2

5
4

文字

分享

2
5
4

比臭豆腐還臭!「臭」名昭彰的瑞典鹽醃鯡魚罐頭

胡中行_96
・2022/05/05 ・3817字 ・閱讀時間約 7 分鐘

面對恐懼與憎惡,固守執念僅會增添痛苦,不如從別的角度來看待事物。

丹麥裔美國哲學家貝麗特.布加德(Berit Brogaard)[1]在《憤恨:了解我們最危險的情緒》(Hatred:Understanding Our Most Dangerous Emotion)中,提到這些負面感受,是我們面對可能的傷害時,會有的直覺反應,但未必與真實的危險有關。

比方說,消毒後完全無菌的蟑螂,就算裝在膠囊裡,您還是不敢吃。有時憎惡是源自「受到束縛的靈魂」,無奈沒法掙脫不斷老化的軀體,從而對任何與腐化、死亡關聯的事物,都感到噁心。總之,會產生那些負面的情緒,千錯萬錯都是自己心理作祟,不得怪罪外在的世界。

哲學家布加德說了這麼多,難道只是在為她筆下,集「爛蛋、酸乳、腐魚、水溝」臭味之大成的瑞典臭魚開脫?

詳解鹽醃鯡魚罐頭的前世今生

「瑞典鹽醃鯡魚罐頭」(surströmming),是一種發酵到臭「酸」(sur)的「波羅的海鯡魚」(strømming;學名:Clupea harengus var. membras)。[2]

-----廣告,請繼續往下閱讀-----
瑞典鹽醃鯡魚罐頭(surströmming)。圖/維基百科

在每年 5 月到 7 月的產卵季前,漁夫會獵捕這些體脂肪尚低的鯡魚,將魚浸在飽和的鹽水裡 1天至 2 天,而且最初 4 個小時還得不停攪動。接著,會移除頭部和大部份內臟,但保留性腺和幽門垂(pyloric ceca),然後將魚放進桶裝的 17% 稀釋鹽水裡,裝桶後的頭三天,不時滾動桶子。之後,在 15 到 18 度左右的溫度下,儲藏 3 週到 4 週,待發酵完成,鯡魚就會被分裝進罐頭中。

這種繁複的做法,原本可能是為了保存大量漁獲而設計。儘管發酵後的產品以惡臭出名,16 世紀時卻一度因為缺乏食鹽而流行,到了 17 世紀更成為瑞典某些地區的軍糧。[2](是說他們怎麼都不擔心臭到鳥散魚潰,全軍覆沒?)

日本 NHK 曾以科學方法,為世界各國的惡臭食物排名,冠軍「瑞典鹽醃鯡魚罐頭」的威力,是薰遍臺灣大街小巷的臭豆腐所望塵莫及。[3]

台灣臭豆腐 VS 瑞典鹽醃鯡魚罐頭,你選哪個?圖/維基百科

如同欣賞奧運體操,有強度也要不失美感。歷年來不少科學家費心挖掘它的內涵,從腐化的過程到臭味的層次都加以分析。

-----廣告,請繼續往下閱讀-----

波羅的海鯡魚死後,在邁向瑞典國粹罐頭的偉大旅程上,最開始的幾個步驟是這樣的:[2]

  1. 在封閉無氧的環境下,肌肉分解為乳酸。
  2. 蛋白質與脂肪「自溶」(autolysis;又稱「自體分解」)。
  3. 微生物菌落開始建立。

鯡魚極富層次的臭味

其中,鯡魚肌肉組織中可見的自溶酵素,包括:鈣蛋白酶(calpains)、 組織蛋白酶(cathepsins)、 帶有胱天蛋白酶(caspase)的蛋白酶體(proteasomes)等。此外,細菌以及幽門垂裡的酵素,也在此間推波助瀾。[2]

接著,在每年七、八月,分裝好的鯡魚罐頭被交給大盤商後,發酵的過程仍會持續半年之久,直到裡面的氣體把罐頭給撐到變形。[2]科學家在三個廠牌的罐頭裡,找到數種細菌,主要包含:AlkalibacteriumCarnobacteriumTetragenococcusClostridiisalibacter、Porphyromonadaceae和Halanaerobium等。[4][註1]由於罐頭內鹽份提高了醃漬液體中的滲透壓(osmotic pressure),使部份細菌無法將蛋白質分解成寡肽(oligopeptides)和胺基酸(amino acids),因此一般屍體腐敗過程中常見的吲哚(indole)、糞臭素(skatole)、腐胺(putrescine)、屍胺(cadaverine),都不會出現。[2]

瑞典鹽醃鯡魚罐頭裡,經由發酵產生的氣體,除了二氧化碳,還有層次多元的臭氣:

-----廣告,請繼續往下閱讀-----
  1. 乙酸(acetic acid)[2]:食用醋的主要化學成份。
  2. 丙酸(propionic acid)[2]:具刺鼻酸味。[5]
  3. 丁酸(butyric acid):聞起來像變質的奶油。[2]
  4. 戊酸(valeric acid)[6]:有腳臭味。[7]
  5. 己酸(caproic acid)[6]:帶著腐爛包心菜的氣息。[8]
  6. 氨(ammonia)[6]:一股尿騷味。[5]
  7. 甲硫醇(methanethiol)[6]:造成人類口臭和糞便惡臭的化合物之一,也是吃完蘆筍後幾小時,改變尿液氣味的元兇。[9]
  8. 硫化氫(hydrogen sulfide)[6]:散發腐爛雞蛋般的臭味。[2]
  9. 三甲胺(trimethylamine)[4]:一種三級揮發胺(volatile amine)[10],聞起來像腐魚、爛蛋、垃圾或尿液。[11]

如何正確的打開鯡魚罐頭

當上述發酵產生的氣體,已經在封閉環境內鼓脹至極限,您手中握著的就不再是個單純的罐頭,而是處理不慎便會忘情噴發的未爆彈。儘管瑞典人在 YouTube 上,優雅示範如何輕鬆開罐享用鹽醃鯡魚,外國人未必能輕易駕馭項絕技。[12]

Swedes Show Them How It’s Done(BuzzFeed Response)/YouTube

根據《臭食物大全:發酵學教授的美食筆記》作者小泉武夫教授的親身經驗,他在飯店房間裡被爛魚炸得一身腥,全身衣物脫到剩內褲,還是洗不掉手上的味道。

為避免重蹈小泉教授的覆轍,請有心嘗試的讀者參考下列安全要點:[6]

  1. 事先冷凍,以降低罐內氣壓,減少噴發風險。
  2. 在戶外開罐,避免室內環境遺臭萬年。
  3. 穿著不要的衣物或雨衣,倘若拆彈(開罐)失敗,至少心愛的潮服不受波及。
  4. 站在下風無人處執行,臭氣才不會殃及池魚。
貼心小叮嚀:有意嘗試開啟鯡魚罐頭的讀者,請參考安全要點。圖/維基百科

其實鯡魚罐頭內含豐富營養

您或許會問這般煞費苦心,究竟是為了什麼?販賣瑞典鹽醃鯡魚的網站宣稱其產品除了鹹之外,還濃郁、酥脆、有酸勁,且帶草藥味。[13]小泉教授則認為,不值得為這種像是加了碳酸水的醃漬物,拼得魚死網破。[6]當然,美味與否單純主觀認定,但其食品安全和營養成份倒是可受公評。

-----廣告,請繼續往下閱讀-----

值得欣慰的是,有礙人體健康的菌種,例如:李斯特菌(Listeria monocytogenes)、沙門桿菌(Salmonella)、金黃色葡萄球菌(Staphylococcus aureus)、仙人掌桿菌(Bacillus cereus)與產氣莢膜梭菌(Clostridium perfringens)等在鯡魚罐頭研究中都零檢出。[2], [4]此外,瑞典鹽醃鯡魚含有 11.8% 蛋白質、8.8% 鹽份、3.8% 脂肪,以及 omega-3 脂肪酸、維他命 D 和以鈣質為主的礦物質等豐富的營養。[2], [14]

所以,只要能夠克服人類面對魚餒肉敗時,本能的心理障礙,瑞典鹽醃鯡魚罐頭其實可以為您帶來安全、滋養,且充滿驚奇的異國饗宴。

註解

  1. 許多指稱「鹽厭氧菌屬」(Halanaerobium)為瑞典鹽醃鯡魚罐頭發酵主力的文獻,似乎都是參考2000年《國際食品微生物學》(International Journal of Food Microbiology)的論文。[15]然而本文採用的2020年《食品微生物學》(Food Microbiology)最新研究,提到許多在這種罐頭中的細菌「第一次被發現」。(”The data obtained allowed pro-technological bacteria, which are well-adapted to saline environments, to be discovered for the first time.”)[4]

參考資料

  1. Hatred: Understanding Our Most Dangerous Emotion by Berit Brogaard (Oxford University Press, 2020; p.29-30
  2. Fermented and ripened fish products in the northern European countries (Journal of Ethnic Foods, 2015) 
  3. 臭い食べ物のランキング(社会実情データ図録,2022)
  4. Discovering microbiota and volatile compounds of surströmming, the traditional Swedish sour herring (Food Microbiology, 2020)
  5. Characteristics of Deodorization for Malodorants in Aqueous Solution by Sonication (Journal of the Environmental Sciences, 2004) 
  6. 來自瑞典的地獄罐頭!鹽醃鯡魚到底在臭什麼?(食力,2018)
  7. Chilled Foods: A Comprehensive Guide by Martyn Brown (Woodhead Publishing, 2008; p.121)
  8. Formation of volatile sulfur compounds and S-methyl-l-cysteine sulfoxide in Brassica oleracea vegetables (Food Chemistry, 2022) 
  9. Sulfur Metabolism in Plants and Related Biotechnologies (Comprehensive Biotechnology (Second Edition) Volume 4, 2011, p.257-271)
  10. Aerial Exposure to the Bacterial Volatile Compound Trimethylamine Modifies Antibiotic Resistance of Physically Separated Bacteria by Raising Culture Medium pH (American Society for Microbiology, 2014)
  11. Trimethylaminuria (MedPlus, 2021) 
  12. Swedes Show Them How It’s Done (YouTube, 2015)
  13. What Does Surströmming Smell Like? (The Swedish Surströmming Supplier)
  14. Health effects of nutrients and environmental pollutants in Baltic herring and salmon: a quantitative benefit-risk assessment (BMC Public Health, 2020)
  15. Strictly anaerobic halophiles isolated from canned Swedish fermented herrings (Surströmming) (International Journal of Food Microbiology, 2000)
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
比爾蓋茲的第四代核能發電廠終於開始建設!核能的春天真的來了嗎?
PanSci_96
・2024/08/31 ・1230字 ・閱讀時間約 2 分鐘

比爾蓋茲在美國懷俄明州興建的 Natrium 反應爐,標誌著第四代核能技術的新篇章。這座核電廠使用鈉冷快中子技術,不僅挑戰了過去鈉冷反應爐屢屢失敗的歷史,其關鍵技術還能應用於太陽能發電,解決可再生能源的不穩定性。Natrium 是否真的能成為第四代核電廠的突破口?然而,質疑聲也不容忽視,這座反應爐真的能達到第四代核電廠的安全標準,並減少核廢料的生成嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

比爾蓋茲的能源革命:Natrium 反應爐的誕生

比爾蓋茲對核能的投入並非首次嘗試。2008 年,他創立了 TerraPower 公司,並在 2015 年與中國核工業集團公司合作研發「行波反應爐」。這種反應爐的設計目的是利用高階核廢料作為燃料,減少核廢料的總量。然而,隨著美中關係惡化,這項合作最終在 2019 年終止。

蓋茲並未因此止步,他轉向美國市場,與巴菲特旗下的太平洋電力公司合作,在懷俄明州啟動Natrium 1 號鈉冷快中子反應爐的建設計畫,預計 2030 年完工。這個 Natrium 與傳統核反應爐有何不同?

冷卻劑革命:液態金屬鈉的優勢

Natrium 反應爐與傳統核電廠的最大不同點在於它的冷卻劑。傳統核反應爐使用水作為冷卻劑,而 Natrium 則使用液態金屬鈉。這種設計具有幾個優勢。首先,鈉的沸點高,能在更高的溫度下運行,提升反應效率。其次,鈉具有極高的導熱率,熱交換效率是水的 100 倍。此外,鈉冷快中子反應爐還能進行「滋生反應」,將核廢料轉化為新的核燃料,提高燃料的使用效率。

-----廣告,請繼續往下閱讀-----

更重要的是,Natrium 的設計還包含了一個能量儲存系統。利用液態鈉加熱熔鹽,能量可以長時間儲存,隨時用於發電,這種技術被稱為熱能儲存(TES)。這使得 Natrium 能夠根據需求調節發電量,甚至在用電高峰時提供穩定的電力。

然而,Natrium 的技術優勢也伴隨著安全隱患。鈉的化學活性非常高,遇水易爆,且易與空氣中的氧氣反應,導致腐蝕性問題。歷史上,鈉冷快中子反應爐多次因冷卻系統故障而引發事故。

Natrium 反應爐與傳統核電廠的最大不同點在於它的冷卻劑,Natrium 反應爐用的鈉冷卻劑雖然效率高,但卻具有安全隱患。圖/envato

鈉冷技術與核擴散的潛在威脅

除安全隱患外,Natrium 反應爐還面臨核武擴散的風險。快中子反應爐需要使用高濃度的鈾燃料,而滋生反應會生成鈽 239,這是製造核武器的重要原料。因此,如何管理核材料,防止核擴散,成為快中子反應爐必須面對的難題。

Natrium 反應爐的建設標誌著第四代核電廠技術的一大進步,然而它的發展也伴隨著重大的挑戰。隨著技術的進步,我們或許能期待更安全、更高效的核能技術的實現,但在此之前,對於安全性和核武擴散問題的解決,將是推動這一技術進一步發展的關鍵。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
翻越性別高牆 打破生乳營養迷思 埃凡斯促成牛奶滅菌(2)
顯微觀點_96
・2024/08/13 ・2351字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

顯微鏡後的女性科學家系列

他像是一艘船在河中航行;四處遇到阻礙,唯獨一面通暢;在那,所有的障礙都消失了,他徐徐地穿越著深深的航道,進入無盡的海洋。

——愛默生

埃凡斯在動物工業局的研究興趣集中到一種致流產的傳染性微生物。

丹麥獸醫伯納.班(Bernhard Bang) 在 19 世紀末發現了一種導致乳牛流產的病菌,而這種病菌多年來已知存在於受感染的乳牛乳房中。

而農業工業局病理部的施洛德(Schroeder) 和卡登(Cotton)在 1911 年從看似健康的牛隻的牛奶樣本中分離出這種病菌;幾乎同時,另一組研究人員史密斯(Theobeld Smith)和費比恩(Febyen)也在 1912 年從牛奶中分離出同樣的病菌。因此埃凡斯開始思索這類致牛隻流產的病菌是否也會導致人類生病。

-----廣告,請繼續往下閱讀-----

與此同時,蘇格蘭病理學家布魯斯(David Bruce)分離出了會使人類發燒和肌肉疼痛的波浪熱(或稱馬爾他熱,Malta fever)的病菌,且發現可透過羊奶傳染給人類。

當時的科學家都認為透過羊奶傳染給人和導致牛流產的是不同的病菌。透過羊奶傳染馬爾他熱的是羊微球菌;引起牛流產的則是流產芽孢桿菌。

但埃凡斯透過觀察,認為這兩種來源的細菌形態相似:這些細胞呈桿狀,但有不同的長度;有些細胞很短,在顯微鏡下看起來呈球形。

經過細菌鑑定以及將病菌接種在動物身上的對比試驗,埃凡斯推斷這兩者其實是同一種桿菌,並將這些發現於 1917 年 12 月在美國細菌學家協會(the Society of American Bacteriologists)年會上報告,並發表於 1918 年 7 月的《傳染病雜誌》(The Journal of Infectious Diseases)。而後來為紀念首先研究這病症的布魯斯,這個病原菌被定名為「布氏桿菌」(Brucella abortus)。

-----廣告,請繼續往下閱讀-----

同時埃凡斯基於研究發現也提出質疑:「我們是否確信,人類不會因為飲用生牛奶而偶爾發生腺熱(glandular fever)、流產或可能的呼吸道疾病?」

Alice Evans 1945。圖片來源:wiki

避免人畜傳染 推動牛奶滅菌

1864 年,法國生物、化學家.巴斯德(Louis Pasteur)描述了如何透過加熱保存液體的系統,也就是巴氏殺菌。但當時這樣的滅菌法應用於葡萄酒或啤酒,而不是牛奶,因為人們認為牛奶只要不被污染就是安全的。

當時牛奶的問題在於變質的速度。過去,有些乳牛場為了解決變質,會建在城市,以縮短生產和消費之間的時間;而有些則使用摻假物,例如碳酸氫鹽、糖、糖蜜甚至粉筆,來掩蓋乳品腐敗的狀況。

對於埃凡斯提出喝生牛乳可能致病的質疑,不但未被採納,還遭到其他科學家、醫師和酪農業等各界的批判。

-----廣告,請繼續往下閱讀-----

一來是科學家普遍相信發現結核菌的德國生物學家柯霍(Heinrich Hermann Robert Koch)所提出的觀點:同一種病菌會同時造成動物與人類的共同疾病。

柯霍曾在 1901 年提出儘管結核病是牛隻常見的疾病,產出的牛奶含有大量的「結核菌」,但這種牛型結核病不會傳染給人。

他說,如果牛結核桿菌能夠感染人類,就會出現很多病例,尤其是脆弱的兒童;但大多數醫護人員認為案例數並不多並非如此。他甚至認為,採取措施保護人類免受牛結核病的侵害是不明智的。

二來是科學家們不相信埃凡斯這樣沒有博士學位的女性,能提出如此「重大的發現」。對酪農和乳製品業而言,埃凡斯則被認為在圖利巴氏殺菌設備。

-----廣告,請繼續往下閱讀-----

所幸,埃凡斯的發現在 1920 年後陸續得到梅耶(Karl Friedrich Meyer)等人的研究支持,被認為是可信的科學發現。 美國衛生局(USPHS)也從 1924 年開始制定了一項名為《標準牛奶條例》(Standard Milk Ordinance)的示範法規,由州和地方掌控乳製業機構自願採用。之後又陸續頒布行政和技術細節,修改成 A 級巴氏滅菌牛奶條例(Grade A Pasteurized Milk Ordinance),提供全國統一的牛奶衛生標準。

重要貢獻鼓勵後進女科學家

為了表彰埃凡斯的成就,美國細菌學家協會(現為美國微生物學會,the American Society for Microbiology,ASM)於 1928 年推舉她成為首位女性主席。

然而儘管有豐富的實驗室經驗以及預防措施,但埃凡斯仍在 1922 年感染布氏桿菌,並在往後幾年反覆發作。她曾在回憶錄中提到,「完全喪失能力和康復的時期交替出現,最後一次致殘的病情惡化發生在 1943 年夏天,距感染之日已近 21 年」。

更慘的是,當時對疾病沒有夠多的認識,因此她和其他布氏桿菌患者一樣,被診斷為「神經衰弱」,認為這些症狀是被幻想出來的,被誤解為騙子,是在「詐病」。但埃凡斯說,慢性症狀方面的經歷使她有機會親眼觀察這種疾病及其影響。

-----廣告,請繼續往下閱讀-----

不過她也漸漸將研究目光轉向溶血性鏈球菌,一直致力於此直到 1945 年退休。1975 年 9 月 5 日埃凡斯於維吉尼亞州亞歷山大市逝世,享年 94 歲。她的墓誌銘刻著::「溫柔的獵人,追趕並馴服她的獵物,穿越到了新的家園」。

雖然埃凡斯並未取得博士學位,又曾因女性身分導致科學發現不被認可。但美國微生物學會於1983年為表彰埃凡斯在微生物學領域的參與以及傑出貢獻,設立了「埃凡斯獎」(The Alice C. Evans Award),以表揚後進致力於微生物科學領域的女性。

查看原始文章

參考資料

推薦閱讀

顯微鏡後的女性科學家:甘居配角仍不減貢獻 微生物學家安娜‧威廉斯

-----廣告,請繼續往下閱讀-----

討論功能關閉中。