外線的洋菇,就含有超過 600 IU 的維他命 D,且與維他命 D 營養補充品一樣容易被身體吸收。8

註解

  1. William Shurtleff and Akiko Aoyagi, History of Tempeh and Tempeh Products (1815– 2020): Bibliography and Sourcebook, Soyinfo Center, Lafayette, 2020, p. 351. ↩︎
  2. Marianna Cerini, ‘Tempeh, Indonesia’s wonder food’, The Economist, 23 January 2020, <economist.com/1843/2020/01/23/ tempehindonesias-wonder-food>. ↩︎
  3. @david_zilber, ‘Biomimicry is a fascinating way⋯’ [Instagram post], David Chaim Jacob Zilber, 26 May 2020,<instagram.com/p/ CAptR8qpN-T> . ↩︎
  4. Winston Churchill and Steven Spurrier, ‘Fifty years hence’, Strand Magazine, issue 82, no. 49, 1931. ↩︎
  5. 摘自作者於 2020 年對艾本・拜耳的訪談。 ↩︎
  6. IU 為國際單位,用於計算或測量維他命 效力和生物有效性的標準化單位之一。 1 IU = 0.025 微克麥角鈣化醇(維他命 D2 )。 ↩︎
  7. Mary Jo Feeney et al., ‘Mushrooms— biologically distinct and nutritionally unique’. ↩︎
  8. Victor L Fulgoni III and Sanjiv Agarwal, ‘Nutritional impact of adding a serving of mushrooms on usual intakes and nutrient adequacy using National Health and Nutrition Examination Survey 2011–2016 data’, Food Science and Nutrition, vol. 9, issue 3, 2021, <doi.org/10.1002/fsn3.2120>. ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1

0

2
2

文字

分享

0
2
2
每次呼吸都會吸入十個孢子?一朵菇如何形成?無所不在的真菌生命循環!——《真菌大未來》
積木文化
・2024/02/21 ・3532字 ・閱讀時間約 7 分鐘

真菌的生命週期

一切始於一顆孢子

孢子是真菌生命週期的開始,也是結束。這些單細胞單元裡,包含著新真菌個體的繁衍密碼。面對無數微生物競爭者和惡劣的環境條件,孢子萌芽的機率極低,因此真菌釋放出數萬億個孢子來提高生存機會。孢子維持在一個暫停於生死之間的狀態,密切留意周遭世界並尋找適合落腳的地方。孢子很微小,無處不在,所以根本無法躲避它們,以我們自己而言,每次的呼吸都會吸入十個孢子。

孢子是真菌生命週期的開始,也是結束。圖/unsplash

被稱為「胚種假說」(Panspermia)的生命起源論甚至認為:生命的藍圖被包裹在一顆孢子當中,並在太空中旅行,在宇宙中尋找適合落腳的家園。儘管對此假說爭論不休,但我們確實知道孢子可以耐受極端溫度、抗輻射,甚至可以在真空狀態的太空中存活。 1988 年,和平號空間站(mir)的俄羅斯太空人就注意到,他們的鈦石英窗外有「東西」在生長,而且正在漸漸「啃穿」鈦石英。後來證實,這個「東西」就是一種真菌。1

就像植物一樣,大多數真菌也都採用「紮根在土壤當中」這種耗時的繁殖方式:它們利用菌絲體生長,或透過孢子飄散到新的棲息地。在渴望繁衍其 DNA 的動力下,有些真菌採取巧妙的策略,確保其孢子在新環境中得以繁殖。

擁有誘人香氣的美食佳餚黑松露(Tuber melanosporum)就是一個很好的例子。這種跟黃金一樣珍貴的真菌生長在地底下,隨著孢子成熟,其所散發出的香氣會吸引動物、松露獵人和來自世界各地的美食家。松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道;在理想狀況下,孢子應已遠離原來被採集到松露的位置。

-----廣告,請繼續往下閱讀-----
擁有誘人香氣的美食佳餚黑松露就是一個很好的例子,松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道。圖/pexels

在地面上,圓形的巨型馬勃(Calvatia gigantea)子實體保護著數以百萬在內部熟成的孢子。有趣的是,只要戳一下成熟的馬勃,它就會噴出一股煙霧狀的孢子粉,讓風帶走飄散的孢子。

生長在糞便之中的水玉黴菌屬(Pilobolus)真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。有研究經計算發現,孢子囊能以至少 20,000 g (重力)的速率被噴射出去。相較之下,訓練有素的美國國家航空暨太空總署(NASA)太空人在太空船中穿著抗重力服(G-Suit)所承受的重力是 3 g ,而子彈是以 9,000 g 的加速度行進的。

生長在糞便之中的水玉黴菌屬真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。圖/wikipedia

還有能在黑暗中發光的真菌,光線會吸引昆蟲將它們的孢子散布到森林底層。例如,加德納臍菇(Neonothopanus gardneri,俗稱椰子花)就受到晝夜節律的調節,在夜間會發出明亮的光。 2所有這些演化而來的調整,都是為了確保繁殖能夠延續。

為菌絲找到一個家

當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。孢子經由細胞壁吸收水分,並長出一種稱為菌絲的線狀管。當菌絲在營養基質上生長,就會分支出更多菌絲並形成一條細線。原本的菌絲繼續利用可能是木頭、昆蟲或土壤的基質,由尖端處長出更多菌絲。菌絲間開始融合相連,形成一個相互連接、被稱為菌絲體的物質。

-----廣告,請繼續往下閱讀-----
當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。圖/wikipedia

每條菌絲的生長都結合了物理力量和化學策略。菌絲會分泌出作用相當於強力消化酸的酵素來分解物質。這個分泌酵素的作用,讓真菌能穿透最堅硬的基質:先將營養物質萃取出來,再經由菌絲體吸收。就像我們唾液中的酵素一樣,很快就可以將口中的麵包變成濕糊狀。

數英里的菌絲體,也許再來一朵菇

菌絲體如同漣漪一般,從孢子萌芽之處輻射向外生長。附近有營養物質出現時,菌絲體就會以圓形的方式使其表面積最大化,朝營養來源方向生長。當一個區域的食物來源耗盡,菌絲體中心處的舊菌絲就會被自己消化掉。殘存在被消化舊菌絲當中的可用資源,則會被重新傳送到菌絲體最外圈,供生長正旺盛的菌絲所用。

最後,菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。隨著資源被重新傳送到菌絲體生長的外緣,中心會逐漸消失,環的周長則逐漸增加。只要有養分和水,菌絲體就可以持續以這種方式不斷地生長下去。

菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。圖/wikipedia

在此階段,除了酵母菌以外的真菌就能由菌絲形成孢子,進行無性生殖。黴菌、銹病和粉狀黴菌等微型真菌總是以這種方式繁殖,例如麵包上所見的黴菌黑點就含有超過五萬個孢子。

-----廣告,請繼續往下閱讀-----

然而,屬於單細胞微型真菌的酵母菌,則採取不同於絲狀真菌的方式進行無性生殖。酵母菌利用分裂產生複製體進行無性生殖,雖然這種方法很有效率,但卻因此錯過了可以經由有性生殖確保遺傳多樣性的樂趣。3

除了透過無性生殖的方式繁殖,若環境條件惡劣(通常情況就是這樣),大型真菌也可以進行有性生殖。當兩個有性生殖相容的菌絲體相遇,它們就會進行融合並形成更大的團塊。

融合後已經具備遺傳多樣性的新菌絲體,等待著合適的環境條件到來,就會聚集它的菌絲、吸收水分膨脹,並形成被稱為原基(primordium)的菇蕾。幾天後,原基逐漸伸長菌柄,將菌傘推出基質表面。最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。

最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。圖/unsplash

根據菇類產生和釋放孢子的方式,可以將大型真菌分成兩群:一群是在封閉囊內產生孢子的子囊菌(asomycota),另一群是從菌褶中形成並釋放孢子的擔子菌(basidiomycota)。擔子菌的菌褶有一層菌膜保護,隨著菇的成熟,該菌膜就會剝落。

-----廣告,請繼續往下閱讀-----

菇的本身可以說就是一個慶典,慶祝擁有數萬億待釋放新世代真菌(孢子)的出現。孢子將再次進入那已經持續循環數十億年的過程之中。自然不會多愁善感,所以慶典終將結束;菇類在完成產生孢子的工作之後,就會開始腐爛消失。

菇的本身可以說就是一個慶典,菇類的出現是真菌生命循環的最美麗時刻。圖/unsplash

它們已經達成自然所交付的任務,而且也不吝讓我們一窺正大自然發自內在的美。菇類的出現是真菌生命循環的最美麗時刻,也許因為這樣,菇類才會如此受到歡迎。

註解

  1. Matthew Phelan, ‘Why fungi adapt so well to life in space’, Scienceline, 7 March 2018, . ↩︎
  2. Anderson G Oliveira, Cassius V Stevani, Hans E Waldenmaier, Vadim Viviani Jillian M Emerson, Jennifer J Loros and Jay C Dunlap, ‘Circadian control sheds light on fungal bioluminescence’, Current Biology, vol. 25, issue 7, 2015, . ↩︎
  3. 譯注:酵母菌也會進行有性生殖,遺傳物質亦會重新洗牌。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----