12

10
1

文字

分享

12
10
1

少子加高齡,「這代」最不幸?

鄭國威 Portnoy_96
・2022/01/28 ・4563字 ・閱讀時間約 9 分鐘

YouTuber Iku 老師這支談論台灣少子化原因的新熱門影片,以及底下清一色支持的留言,你看過了嗎?

在影片裡,Iku 老師把台灣少子化的原因歸咎於「房價」,想必是很多人的心聲,起碼在底下留言的人都這麼說。然而我想趁著這機會,補充一點不討喜的個人意見。

看人口數字是我的興趣。每個月月中,我總是迫不及待到內政部戶政司,下載上個月的戶籍人口統計速報來閱讀。這些數據就像預知未來的水晶球,非常準確,有憑有據。

這個興趣,受到台灣越來越多關於少子高齡化的討論(例如 IKU 老師這則影片、或這類 PTT 文),以及《真確》作者漢斯・羅斯林(Hans Rosling)的論述所刺激,而漸漸養成。

例如他在 2010 年時的這則 TED 演講中,他以每個 IKEA 的箱子比喻 10 億人口,表示若能讓生活條件處於全球最低的 25% 人口的兒童存活率跟教育水準提升,全球總人口有望控制在 90 億人,利於永續發展。

-----廣告,請繼續往下閱讀-----

他在另一場精彩的 2015 年演講以及《真確》一書中則是預測全球人口最高峰不會超過 110 億,而且根據聯合國數據,全球兒童的數量在 2000 年前便已經達頂。每年全球新生兒數量最高為 2014 年的 1 億 4000 萬,一段時間後開始下降。趨勢是亞洲的兒童數量下降,非洲的兒童數量上升,美洲跟歐洲則大致持平;全球人口增長至 110 億的原因,主要來自於非洲跟亞洲的高齡人口,而非新生兒。演講還有很多精彩亮點,就留給各位自己觀看了。

引用漢斯羅斯林在演講中說的一段話:

「當非洲最窮困人口依舊看著孩子早夭、村子沒學校、需要小孩幫忙工作,他們就不會用避孕措施。(諾貝爾和平獎得主)馬拉拉說她們因為得工作養家沒去上學。當狀況是這樣,他們就會要多生孩子……」「……有些男人會自豪於有 7個、8個、9個小孩,而不是孩子過得好不好…這是陳舊父權思考。男人應該為自己的孩子過得如何、生活是否開心而自豪。這就是我引以為傲的。」

截圖取自 Why the world population won’t exceed 11 billion

過去:回歸現象起點——1976-85 的回聲嬰兒潮

我今年 40 歲,根據內政部戶政司的統計,與我一樣在 1981 年出生的有 41.5 萬人,作為比較,去年 2021 年的出生人口只有 15.3 萬,較 40 年前少了 63% 的新生兒。然而這不是一天造成的,台灣的兒童人口(0-14 歲)早在 1972 年就達到峰值 583.3 萬人,之後再也沒有超過。2021 年的台灣兒童人口是 289 萬人,不到峰值的一半,是幾十年前就註定的結果。

就像眾多遊客湧向特定景點,創造了消費,蓋起了旅館跟遊樂園,但也留下大堆垃圾跟難以收拾的環境破壞。我們這一代(1981上下五年出生,六年級後段跟七年級前段班)的人太多了,有如在時間線上冒出一大批不守規矩的遊客,若照美國的用語,我們這代人就是「回聲嬰兒潮世代(Echo Boomers)」,指的是嬰兒潮世代的孩子,如今是人數最龐大的一個世代。

-----廣告,請繼續往下閱讀-----

以下列出這波回聲嬰兒潮的出生人數(根據內政部戶政司)
民國 65 年 (1976) 年:425,886
民國 66 年 (1977) 年:395,260
民國 67 年 (1978) 年:413,270
民國 68 年 (1979) 年:423,266
民國 69 年 (1980) 年:413,177
民國 70 年 (1981) 年:415,808
民國 71 年 (1982) 年:403,143
民國 72 年 (1983) 年:382,313
民國 73 年 (1984) 年:370,078
民國 74 年 (1985) 年:344,101

從人口金字塔也可以看得很清楚,我們這代人就是中間突出的那幾根橫槓。

截圖取自國發會人口推估統計查詢系統


比起我們的上一代,我們這代兒童死亡率更低、受教育時間更長、平均壽命(應該)也會更長。所以我們這些橫槓會持續往上、老去,壓著下面的世代。

我們這代人數量之多,成長到了一個年齡段,就在那個時間創造出新的社會問題;但是,我們一離開該年齡段,原本為了解決問題而趕工出來的設施、做法、人力,又突然沒足夠多的人用了,變成另一堆問題。

例如廣設大學就是一個例子。對我的上一代(1940-1960初 出生)來說,念大學是超級窄門,學習壓力非常大,社會階級流動機會少,所以他們決定廣設大學。到了我這一代,想念大學簡單多了。但我們這波過了之後,大學就變得太多了,知識更是爆炸到大學無法負荷,多到讓這個體制的存在價值不再明顯,只好透過 USR(大學社會責任)來證明自己。

-----廣告,請繼續往下閱讀-----

(注意:我不是說知識、教育、或教授失去存在價值,而是傳統的「大學」體制。)

我們這一代的人太多了,其中很多離開家鄉到都市念大學。受教育的時間繼續延長、加上離家東南西北漂、大多在高消費的都市工作、娛樂、學習。由兩、三人組成的核心家庭戶數快速增加,都會住房的需求大增,結婚生育的動機則大減。同時地方偏鄉逐漸凋敝,也才有了「地方創生」的口號跟需要。

未來:當回聲嬰兒潮變成老人潮——老齡化最嚴重的時期

接下來,由於醫療持續進步,我們這代人(1980 年前後出生)不需要特別幸運,都還會活上好幾十年,而現在在談的「未來老齡化最嚴重的時期」,就是我們這一代變老造成的。

以數據來說,根據國發會人口推估查詢系統,到了 2050 年,也就是我 68 歲的時候,台灣 65 歲以上人口將達 745 萬人,這是台灣有史以來 65 歲以上人口最高的數字,佔總人口的比例推估是 36.6%。

-----廣告,請繼續往下閱讀-----

過了 2050 年,65 歲以上人口數就開始下降,但佔總人口的比例將持續增加,最高將在 2069 年達到 41.8%,那時我如果還活著,已是行將就木的 87 歲。如果現在我們覺得台灣醫療跟長照的壓力已經很重,到時候更難以想像,因為台灣仰賴的東南亞國家年輕人力也已老去、新生的年輕人力自己國內都不夠用。

那時候的我就是壓力本身。但只要我們這一代過世,壓力又會迅速減低。可以想像到時許多醫療跟長照的設施會面臨如現在學校一樣的問題——當然,前提是社會真的願意投入那麼多資源在我們這些老人身上。

現況:正值壯年的回聲嬰兒潮,該為下一代留下適合生存的世界

根據教育部統計處 2019 年的「大專院校大學1年級學生人數預測分析報告」,今年(2022)年入學的大學生將跌破 20 萬,約為 19.3 萬人,其中技職體系佔 10.2 萬人,一般體系佔 9.1 萬人。然後大概起起伏伏到 2034 年。按照人口推估,之後大學新生會快速下探到 14 萬以下。對非常多新進的大學老師來說,從現在起算的職涯年限會短於 15 年,更別說許多人根本就沒有辦法取得教職。跟我同一代念到博士的,極少能在大學卡位取得正式教職,大學生跟教授的年紀差距繼續拉大。

資料來源/教育部統計處

除了大學近乎徒勞無功地往高中搶越來越少的學生、到國外招生(甚至搞出這類情事),產業也往大學搶人才,例如產學合作、預定就職、甚至與產業合辦學院。然而半導體以外,台灣政府規劃發展的六大核心戰略產業都需要人才,但光是半導體就把大部分的人吸走了,讓其他產業叫苦連天,包括一般服務業。更何況這六個戰略產業也不只台灣要發展,每個國家都在發展,都在搶人,迎來大招募時代

-----廣告,請繼續往下閱讀-----

再者,已經很嚴重的生態破壞、垃圾污染、能源問題,基本上都是我們這一代人過度消費造成的。例如過去 40 年人類產生出的碳排放比 1750 年工業革命後兩百年加起來還多。相較於我們這一代,上一代人曾經窮過,沒有那麼浪費資源,而下一代人則沒有那麼多人,也不像我們這代那麼浪費。綜合上述,我想強調的就是:我們這代人的問題,就是我們自己。

全球平均每月二氧化碳濃度趨勢圖。資料來源/美國全球變遷研究計畫

而我認為,我們這代人在認清自己就是問題之後,該努力扮演問題以外的角色。我們如今 40 歲上下,正式承接臺灣社會骨幹、不管在政治、經濟、文化各領域都開始獲得當家實權,我們必須從「問題」變成「問題解決者」,把自己這代人造成的問題自己解決掉。

少子化,也許是另一種解決方案

我曾在另一篇評論裡寫過,我不把台灣人生育率低看作壞事或好事,而是視為一個機會,這其實也受漢斯羅斯林「可能性主義者」的態度所影響。我在該文的重點有二:

  1. 即使各種讓生育率下降的因素,如房價、工時、養育成本、性別分工都逐漸減少、降低、消失,台灣的生育率不會回漲多少。全球 131 個國家的總和生育率在 2.1 以下,未達世代更替水平,連孟加拉、印尼、越南都已經低於 2.1。
  2. 我們這代人太多了,消費資源的方式過劇,台灣的環境承載不了。但我們沒有動用強制且不人道的方式降低人口壓力,如漫威電影裡的薩諾斯、《進擊的巨人》裡的吉克、或是現實世界的中國,而是接近自願的減少生育。這是我們這代人少有的好抉擇。

我們這代人必須做出更多好抉擇。2050 年的時候,如果台灣的民主制度仍在,還是一人一票,那麼跟我一樣 60-70 歲的人可以用票數輾壓一切決策。

-----廣告,請繼續往下閱讀-----

如果我們不現在就改變認知與態度,不認清台灣所有重大問題的根源就是我們自己,依舊只為了我們這人數過多一代的爆量需求設想、抱怨,那未來的年輕人肯定會恨死我們這些老人,因為「民主」對他們來說將一點意義都沒有,他們將放棄參與,更不抱持任何進步的希望。

我們這一代需要趁現在解決我們造成的問題,不然這些問題就會解決我們。不用擔心到時的年輕人會把我們老人扛到深山丟棄,他們人手不夠、自顧不暇。

如果我們這一代人想留下什麼 Legacy,只剩下 10 年左右的時間。若拖到 20 年,我們就太老了,更何況我們這代因為人數過多,必須要比上一代更早把實權交棒給下一代——起碼我們當中一大部分人得知道這件事有多重要,並且真的這麼做。

我只有一個女兒,她跟我差 30 歲。我希望當她這一代人到我現在這個年紀的時候,不會陷入愁雲慘霧,對我跟我這代 (老) 人充滿無盡怨懟,只因我們以前什麼都沒做。

-----廣告,請繼續往下閱讀-----

我認為,我們是幸運的一代,因為我們有機會做出巨大的貢獻。我們比我們上一代有餘裕思考未來,也比我們下一代有改變未來的迴轉空間。科學、教育、人才都是泛科學的守備範圍,也是改變未來重要的關鍵。針對這三大主題,去連結這一代最厲害、最有心的專家夥伴,留下一個更好的台灣給下一代,是我未來 10 年打算做的事,因為沒有別的更重要的事了。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 12
鄭國威 Portnoy_96
247 篇文章 ・ 1400 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
種族大爆發!數萬年前的人類大遷徙如何影響我們的社會?——《人類的旅程》
商業周刊
・2022/10/22 ・2852字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

人類如何發展成多元族群?

自從三十萬年前智人在非洲現身,多元化便幫助人類適應非洲各地不同的環境。這期間大部分時候,適應成功漸漸產生更好的獵人和採集者,使食物供給增加,人口明顯上升。

之後每個人可享有的生存空間和自然資源減少,早在六萬至九萬年前的某個時間,智人開始大規模出走非洲大陸,尋找更多肥沃的生存土地。由於這種外移過程有連續性,便自然產生一種相關:定居的地方離非洲越遠,人口多元化就越低。智人離開非洲越遠,其社會的文化、語言、行為、體格多元化程度就越低。這種現象反映著連續始祖效應(serial founder effect)。

什麼是「連續始祖效應」?

假設有個島上,住著五種主要品種的鸚鵡:藍、黃、黑、綠、紅,牠們在島上適應存活的能力相當。當颱風來襲,有幾隻鸚鵡被吹到很遠的荒漠小島。這一子群鸚鵡不太可能涵蓋所有五個品種。假定牠們以紅、黃、藍居多,不久滿布新島上的幼雛將遺傳牠們的毛色。於是新島上形成的鸚鵡群就不及原棲息地的多樣化。要是後來又有很小一群鸚鵡,從第二島移往第三島,這一群的多樣化更不及前二島。所以只要鸚鵡從母島移出的速度快過原島上可能產生突變的速度,則牠們(相繼)移得越遠,就越不多樣。

人類移出非洲也是類似模式。起先有一群人離開非洲,定居在附近肥沃地帶,他們只帶走非洲母體人口多樣化的一部分。等這群最早的移民成長到新環境無法支撐他們再擴大,便會有一群人離開,去尋找別的處女地,定居在更遠的地方,其多元化將更低。人類向非洲以外散布,以致各洲都有人類蹤跡的這段期間,同樣的過程一再重複:人口增加,新群體再移出,去追尋更綠的草地,但多樣化僅及母體人口的一部分。

-----廣告,請繼續往下閱讀-----

儘管有移民改變方向,這顯而易見,不過這種移居模式的影響是,離開非洲來到西亞的人群不像原本在非洲的人口那樣多樣化,其後代又繼續向東移往中亞,最後來到大洋洲和美洲,或是向西北移往歐洲,多其樣性也越來越比不上留在原地的人。解剖學上的現代人類,從非洲的搖籃向外擴張,為世界各地文化、語言、行為、形體多元化的程度不同,刻下深刻且不可磨滅的印記。

人類移出非洲對多元化的影響。
虛線箭頭代表移出的大約路徑,小圓圈代表一種假設的社會特質有各種變異。每向外移一次,離開的人只帶走母體人口多元化的一部分。圖/《人類的旅程》

這種與非洲離得越遠、人口整體多元程度就降低,部分反映在較遠的在地民族基因較不多樣化上。根據對二百六十七種不同人口做基因多元化的比較測量,這些人口大都可找出原屬的本土族群和地理上的發源地。結果很明顯,距東非最近的本土族群基因最多樣化。多樣化最低的是中南美洲的本土族群,他們從陸路移出非洲的距離最長。多元化與移出東非的距離成負相關,這種模式不僅出現在各大洲之間,在各洲內部也是如此。

自東非移出距離與地理上本土族群多元化。圖/《人類的旅程》

體質與認知人類學領域提供更多這種證據。研究人體體型的特徵,比方與牙齒特徵、骨盆特徵、產道形狀相關的骨骼架構,以及研究文化特徵,例如不同語言的基本詞語單位(「音素」〔phonemes〕),都證實有源自東非的連續始祖效應存在;同樣是距東非越遠,體形和文化特徵的多樣化越低。

人口多元化表現的形式是多方面的,若要適當探究整體多元化程度對國家經濟繁榮的影響,當然需要比基因學家和人類學家所提供的更廣泛許多的測量標準。此外,這標準也需要獨立於經濟發展的程度之外,以便用於評估多元化對國家財富的因果效應。這會是什麼樣的測量標準呢?

-----廣告,請繼續往下閱讀-----

測量人類多樣性的標準是什麼?

測量人口多元化慣用的標準,往往只擷取人口中族裔或語言群體的比例代表。這類標準因此有二大缺點;一是某些族裔和語言群體的關係較密切。由等比例丹麥人和瑞典人組成的社會,或許不如由等比例丹麥人和日本人組成的社會那麼多元。另一缺點是,族裔和語言群體的內部也不盡然完全同質。全由日本人組成的國家與全由丹麥人組成的國家,多元化程度不見得相同。事實上,族裔團體內在的多樣性通常比不同群體的多樣性要大上十倍。

因此要全面測量一國人口的整體多元化,至少應當再多加二個多元化的面向。一是族裔或次民族群體內在的多元化,如美國的愛爾蘭裔和蘇格蘭裔人口。其次是比對任一組族裔或次民族群體之間的多元化程度,例如,比起美國的愛爾蘭裔和墨西哥裔人口,愛爾蘭裔和蘇格蘭裔的文化較為相近。

鑑於移出東非的距離與可觀察特質的多元化之間存在緊密的負相關,這個遷徙距離可用於代表地球上每個地方的歷史多元化程度。我們依據各地人口的祖先與遷徙出非洲的距離有多遠,可以建構推算今日各國人口整體多元化的指數,列入考量的包括 (1) 國內各次群體的祖先人數多寡;(2) 依據各次群體的祖先走出東非時遷徙的距離,來推測其多元化;(3) 每一次群體配對後,由兩方祖先和地理發源地的遷徙距離來推算多元化程度。

這樣用統計學測量來推算多元化水準有二大優點。一是史前遠離非洲有多遠,顯然完全與當今的經濟繁榮水準無關,所以這種測量法可用於估計多元化對生活水準的因果效應。其次是如上文所強調,有越來越多體質與認知人類學領域的證據顯示,遠離非洲的遷徙距離深深影響到許多表現在身體及行為上的特質的多元化;所以我們有把握,用這種測量法推算的多元化類別會產生社會結果。

-----廣告,請繼續往下閱讀-----

要是用這種指數測量多元化不精準(採隨機方式進行),原因比方說是未能適當考量各洲的內部移民,則根據統計學理論,我們多半會因此否定、而非確認多元化影響經濟繁榮的假設。也就是說,如果我們犯錯,是因為過於謹慎。

人口特質多元性和能不能賺大錢有關係!?

最後很重要的一點是,我們是針對個別社會的特徵測量多元化。這測量的是某一社會的人口特質有多少不同種類,無論這些特質是什麼,或是不同社會間有什麼差別。因此它不會、也不能用於暗示某些特質比別的特質對經濟成功更有利。反而它可以掌握到某個社會的人口特質多元化,對經濟繁榮有何潛在影響。事實上,把地理與歷史干擾因子納入考量,遠離非洲的遷徙距離本身似乎並未影響全球各地如身高體重等特徵的平均水準。它主要是影響群體中的個人與平均水準的差異。

有了這強有力的測量法可測定每一群人口的整體多樣性,我們終於可以探究數萬年前遠離非洲的大出走,以及它對人類多元化的影響,是否如此源遠流長,以致居然還能左右當前的全球生活水準。

———本書摘自《人類的旅程》,2022 年 10 月,商業周刊,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----