0

2
3

文字

分享

0
2
3

認識 Omicron 變異株的厲害!Covid-19 確診數上升,未來可能會流感化嗎?

PanSci_96
・2022/05/03 ・3338字 ・閱讀時間約 6 分鐘

現今肆虐全球的 Covid-19 變異株——Omicron,是原始病毒株的 R0 值 2.5 的 4 倍;也就是說,當病毒進入無抵抗力的族群中,1 人感染後,接著能傳染給 10 個人!

而時下最關心的不外乎就是:我們打的疫苗是否已經無效?還是說,感染後多為輕症的Omicron,有沒有可能已經流感化了?

現今肆虐全球的 Covid-19 。圖/Pixabay

為什麼 COVID-19 不斷突變?

想必你對這傳染力如此驚人的 Omicron 一定有很多疑問,它究竟從何而來?又為什麼病毒會不斷變異?——這得要從 SARS-CoV-2 說起。

我們回顧一下:2019年底,一種新型冠狀病毒現蹤並且快速席捲全球,世界衛生組織將其命名為 SARS-CoV-2。

SARS-CoV-2 是一種以 RNA 作為遺傳物質的病毒,RNA 的結構較雙股螺旋且立體的 DNA 來得不穩定,因其本身只有單鏈容易被分解,在複製的過程中頻繁出錯,重重錯誤累積下來就形成了突變,進而影響病毒特性,這也是為什麼變異後的病毒傳播力增加、致死率降低(或提高),甚至突破疫苗的防護。而能適應環境的變異株便會留下來,越傳越廣。

除此之外, SARS-CoV-2 亦為冠狀病毒,其上的棘蛋白結構也會因突變而有所變化,能對應結合人體細胞表面的抗原 ACE2,親和力一旦提升,病毒就能加速進入人體,複製出更多病毒,傳染力因此增強。

SARS-CoV-2 的棘蛋白是和人體細胞結合的關鍵。圖/研之有物

在這邊我們可以先提出疑問:變異越多,就代表威力更強嗎?

COVID-19 目前的 5 種變異株

目前我們常聽到的 5 大變異株,分別為 Alpha、Beta、Gamma、Delta 和 Omicron。

以下逐一簡單介紹:

  1. Alpha 變異株(B.1.1.7)為最早出現,由於其棘蛋白發生變異,使得 Alpha 更容易與人體結合,傳播率較最原始 COVID-19 病毒株高出 60% 以上。
  2. Alpha 現蹤的同時,南非出現了 Beta 變異株(B.1.351)。比原始病毒株高出 50% 左右,稍低於 Alpha。關鍵的是,Beta 的部分變異點證實會降低疫苗保護力。
  3. 巴西出現 Gamma 變異株(P.1)後,初期當地曾爆發大流行,科學家原以為群體免疫了,沒想到竟再次引爆,造成超過 35 萬人死亡。
  4. 2021年最流行的變異株 Delta(B.1.617.2),其 R0 值高達 7。相較於其他變異株,Delta 的重症率較高、痊癒較緩慢,也更容易感染兒童和年輕族群。
  5. 2021 下半年,Omicron 變異株(B.1.1.529)橫空殺出,首次在波札那被發現,台灣則在 12 月時出現了首例境外移入個案。Omicron 的突變位點共有 37 個,其中 15 個集中在棘蛋白結構上的受體結合區域,也是病毒與人類細胞 ACE2 受體結合區域。

由此可以發現,變異越多,特性亦有所不同,並不能肯定地說它越來越無害或是變得更嚴重,也許是傳染力稍低但重症率高,亦可能反之。

那 Omicron 呢?

Omicron 的高傳染力和較弱的毒性

年初兩份刊登在《自然》期刊上的研究證實, Omicron 變異株的毒性較弱。

關於冠狀病毒進入人體細胞的步驟,當冠狀病毒利用表面棘蛋白上的受體結合域(receiptor-binding domain)與人體細胞的 ACE2 受體結合後,其中一個路徑是利用人體細胞 TMPRSS2 蛋白酶切斷棘蛋白,藉此徹底進入,進而感染細胞。研究發現 Omicron 變異株不太知道怎麼利用 TMPRSS2 蛋白酶切斷棘蛋白,因此弱化了感染人體以及自我複製的能力。

另一份研究則指出,Omicron 進入肺部引起重症的機率相對較低,病毒主要停留在上呼吸道,所以症狀也類似急性上呼吸道感染,俗稱感冒。

此次 Omicron 變異株雖然單日確診數破千,但超過 99% 都是無症狀和輕症。圖/pexels

值得注意的是,也因為症狀輕微不易察覺,病毒更容易傳播出去,短時間造成內更多病例。根據刺絡針醫學期刊(Lancet Respiratory Medicine)上的研究指出,Omicron 的 R0 值為 10,是目前傳播力最強的變異株。

此次臺灣所爆發的大規模本土疫情,主要病毒株就是 Omicron 的亞型「BA.2」;雖然單日確診數破千,但超過 99% 都是無症狀和輕症。

追加施打疫苗究竟能不能擋下 Omicron ?

上述提到 Omicron「亞型」BA.2,何謂亞型?其實就是變異株的變異株。

Omicron 目前擁有 5 種亞型,包括 BA.1、BA.2、BA.3、BA.4 和 BA.5。其中在台灣所流行的 BA.2,其傳播率較 BA.1 提高了 40%,不過目前沒有證據顯示病毒的危害變得更嚴重。
但這並不代表我們不需要疫苗的保護力!

根據《刺胳針》關於 Omicron 的研究結果顯示:與「未施打疫苗」相比,「有追加施打 mRNA 疫苗」的人,其住院的風險下降約 78%。

根據《刺胳針》研究結果顯示:與「未施打疫苗」相比,「有追加施打 mRNA 疫苗」的人,其住院的風險下降約 78%。圖/Pixabay

從病毒演化方式看 Omicron 流感化的可能性

Omicron 的重症率變低、傳染力更強,是不是就代表未來 COVID-19 會變得像流感一樣呢?事情當然沒有這麼簡單!

我們從病毒演化的系統動力學來看,若是類似流感病毒的演化模式,應該會呈現階梯狀(如圖),每隔一段時間,就會有一個新的變異,而其他的分支則會滅絕;相對每一次迭代,可以有一定的預測性。

階梯化變異與非階梯化變異。圖/Wikipedia

在去年 Delta 盛行時,多半的專家都推測下一個變異株應會以階梯式演化,然而 Omicron 的出現卻並非如此,而是像輻射狀演化出來。像這樣下一個大變異不是來自上一個,此類型的演化樹呈平衡輻射狀,其最明顯的特徵為容易發生「免疫逃逸」——新的變異會降低免疫系統識別的能力,這就是為什麼 Omicron 仍能感染已經注射疫苗的人。

此外,Omicron 絶對不是最後一個變異株。相反地,從全球感染趨勢看來,由於感染人數仍持續上升,目前是更多變異株出現的最佳時機,病毒也將無可避免地持續變異。至於變得更弱還是更強,還沒有研究能夠預期這結果。

COVID-19 可能真正流感化嗎?

也許你會想問,還需要多久才能確認 COVID-19 是否真正流感化?

面對 COVID-19,我們雖然知道了很多事情,但還有太多的未知。疫情雖然已經蔓延兩年多,但這也代表我們對它的認識僅有兩年多。COVID-19 在未來會不會真的像流感一樣,我們仍無法知道,仍需要更長時間的觀察。

而我們肯定知道的是,目前追加疫苗對於變異株仍有一定保護力,並且降低住院以及重症機率。儘管 Omicron 多數為輕症,仍要盡快打疫苗來保護好自己和他人。

結語

COVID-19 疫情肆虐至今,過去防疫有成的台灣正式進入一個新階段,充滿未知變數,周圍鄰近國家如韓國、香港、中國等也為防疫提供了不少教訓與資訊。

此刻最關鍵的行動是:用更強制且快速的手段提高疫苗覆蓋率,保護高風險族群,並隨時準備升級疫情警戒。畢竟 Omicron 不是疫情結束,反而更有機會誕生更強病毒株。

參考資料

  1. 進擊的病毒:變異如何影響疫情?疫苗效力會因此減弱嗎?
  2. 為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構
  3. 新冠病毒突變逃脫秀
  4. omicron – 台灣科技媒體中心 (smctw.tw)
  5. 嚴重特殊傳染性肺炎臺灣疫情
  6. COVID-19病毒變身全解析
  7. Omicron 變異株來歷假說:長期感染?悄悄演化?跨物種回傳?
  8. Delta印度變種病毒傳播力更強?打疫苗會促進變異株產生?新冠變種病毒七問
  9. Omicron variant and booster COVID-19 vaccines – The Lancet Respiratory Medicine
  10. 「細胞與動物實驗發現Omicron致病力較低」專家意見
  11. 「Omicron變種病毒亞型BA.2」專家意見
  12. 「刺胳針研究:英國Omicron和Delta的住院、死亡風險比較」解析 – 台灣科技媒體中心 (smctw.tw)
  13. Facebook聊聊XE,和真正的流感化. 來聊聊XE | by 姜冠宇醫師整合手記 | Apr, 2022 | Medium
  14. Viral phylodynamics


數感宇宙探索課程,現正募資中!

文章難易度
PanSci_96
989 篇文章 ・ 698 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。


2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
10 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook